Accumulation, Source Apportionment, and Ecological-Health Risks Assessment of Topsoil Heavy Metals in Agricultural and Pastoral Areas in the Eastern Qaidam Basin, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Soil Sampling and Analyses
3.2. Evaluation Method of Pollution Levels
3.2.1. Geo-Accumulation Index (Igeo)
3.2.2. Enrichment Factor (EF)
3.3. Positive Matrix Factorization Model (PMF)
3.4. Potential Ecological-Health Risks
3.4.1. Potential Ecological Risks Assessment
3.4.2. Human Health Risks Assessment (HRA)
- (1)
- Non-carcinogenic risk assessment
- (2)
- Carcinogenic risk assessment
4. Results and Discussion
4.1. Description Statistics of HMs
4.2. Contamination Assessment of HMs
4.3. Source Identification of HMs
4.4. Potential Ecological Risks Assessment
4.5. Probabilistic Health Risks Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Árvay, J.; Demková, L.; Hauptvogl, M.; Michalko, M.; Bajčan, D.; Stanovič, R.; Tomáš, J.; Hrstková, M.; Trebichalský, P. Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: Spatial distribution and accumulation of mercury in four different ecosystems. Ecotoxicol Environ. Saf. 2017, 144, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Jiang, W.; Zhang, M. Mobilization, Speciation, and Transformation of Organic and Inorganic Contaminants in Soil-Groundwater Ecosystems. Appl. Sci. 2023, 13, 11454. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, J.; Wang, L.; Liang, T.; Guo, Q.; Guan, Y.; Rinklebe, J. Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map. Environ. Pollut. 2020, 260, 114065. [Google Scholar] [CrossRef]
- Jiang, W.J.; Meng, L.S.; Liu, F.T.; Sheng, Y.Z.; Chen, S.M.; Yang, J.L.; Mao, H.R.; Zhang, J.; Zhang, Z.; Ning, H. Distribution, source investigation, and risk assessment of topsoil heavy metals in areas with intensive anthropogenic activities using the positive matrix factorization (PMF) model coupled with self-organizing map (SOM). Envion. Geochem. Hlth. 2023, 45, 6353–6370. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, M.H.; Wu, S.F.; Japenga, J.; Li, T.Q.; Yang, X.E.; He, Z.L. A modified receptor model for source apportionment of heavy metal pollution in soil. J. Hazard. Mater. 2018, 354, 161–169. [Google Scholar] [CrossRef]
- Pavlović, P.; Mitrović, M.; Đorđević, D. Assessment of the contamination of riparian soil and vegetation by trace metals-A Danube River case study. Sci. Total Envion. 2016, 540, 396–409. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wu, Y.; Song, B. Spatial distribution and main controlling factor of cadmium accumulation in agricultural soils in Guizhou, China. J. Hazard. Mater. 2022, 424, 127308. [Google Scholar] [CrossRef]
- Chai, L.; Wang, Y.H.; Wang, X.; Ma, L.; Cheng, Z.; Su, L.M. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China. Ecol. Indic. 2021, 125, 107507. [Google Scholar] [CrossRef]
- Kebonye, N.M.; Eze, P.N.; John, K.; Gholizadeh, A.; Dajčl, J.; Drábek, O.; Němeček, K.; Borůvka, L. Self-organizing map artificial neural networks and sequential Gaussian simulation technique for mapping potentially toxic element hotspots in polluted mining soils. J. Geochem. Explor. 2021, 222, 106680. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.R.; Liu, J.; Clevers, J.G.P.W.; Kooistra, L. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Sci. Total Environ. 2016, 565, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sheng, Y.; Zheng, Y.; Jiang, M.; Wang, M.; Zhu, Z.; Li, G.; Baars, O.; Dong, H. Bioavailability of molybdenite to support nitrogen fixation on early Earth by an anoxygenic phototroph. Earth Planet. Sci. Lett. 2024, 647, 119056. [Google Scholar] [CrossRef]
- Sheng, Y.; Dong, H.; Coffin, E.; Myrold, D.; Kleber, M. The important role of enzyme adsorbing capacity of soil minerals in regulating β-glucosidase activity. Geophys. Res. Lett. 2022, 49, e2021GL097556. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Yang, J. Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Sci. Total Environ. 2021, 767, 144879. [Google Scholar] [CrossRef]
- Yang, J.Z.; Sun, Y.L.; Wang, Z.L. Heavy metal pollution in agricultural soils of a typical volcanic area: Risk assessment and source appointment. Chemosphere 2022, 304, 135340. [Google Scholar] [CrossRef]
- Han, Q.; Liu, Y.; Feng, X.X. Pollution effect assessment of industrial activities on potentially toxic metal distribution in windowsill dust and surface soil in central China. Sci. Total Environ. 2021, 759, 144023. [Google Scholar] [CrossRef]
- Sheng, Y.Z.; Kaley, B.; Bibby, K.; Grettenberger, C.; Macalady, J.L.; Wang, G.C.; Burgos, W.D. Bioreactors for low-pH iron (II) oxidation remove considerable amounts of total iron. RSC Adv. 2017, 7, 35962–35972. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, J.; Sheng, Y.; Shi, J.; Dong, H. Disentangling microbial syntrophic mechanisms for hexavalent chromium reduction in autotrophic biosystems. Environ. Sci. Technol. 2021, 55, 6340–6351. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.T.; Zeng, G.M.; Gao, X.; Zhong, M.Z.; Li, X.D.; Li, X.; He, X.Y.; Fang, Y.L. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- Hu, W.Y.; Wang, H.F.; Dong, L.R.; Huang, B.; Borggaard, O.K.; Bruun, H.H.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef]
- Salim, I.; Sajjad, R.U.; Paule-Mercado, M.C.; Memon, S.A.; Lee, B.Y.; Sukhbaatar, C.; Lee, C.H. Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and sub-watershed areas with mixed land cover in South Korea. Sci. Total Environ. 2019, 663, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Lou, Z.; Xiao, R. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.; Wu, Y.Y.; Sun, J.X.; Li, X.; Geng, X.L.; Zhao, M.L.; Sun, T.; Fan, Z.Q. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef] [PubMed]
- Baltas, H.; Sirin, M.; Gökbayrak, E.; Ozcelik, A.E. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere 2020, 241, 125015. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wang, J.S. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.C.; Liu, F.; Cui, L.F.; Jiao, Y.J. Supplementary material source apportionment and ecological-health risks assessment of heavy metals in topsoils near a factory, central China. Expo Health 2021, 13, 79–92. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Pu, W.P.; Dong, J.H. Spatiotemporal Changes of Land Use and Its Impact on Ecosystem Service Value in the Agro-pastoral Ecotone of Northern China. Environ. Sci. 2024, 1–19. (In Chinese) [Google Scholar] [CrossRef]
- Wang, W.Q.; Liu, X.; Liu, C.H. Impacts of grazing pressure on ecosystem health in the agro-pastoral intertwined areas of northern China. Acta Ecol. Sin. 2024, 44, 6288–6300. [Google Scholar]
- Chen, R.; Chen, H.; Song, L.; Yao, Z.; Meng, F.; Teng, Y. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Sci. Total Environ. 2019, 694, 445–486. [Google Scholar] [CrossRef]
- Long, Z.J.; Zhu, H.; Bing, H.J.; Tian, X.; Wang, Z.G.; Wang, X.F.; Wu, Y.H. Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China. J. Hazard. Mater. 2021, 420, 126638. [Google Scholar] [CrossRef]
- Wu, S.; Xia, X.H.; Lin, C.Y.; Chen, X.; Zhou, C.H. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985-2008). J. Hazard. Mater. 2010, 179, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Chen, L.J.; Li, H.H.; Lin, J.B.; Yang, Z.B.; Yang, Y.X.; Xu, X.X.; Xian, J.R.; Shao, J.R.; Zhu, X.M. Characteristics and health risk assessment of heavy metals exposure via household dust from the urban area in Chengdu, China. Sci. Total Environ. 2018, 619–620, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah Al- Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- USEPA. Exposure Factors Handbook, Final ed.; U.S. Environment Protection Agency: Washington, DC, USA, 2011.
- Ning, H.; Jiang, W.J.; Sheng, Y.Z.; Wang, K.L.; Chen, S.M.; Zhang, Z.; Liu, F.T. Comprehensive evaluation of nitrogen contamination in water ecosystems of the Miyun reservoir watershed, northern China: Distribution, source apportionment and risk assessment. Environ. Geochem. Health 2024, 46, 278. [Google Scholar] [CrossRef]
- Gu, Y.G.; Lin, Q.; Gao, Y.P. Metals in exposed-lawn soils from 18 urban parks and its human health implications in southern China’s largest city, Guangzhou. J. Clean. Prod. 2017, 163, 164–171. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, T.; Zhang, Y.; Hou, Y.; Chang, Q. Health risk assessment of heavy metals in agricultural soils and identification of main influencing factors in a typical industrial park in northwest China. Chemosphere 2020, 252, 126591. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Wen, H.H.; Luo, J.; Wang, S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef]
- Cui, X.T.; Wang, X.Q.; Liu, B. The characteristics of heavy metal pollution in surface dust in Tangshan, a heavily industrialized city in North China, and an assessment of associated health risks. J. Geochem. Explor. 2020, 210, 106432. [Google Scholar] [CrossRef]
- CMEE—Ministry of Ecology and Environment of, P.R. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (GB15618-2018); China Environmental Science Press: Beijing, China, 2018; pp. 1–7. (In Chinese)
- CNEMC—China National Environmental Monitoring Centre. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990; pp. 1–500. (In Chinese)
- Jin, Y.L.; O’Connor, D.; Ok, Y.S.; Tsang, D.C.W.; Liu, A.; Hou, D.Y. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Negrete, J.; Pinedo-Hernandez, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Lei, S.; Bian, Z.; Zhao, Y.; Li, Y.; Gan, Y. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using Positive Matrix Factorization. J. Hazard. Mater. 2020, 387, 121666. [Google Scholar] [CrossRef] [PubMed]
- Duzgoren-Aydin, N.S.; Li, X.D.; Wong, S.C. Lead contamination and isotope signatures in the urban environment. Environ. Int. 2004, 30, 209–217. [Google Scholar] [CrossRef]
- Kadi, M.W. Soil pollution hazardous to environment, a case study on the chemical composition and correlation to automobile traffic of the roadside soil of Jeddah city, Saudi Arabia. J. Hazard. Mater. 2009, 168, 1280–1283. [Google Scholar] [CrossRef]
- Peng, T.; O’Connor, D.; Zhao, B.; Jin, Y.; Zhang, Y.; Tian, L.; Zheng, N.; Li, X.; Hou, D. Spatial distribution of lead contamination in soil and equipment dust at children’s playgrounds in beijing, china. Environ. Pollut. 2018, 245, 363–370. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Chen, Y.H.; Lippold, H.; Xiao, T.F.; Li, H.S.; Shen, C.C.; Xie, L.H.; Xie, X.F.; Yang, H.L. Geochemical transfer and preliminary health risk assessment of thallium in a riverine system in the Pearl River Basin, South China. J. Geochem. Explor. 2017, 176, 64–75. [Google Scholar] [CrossRef]
- Cao, J.; Ren, S.; Wang, C.; She, J.; Jiang, Y.; Liu, Y.; Zhou, Y.; Wang, L.; Wang, J.; Wang, Y.; et al. Cadmium and lead distribution in pyrite ores: Environmental concerns over geochemically mobile fractions. Elem. Sci. Anth. 2021, 9, 00093. [Google Scholar] [CrossRef]
- Wang, S.; Cai, L.M.; Wen, H.H.; Luo, J.; Wang, Q.S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef]
- Ma, W.; Tai, L.; Qiao, Z.; Zhong, L.; Wang, Z.; Fu, K.; Chen, G. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in north china. Sci. Total Environ. 2018, 631–632, 348–357. [Google Scholar] [CrossRef]
- Liu, L.L.; Liu, Q.Y.; Ma, J.; Wu, H.W.; Qu, Y.J.; Gong, Y.W.; Yang, S.H.; An, Y.F.; Zhou, Y.Z. Heavy metal(loid)s in the topsoil of urban parks in Beijing, China, concentrations, potential sources, and risk assessment. Environ. Pollut. 2020, 260, 114083. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Dong, H.; Kukkadapu, R.K.; Ni, S.; Zeng, Q.; Hu, J.; Coffin, E.; Zhao, S.; Sommer, A.J.; McCarrick, R.M.; et al. Lignin-enhanced reduction of structural Fe (III) in nontronite: Dual roles of lignin as electron shuttle and donor. Geochim. Cosmochim. Acta 2021, 307, 1–21. [Google Scholar] [CrossRef]
- Sheng, Y.; Baars, O.; Guo, D.; Whitham, J.; Srivastava, S.; Dong, H. Mineral-bound trace metals as cofactors for anaerobic biological nitrogen fixation. Environ. Sci. Technol. 2023, 57, 7206–7216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xu, Y.F.; Hou, H.; Shangguan, Y.X.; Li, F.S. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci. Total Environ. 2014, 468–469, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.A.; Nanos, N.; Grau, J.M.; Gil, L.; Lopez-Arias, M. Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 2008, 70, 1085–1096. [Google Scholar] [CrossRef]
- Šajn, R.; Halamić, J.; Peh, Z.; Galović, L.; Alijagić, J. Assessment of the natural and anthropogenic sources of chemical elements in alluvial soils from the Drava River using multivariate statistical methods. J. Geochem. Explor. 2011, 110, 278–289. [Google Scholar] [CrossRef]
- Tomiyasu, T.; Kodamatani, H.; Imura, R.; Matsuyama, A.; Miyamoto, J.; Akagi, H.; Kocman, D.; Kotnik, J.ž.; Fajon, V.; Horvat, M. The dynamics of mercury near Idrija mercury mine, Slovenia, horizontal and vertical distributions of total, methyl, and ethyl mercury concentrations in soils. Chemosphere 2017, 184, 244–252. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, S.; Li, R.; Wang, J.J.; Zhang, Z. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017, 141, 17–24. [Google Scholar] [CrossRef]
- Jiang, G.B.; Shi, J.B.; Feng, X.B. Mercury pollution in China. Environ. Sci. Technol. 2006, 40, 3672–3678. [Google Scholar] [CrossRef]
- Pacyna, E.G.; Pacyna, J.M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 2010, 44, 2487–2499. [Google Scholar] [CrossRef]
- Dong, H.; Lin, Z.; Wan, X. Risk assessment for the mercury polluted site near a pesticide plant in Changsha, Hunan, China. Chemosphere 2017, 169, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Wang, T.; Lu, Y.; Giesy, J.P.; Shi, Y.; Zheng, Y. Landscape ecology of the Guanting Reservoir, Beijing, China: Multivariate and geostatistical analyses of metals in soils. Environ. Pollut. 2007, 146, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Nan, Z.R.; Li, J.J.; Zhang, J.M.; Cheng, G.D. Cadmium and zinc interactions and their transfer in soil crop system under actual field conditions. Sci. Total Environ. 2002, 285, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Abollino, O.; Aceto, M.; Malandrino, M.; Mentasti, E.; Sarzanini, C.; Petrella, F. Heavy metals in agricultural soils from Piedmont, Italy: Distribution, speciation and chemometric data treatment. Chemosphere 2002, 49, 545–557. [Google Scholar] [CrossRef]
- Sun, C.Y.; Liu, J.S.; Wang, Y.; Sun, L.Q.; Yu, H.W. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere 2013, 92, 517–523. [Google Scholar] [CrossRef]
- Mcbride, M.B.; Spiers, G. Trace element content of selected fertilizers and dairy manures as determined by ICP-MS. Commun. Soil Sci. Plant Anal. 2001, 32, 139–156. [Google Scholar] [CrossRef]
- Li, J.T.; Qiu, J.W.; Wang, X.W.; Zhong, Y.; Lan, C.Y.; Shu, W.S. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China. Environ. Pollut. 2006, 143, 159–165. [Google Scholar] [CrossRef]
- Nogueirol, R.C.; Alleoni, L.R.F.; Nachtigall, G.R.; de Melo, G.W. Sequential extraction and availability of copper in Cu fungicide-amended vineyard soils from Southern Brazil. J. Hazard. Mater. 2010, 181, 931–937. [Google Scholar] [CrossRef]
- Lu, A.X.; Wang, J.H.; Qin, X.Y.; Wang, K.Y.; Han, P.; Zhang, S.Z. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci. Total Environ. 2012, 425, 66–74. [Google Scholar] [CrossRef]
- Liu, Z.C.; Chen, B.N.; Wang, L.A.; Urbanovich, O.; Nagorskaya, L.; Li, X.; Tang, L. A review on phytoremediation of mercury contaminated soils. J. Hazard. Mater. 2020, 400, 123138. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Yang, W.T.; Zou, Y.Z.; Wu, Y.H.; Mao, W.J.; Zhang, J.; Zia-ur-Rehman, M.; Wang, B.; Wu, P. Quantification of the effect of biochar application on heavy metals in paddy systems: Impact, mechanisms and future prospects. Sci. Total Environ. 2024, 912, 168874. [Google Scholar] [CrossRef] [PubMed]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.P.; Zhao, Y.C.; Ma, S.M.; Zhu, B.B.; Zhang, J.Y.; Zheng, C.G. Mercury Removal by Magnetic Biochar Derived from Simultaneous Activation and Magnetization of Sawdust. Environ. Sci. Technol. 2016, 50, 12040–12047. [Google Scholar] [CrossRef]
- Guo, W.P.; Yao, X.; Chen, Z.; Liu, T.; Wang, W.; Zhang, S.J.; Xian, J.Q.; Wang, Y.H. Recent advance on application of biochar in remediation of heavy metal contaminated soil: Emphasis on reaction factor, immobilization mechanism and functional modification. J. Environ. Manag. 2024, 371, 123212. [Google Scholar] [CrossRef]
- Song, P.P.; Xu, D.; Yue, J.Y.; Ma, Y.C.; Dong, S.J.; Feng, J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Sci. Total Environ. 2022, 838, 156417. [Google Scholar] [CrossRef]
- Astel, A.; Tsakovski, S.; Barbieri, P.; Simeonov, V. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res. 2007, 41, 4566–4578. [Google Scholar] [CrossRef]
- Bian, B.; Lin, C.; Wu, H.S. Contamination and risk assessment of metals in road-deposited sediments in a medium-sized city of China. Ecotoxicol. Environ. Saf. 2015, 112, 87–95. [Google Scholar] [CrossRef]
- Céréghino, R.; Park, Y.S. Review of the Self-Organizing Map (SOM) approach in water resources: Commentary. Environ. Model. Softw. 2009, 24, 945–947. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, X.; Wang, Y.; Zhuang, D. Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area: A case study in China. Process. Saf. Environ. Prot. 2018, 113, 204–219. [Google Scholar] [CrossRef]
- Clark, S.; Sisson, S.A.; Sharma, A. Tools for enhancing the application of selforganizing maps in water resources research and engineering. Adv. Water Resour. 2020, 143, 103676. [Google Scholar] [CrossRef]
- CMEP; Ministry of Environmental Protection of P.R. China. Technical Guidance for Risk Assessment of Contaminated Sites, (HJ 25.3-2014); China Environmental Science Press: Beijing, China, 2014. (In Chinese)
- Fernández, J.; Carballeira, A. Evaluation of contamination, by different elements, in terrestrial mosses. Arch. Environ. Contam. Toxicol. 2001, 40, 461–468. [Google Scholar] [PubMed]
- Ferreira-Baptista, L.; Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 38, 4501–4512. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.Y.; Wang, W.J.; Li, T.Q.; He, Z.L.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef]
- Jiang, H.H.; Cai, L.M.; Wen, H.H.; Hu, G.C.; Chen, L.G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef]
- Kusin, F.M.; Azani, N.N.M.; Hasan, S.N.M.S.; Sulong, N.A. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena 2018, 165, 454–464. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ma, Z.W.; Kuijp, T.J.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468-469, 843–853. [Google Scholar] [CrossRef]
- Lu, X.; Wu, X.; Wang, Y.; Chen, H.; Gao, P.; Fu, Y. Risk assessment of toxic metals in street dust from a medium–sized industrial city of China. Ecotoxicol. Environ. Saf. 2014, 106, 154–163. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Hou, Q.; Duan, J. Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens. Geogr. Res. 2011, 30, 486–495. [Google Scholar]
- Mao, H.R.; Wang, G.C.; Rao, Z.; Liao, F.; Shi, Z.M.; Huang, X.J.; Chen, X.L.; Yang, Y. Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in Poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics. J. Clean. Prod. 2021, 329, 129697. [Google Scholar] [CrossRef]
- Singh, U.K.; Ramanathan ALSubramanian, V. Groundwater chemistry and human health risk assessment in the mining region of East Singhbhum, Jharkhand, India. Chemosphere 2018, 204, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.M.; Li, H.R.; Tudi, M.; Yuan, X.; Yang, L.S. Comparison of characteristics, water quality and health risk assessment of trace elements in surface water and groundwater in China. Ecotox. Environ. Safe. 2021, 219, 112283. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; U.S. Environmental Protection Agency, Office of Emergency and Remedial Response: Washington, DC, USA, 2002.
- USEPA. Region IX, Regional Screening Levels (Formerly PRGs). San Francisco, CA 94105. 2013. Available online: http://www.epa.gov/region9/superfund/prg/ (accessed on 23 November 2014).
- USEPA. U.S. Environmental Protection Agency, Integrated Risk Information System. 2014. Available online: http://www.epa.gov/iris/ (accessed on 23 November 2014).
- Vesanto, J.; Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 2000, 11, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Meng, B.; Zhang, W.; Bai, J.H.; Ma, Y.X.; Liu, M.D. Multi-Target Risk Assessment of Potentially Toxic Elements in Farmland Soil Based on the Environment-Ecological-Health Effect. Int. J. Environ. Res. Public Health 2018, 15, 1101. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, L.Q.; Huan, Y.Z.; Wang, R.; Liang, T. Concentrations, spatial distribution, sources and environmental health risks of potentially toxic elements in urban road dust across China. Sci. Total Environ. 2022, 805, 150266. [Google Scholar] [CrossRef]
- Wu, H.; Yang, F.; Li, H.; Li, Q.; Zhang, F.; Ba, Y.; Cui, L.; Sun, L.; Lv, T.; Wang, N. Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China. Int. J. Environ. Health Res. 2019, 30, 174–186. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650 Pt 2, 2004–2012. [Google Scholar] [CrossRef]
- Xie, X.F.; Liu, Y.X.; Qiu, H.; Yang, X.S. Quantifying ecological and human health risks of heavy metals from different sources in farmland soils within a typical mining and smelting industrial area. Environ. Geochem. Health 2020, 45, 5669–5683. [Google Scholar] [CrossRef]
- Zuo, L.; Lu, X.W.; Fan, P.; Wang, L.Q.; Yu, B.; Lei, K.; Yang, Y.F.; Chen, Y.R. Concentrations, sources and ecological–health risks of potentially toxic elements in finer road dust from a megacity in north China. J. Clean. Product. 2022, 358, 132036. [Google Scholar] [CrossRef]
Element | Cu | Pb | Zn | Cd | As | Hg | Mn | Al | Fe | pH |
---|---|---|---|---|---|---|---|---|---|---|
Min | 9.80 | 14.70 | 30.90 | 0.059 | 4.59 | 0.002 | 348.50 | 4.89 | 1.60 | 7.89 |
Mean | 21.32 | 20.96 | 61.75 | 0.145 | 10.96 | 0.020 | 556.61 | 5.68 | 2.82 | 8.53 |
Max | 36.50 | 43.00 | 132.30 | 1.129 | 21.67 | 1.386 | 795.20 | 7.97 | 4.56 | 9.25 |
Q1 (25%) | 19.10 | 19.30 | 55.10 | 0.120 | 9.86 | 0.013 | 522.40 | 5.46 | 2.64 | 8.37 |
Median | 21.70 | 20.80 | 62.00 | 0.143 | 11.08 | 0.017 | 564.90 | 5.67 | 2.89 | 8.51 |
Q3 (75%) | 23.70 | 22.10 | 68.70 | 0.164 | 12.25 | 0.021 | 602.30 | 5.84 | 3.06 | 8.66 |
SD a | 3.99 | 2.84 | 12.58 | 0.050 | 2.06 | 0.045 | 69.99 | 0.37 | 0.41 | 0.24 |
CV (%) b | 0.19 | 0.14 | 0.20 | 0.341 | 0.19 | 2.240 | 0.13 | 0.07 | 0.14 | 0.03 |
BV c | 21.70 | 20.80 | 62.00 | 0.143 | 11.10 | 0.017 | 565.00 | 5.66 | 2.79 | 8.51 |
RSV d | 100.00 | 170.00 | 300.00 | 0.60 | 20.00 | 1.00 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Yao, Z.; Xu, X.; Wei, Y.; Yan, X.; Xiao, M. Accumulation, Source Apportionment, and Ecological-Health Risks Assessment of Topsoil Heavy Metals in Agricultural and Pastoral Areas in the Eastern Qaidam Basin, China. Water 2024, 16, 3719. https://doi.org/10.3390/w16243719
Zhu M, Yao Z, Xu X, Wei Y, Yan X, Xiao M. Accumulation, Source Apportionment, and Ecological-Health Risks Assessment of Topsoil Heavy Metals in Agricultural and Pastoral Areas in the Eastern Qaidam Basin, China. Water. 2024; 16(24):3719. https://doi.org/10.3390/w16243719
Chicago/Turabian StyleZhu, Mingxia, Zhen Yao, Xianhong Xu, Youning Wei, Xufa Yan, and Ming Xiao. 2024. "Accumulation, Source Apportionment, and Ecological-Health Risks Assessment of Topsoil Heavy Metals in Agricultural and Pastoral Areas in the Eastern Qaidam Basin, China" Water 16, no. 24: 3719. https://doi.org/10.3390/w16243719
APA StyleZhu, M., Yao, Z., Xu, X., Wei, Y., Yan, X., & Xiao, M. (2024). Accumulation, Source Apportionment, and Ecological-Health Risks Assessment of Topsoil Heavy Metals in Agricultural and Pastoral Areas in the Eastern Qaidam Basin, China. Water, 16(24), 3719. https://doi.org/10.3390/w16243719