Redesigning the Fuse Plug, Emergency Spillway, and Flood Warning System: An Application of Flood Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction of Dam
2.1.1. Introduction of Ramshir Diversion Regulating Dam
2.1.2. Sluiceway and Lower Conduits
2.1.3. Overflow Spillway
2.1.4. Flood Control in Ramshir Diversion Dam
2.1.5. Fuse Plug
2.1.6. Study Area
2.1.7. Ramshir Diversion Dam Reservoir Hydrography
2.1.8. Fuse Plug Operation History
2.1.9. Dam Hydrograph
2.2. Numerical Simulations
2.2.1. Data of Jarahi River
2.2.2. HEC-RAS Model
2.2.3. Meshing
2.2.4. Introduce Hydraulic Structures in the Model
2.2.5. Initial and Boundary Condition
2.3. Scenarios
- (A)
- Current situation scenario
- (B)
- Flood channel dredging scenario
- (C)
- Flood channel overhaul scenario
- (D)
- Flood channel overhaul scenario with reservoir dredging
3. Results and Discussion
3.1. Current Situation Scenario
- Stage H.W. (blue color) is the upstream level of the structure.
- Stage tw (red color) is the downstream level of the structure.
- Flow (green dashed line) is the total discharge.
- Weir flow (Yellow dashed line) and overflow (in any structure, it is related to the overflow).
- Gate flow—sluiceway (purple dashed line corresponding to the dam) is the discharge of sediment discharge duct.
- Gate flow—fish ladder (pink dashed line) is the discharge of the fishway.
- The gate flow—bottom outlet (orange dashed line) is the discharge of the lower duct.
- Breach flow (purple dashed line in the fuse chart diagram) is discharged due to fuse plug failure.
- Stage Hwus is the water level at the beginning of the canal.
- Stage tw is the water level behind the canal wall.
- Stage hwds is the water level at the end of the canal.
- Flow hwus is discharged at the beginning of the canal.
- Flow hw is discharged at the end of the canal.
- Weir flow is discharged by crossing the canal wall.
3.2. Flood Channel Dredging Scenario
3.3. Flood Channel Overhaul Scenario
3.4. Scenario of Flood Channel Modification and Reservoir Dredging
3.5. Fuse Plug Function
3.5.1. Current Situation
3.5.2. Flood Channel Dredging Scenario
3.5.3. Flood Channel Overhaul Scenario
3.5.4. Flood Channel Modification Scenario with Reservoir Dredging
4. Conclusions
- (1)
- The current situation of the Ramshir diversion dam reservoir and flood channel is very far from the design conditions. This factor causes the difference between the initial and current hydraulic design conditions.
- (2)
- The flood channel cannot discharge flows of less than 1400 cubic meters per second (design capacity), and the flow overflows into the surrounding lands.
- (3)
- Flow rates greater than 2400 m3/s activate the first fuse plug.
- (4)
- The flow through the Ramshir diversion dam did not exceed 560 m3/s, so the downstream river will not flood.
- (5)
- The improper slope downstream of the fuse plug causes water to accumulate downstream and, in practice, prevents the fuse plug from breaking properly. Therefore, correcting the downstream slope of the fuse plug is essential.
- (6)
- Dredging or modifying the channel alone can greatly improve the hydraulic condition of the channel and allow flow rates of 1400 to 2000 m3/s.
- (7)
- Dredging or modifying the channel alone does not affect the flow rate of the overflow of the flood channel, but in the case of dredging the reservoir, the flow through the overflow increases by 400 to 600 m3/s.
- (8)
- Reservoir dredging, along with channel modification, causes a delay in the failure of the fuse plug, and as a result, the opportunity to discharge the flow through the overflow of the flood channel increases.
- (9)
- Reservoir dredging prevents the failure of the second fuse plug in the 100-year return period (flow rate 4370 m3/s).
- (10)
- The maximum flow rate (return period of 100 years) from the fuse plug in the channel modification scenario with reservoir dredging and other scenarios is 1800 and 3000 m3/s, respectively.
- (11)
- Although in the 100-year return period, in the channel modification scenario, along with the dredging of the reservoir, the second fuse plug does not enter the circuit, its free height is about 3 cm. If we consider the calculation error, the possibility of the second fuse breaking, in this case, is also possible.
- (12)
- A significant amount of the flow resulting from the failure of the fuse plug enters this channel through the flood plain located on the right side of the flood channel.
- (13)
- The increase in the embankment wall of the flood channel reduces the inflow from the flood plain. As a result, this factor, in addition to the inappropriate slope of the fuse abutment, causes the failure of the second fuse plug in the 50-year return period (flow rate of 3400 m3/s) in the scenario of the basic modification of the flood channel.
- (14)
- In channel correction or dredging conditions, the maximum speed does not exceed the allowed value of 1.8 m/s.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tran, T.N.D.; Nguyen, B.Q.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. The role of reservoirs under the impacts of climate change on the Srepok River basin, Central Highlands of Vietnam. Front. Environ. Sci. 2023, 11, 1304845. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Kantoush, S.A.; Tran, T.-N.-D.; van Binh, D.; Vo, N.D.; Saber, M.; Sumi, T. Response of Hydrological to Anthropogenic Activities in a Tropical Basin. In Proceedings of the 40th IAHR World Congress, Vienna, Austria, 21–25 August 2023. [Google Scholar] [CrossRef]
- Al-Hussein, A.A.; Khan, S.; Ncibi, K.; Hamdi, N.; Hamed, Y. Flood analysis using HEC-RAS and HEC-HMS: A case study of Khazir River (Middle East—Northern Iraq). Water 2022, 14, 3779. [Google Scholar] [CrossRef]
- Mulligan, R.P.; Mallinson, D.J.; Clunies, G.J.; Rey, A.; Culver, S.J.; Zaremba, N.; Leorri, E.; Mitra, S. Estuarine responses to long-term changes in inlets, morphology, and sea level rise. J. Geophys. Res. Oceans 2019, 124, 9235–9257. [Google Scholar] [CrossRef]
- Chen, J.; Huang, G.; Chen, W. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models. J. Environ. Manag. 2021, 293, 112810. [Google Scholar] [CrossRef]
- Tran, T.N.D.; Lakshmi, V. Enhancing human resilience against climate change: Assessment of hydroclimatic extremes and sea level rise impacts on the eastern shore of Virginia, United States. Sci. Total Environ. 2024, 947, 174289. [Google Scholar] [CrossRef] [PubMed]
- Do, S.K.; Nguyen, B.Q.; Tran, V.N.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. Investigating the Future Flood and Drought Shifts in the Transboundary Srepok River Basin Using CMIP6 Projections. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7516–7529. [Google Scholar]
- Ongdas, N.; Akiyanova, F.; Karakulov, Y.; Muratbayeva, A.; Zinabdin, N. Application of HEC-RAS (2D) for flood hazard maps generation for Yesil (Ishim) river in Kazakhstan. Water 2020, 12, 2672. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Van Binh, D.; Tran, T.N.D.; Kantoush, S.A.; Sumi, T. Response of streamflow and sediment variability to cascade dam development and climate change in the Sai Gon Dong Nai River basin. Clim. Dyn 62. 2024, 7997–8017. [Google Scholar] [CrossRef]
- IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, T.H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Allen, M.; Antwi-Agyei, P.; Aragon-Durand, F.; Babiker, M.; Bertoldi, P.; Bind, M.; Brown, S.; Buckeridge, M.; Camilloni, I.; Cartwright, A.; et al. Technical Summary: Global warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Re-sponse to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Weilnhammer, V.; Schmid, J.; Mittermeier, I.; Schreiber, F.; Jiang, L.; Pastuhovic, V.; Herr, C.; Heinze, S. Extreme weather events in europe and their health consequences–A systematic review. Int. J. Hygiene Environ. Health 2021, 233, 113688. [Google Scholar] [CrossRef]
- Tapas, M.R.; Etheridge, R.; Finlay, C.G.; Peralta, A.L.; Bell, N.; Xu, Y.; Lakshmi, V. A methodological framework for assessing sea level rise impacts on nitrate loading in coastal agricultural watersheds using SWAT+: A case study of the Tar-Pamlico River basin, North Carolina, USA. Sci. Total Environ. 2024, 951, 175523. [Google Scholar] [CrossRef]
- Tapas, M.R.C.; Do, S.K.; Etheridge, R.; Lakshmi, V. Investigating the impacts of climate change on hydroclimatic extremes in the Tar-Pamlico River basin, North Carolina. J. Environ. Manag. 2024, 363, 121375. [Google Scholar] [CrossRef]
- Yari, A.; Ardalan, A.; Ostadtaghizadeh, A.; Zarezadeh, Y.; Boubakran, M.S.; Bidarpoor, F.; Rahimiforoushani, A. Underlying factors affecting death due to flood in Iran: A qualitative content analysis. Int. J. Disaster Risk Reduct. 2019, 40, 101258. [Google Scholar] [CrossRef]
- Hadian, S.; Afzalimehr, H.; Soltani, N.; Tabarestani, E.S.; Karakouzian, M.; Nazari-Sharabian, M. Determining flood zonation maps, using new ensembles of multi-criteria decision-making, bivariate statistics, and artificial neural network. Water 2022, 14, 1721. [Google Scholar] [CrossRef]
- Darand, M.; Sohrabi, M.M. Identifying drought-and flood-prone areas based on significant changes in daily precipitation over Iran. Nat. Hazards 2018, 90, 1427–1446. [Google Scholar] [CrossRef]
- Nabinejad, S.; Schüttrumpf, H. Agent-Based Modeling for Household Decision-Making in Adoption of Private Flood Mitigation Measures: The Upper Kan Catchment Case Study. Water 2024, 16, 2027. [Google Scholar] [CrossRef]
- Shokri, A.; Sabzevari, S.; Hashemi, S.A. Impacts of flood on health of Iranian population: Infectious diseases with an emphasis on parasitic infections. Parasite Epidemiol. Control. 2020, 9, e00144. [Google Scholar] [CrossRef] [PubMed]
- Ogras, S.; Onen, F. Flood Analysis with HEC-RAS: A Case Study of Tigris River. Adv. Civ. Eng. 2020, 2020, 6131982. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, K.; Jing, H.; Zuo, J.; Li, P.; Li, Z. Effects of bridge piers on flood hazards: A case study on the Jialing river in China. Water 2019, 11, 1181. [Google Scholar] [CrossRef]
- Nunes Correia, F.; Castro Rego, F.; Da Grača Saraiva, M.; Ramos, I. Coupling GIS with hydrologic and hydraulic flood modelling. Water Resour. Manag. 1998, 12, 229–249. [Google Scholar] [CrossRef]
- Bellos, V.; Tsakiris, G. Comparing various methods of building representation for 2D flood modelling in built-up areas. Water Resour. Manag. 2015, 29, 379–397. [Google Scholar] [CrossRef]
- Chen, S.; Garambois, P.A.; Finaud-Guyot, P.; Dellinger, G.; Mose, R.; Terfous, A.; Ghenaim, A. Variance based sensitivity analysis of 1D and 2D hydraulic models: An experimental urban flood case. Environ. Model. Softw. 2018, 109, 167–181. [Google Scholar] [CrossRef]
- Dong, B.; Xia, J.; Zhou, M.; Li, Q.; Ahmadian, R.; Falconer, R.A. Integrated modeling of 2D urban surface and 1D sewer hydrodynamic processes and flood risk assessment of people and vehicles. Sci. Total. Environ. 2022, 827, 154098. [Google Scholar] [CrossRef] [PubMed]
- Kitsikoudis, V.; Becker, B.P.; Huismans, Y.; Archambeau, P.; Erpicum, S.; Pirotton, M.; Dewals, B. Discrepancies in Flood Modelling Approaches in Transboundary River Systems: Legacy of the Past or Well-grounded Choices? Water Resour. Manag. 2020, 34, 3465–3478. [Google Scholar] [CrossRef]
- Amponsah, W.; Marra, F.; Zoccatelli, D.; Marchi, L.; Crema, S.; Pirastru, M.; Borga, M. Scale-dependence of observational and modelling uncertainties in forensic flash flood analysis. J. Hydrol. 2022, 607, 127502. [Google Scholar] [CrossRef]
- Vacondio, R.; Rogers, B.; Stansby, P.; Mignosa, P. SPH modeling of shallow flow with open boundaries for practical flood simulation. J. Hydraul. Eng. 2011, 138, 530–541. [Google Scholar] [CrossRef]
- Liu, Q.; Qin, Y.; Zhang, Y.; Li, Z. A coupled 1D–2D hydrodynamic model for flood simulation in flood detention basin. Nat. Hazards 2015, 75, 1303–1325. [Google Scholar] [CrossRef]
- Brunner, G.W. HEC-RAS River Analysis System User’s Manual Version 5.0; US Army Corps of Engineers: Washington, DC, USA, 2016; Volume 962. [Google Scholar]
- Bellos, V.; Tsakiris, V.K.; Kopsiaftis, G.; Tsakiris, G. Propagating dam breach parametric uncertainty in a river reach using the HEC-RAS software. Hydrology 2020, 7, 72. [Google Scholar] [CrossRef]
- Nobre, A.D.; Cuartas, L.A.; Hodnett, M.; Renno, C.D.; Rodrigues, G.; Silveira, A.; Waterloo, M.; Saleska, S. Height above the nearest drainage—A hydrologically relevant new terrain model. J. Hydrol. 2011, 404, 13–29. [Google Scholar] [CrossRef]
- Teng, J.; Vaze, J.; Kim, S.; Dutta, D.; Jakeman, A.J.; Croke, B.F.W. Enhancing the capability of a simple, computationally efficient, conceptual flood inundation model in hydrologically complex terrain. Water Resour. Manag. 2019, 33, 831–845. [Google Scholar] [CrossRef]
- Xiong, Y. A Dam Break Analysis Using HEC-RAS. J. Water Resour. Protect 2011, 3, 370–379. [Google Scholar] [CrossRef]
- Haltas, I.; Tayfur, G.; Elci, S. Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey. Nat. Hazards 2016, 81, 2103–2119. [Google Scholar] [CrossRef]
- Patel, D.P.; Ramirez, J.A.; Srivastava, P.K.; Bray, M.; Han, D. Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: A case application of the new HEC-RAS 5. Nat. Hazards 2017, 89, 93–130. [Google Scholar] [CrossRef]
- Parhi, P.K. Flood Management in Mahanadi Basin using HEC-RAS and Gumbel’s Extreme Value Distribution. J. Inst. Eng. (India) Ser. A 2018, 99, 751–755. [Google Scholar] [CrossRef]
- Ghimire, E.; Sharma, S.; Lamichhane, N. Evaluation of one-dimensional and two-dimensional HEC-RAS models to predict flood travel time and inundation area for flood warning system. ISH J. Hydraul. Eng. 2022, 28, 110–126. [Google Scholar] [CrossRef]
- Rangari, V.A.; Umamahesh, N.V.; Bhatt, C.M. Assessment of inundation risk in urban floods using HEC RAS 2D. Model. Earth Syst. Environ. 2019, 5, 1839–1851. [Google Scholar] [CrossRef]
- Dasallas, L.; Kim, Y.; An, H. Case study of HEC-RAS 1D–2D coupling simulation: 2002 Baeksan flood event in Korea. Water 2019, 11, 2048. [Google Scholar] [CrossRef]
- Yalcin, E. Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis. Nat. Hazards 2020, 101, 995–1017. [Google Scholar] [CrossRef]
- Garcia, M.; Juan, A.; Bedient, P. Integrating reservoir operations and flood modeling with HEC-RAS 2D. Water 2020, 12, 2259. [Google Scholar] [CrossRef]
- Qian, Q.; Edwards, D.J.; Zhang, Y.; Haselbach, L. Improving Flood Inundation Mapping Accuracy Using HEC-RAS Modeling: A Case Study of the Neches River Tidal Floodplain in Texas. J. Hydrol. Eng. 2024, 29, 05024011. [Google Scholar] [CrossRef]
- Bahmanpouri, F.; Lazzarin, T.; Barbetta, S.; Moramarco, T.; Viero, D.P. Estimating flood discharge at river bridges using the entropy theory. Insights from Computational Fluid Dynamics flow fields. Hydrol. Earth Syst. Sci. Discuss. 2023, 28, 3717–3737. [Google Scholar] [CrossRef]
- Chen, L.; Ye, L.; Singh, V.; Zhou, J.; Guo, S. Determination of input for artificial neural networks for flood forecasting using the copula entropy method. J. Hydrol. Eng. 2014, 19, 04014021. [Google Scholar] [CrossRef]
- Khazaei Moughani, S.; Rezazadeh, S.; Azimmohseni, M.; Rahi, G.; Bahmanpouri, F. Applying a transfer function model to improve the sediment rating curve. Int. J. River Basin Manag. 2024, 1–13. [Google Scholar]
- Farina, G.; Alvisi, S.; Franchini, M.; Corato, G.; Moramarco, T. Estimation of bathymetry (and discharge) in natural river cross-sections by using an entropy approach. J. Hydrol. 2015, 527, 20–29. [Google Scholar] [CrossRef]
- Mahab Ghods Consultant Engineering Group. Detail Design of Ramshir Diversion Dam and Its Flood Control, Energy Ministry of Iran; Mahab Ghods Consultant Engineering Group: Tehran, Iran, 1995; p. 225. [Google Scholar]
- Ahadiyan, J.; Bahmanpouri, F.; Adeli, A.; Gualtieri, C.; Khoshkonesh, A. Riprap Effect on Hydraulic Fracturing Process of Cohesive and Non-cohesive Protective Levees. Water Resour. Manag. 2022, 36, 625–639. [Google Scholar] [CrossRef]
- Zolghadr, M.; Hashemi, M.R.; Hosseinipour, E.Z. Investigating the Optimum pattern of Levee System Fuse Plugs by a Two-Dimensional Model. In World Environmental and Water Resources Congress: Crossing Boundaries; ASCE press: Reston, VA, USA, 2012; pp. 1186–1194. [Google Scholar] [CrossRef]
- Zainal, N.N.; Abu Talib, S.H. Review paper on applications of the HEC-RAS model for flooding, agriculture, and water quality simulation. Water Pract. Technol. 2024, 19, 2883–2900. [Google Scholar] [CrossRef]
- Raji, B.M.; Turabi, H.; Nasimi, M.N. Sedimentation Analysis of Kabul River by Using HEC-RAS. J. Inst. Eng. (India) Ser. A 2024, 105, 229–238. [Google Scholar] [CrossRef]
- Romali, N.S.; Yusop, Z.; Ismail, A.Z. Application of HEC-RAS and Arc GIS for floodplain mapping in Segamat town, Malaysia. Geomate J. 2018, 15, 7–13. [Google Scholar] [CrossRef]
- Hydrologic Engineering Center. HEC-RAS River Analysi System, Hydraulic Reference Manual; U.S. Army Corps of Engineering, Hydrologic Engineering Center: Davis, CA, USA, 2016. [Google Scholar]
Row | Cross-Section Name | Km from Relative to the Spillway |
---|---|---|
1 | C1 | 0 |
2 | C2 | 0 + 20 |
3 | C3 | 0 + 80 |
4 | C4 | 2 |
5 | C5 | 4 |
6 | C6 | 4 + 600 |
7 | C7 | 6 |
8 | C8 | 8 |
9 | C9 | 8 + 480 |
10 | C10 | 8 + 510 |
11 | C11 | 8 + 600 |
12 | C12 | 10 |
13 | C13 | 12 |
14 | C14 | 13 + 190 |
15 | C15 | 13 + 220 |
16 | C16 | 13 + 357 |
17 | C17 | 14 |
18 | C18 | 16 |
19 | C19 | 18 |
20 | C20 | 18 + 612 |
21 | C21 | 18 + 764 |
22 | C22 | 18 + 981 |
23 | C23 | 20 |
24 | C24 | 22 |
25 | C25 | 24 |
26 | C26 | 25 |
ElW (m) | 19 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 27.75 | 28 | 29 | 30 | 30.30 | 30.60 |
Qs (m3/s) | 0 | 45 | 84 | 129 | 189 | 257 | 286 | 327 | 364 | 374 | 441 | 518 | 539 | 567 |
Qc (m3/s) | 0 | 433 | 1401 | 1750 | 2136 | |||||||||
Qfp1 (m3/s) | 0 | 2130 | 2333 | |||||||||||
Qfp2 (m3/s) | 0 | 2332 | ||||||||||||
Q.T. (m3/s) | 0 | 45 | 84 | 129 | 189 | 257 | 286 | 327 | 364 | 374 | 874 | 1919 | 4419 | 7368 |
Regulations | The Lateral Slope Broke H (H:1V) | Break Time (h) |
---|---|---|
COE. 1980 | 0–1 | 0.4–5 |
FERC | 0–1 | 0.1–1 |
NWS | 0–1 | 0.1–1 |
COE 2007 | 0–1 | 0.4–1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajjadi, S.M.; Barihi, S.; Ahadiyan, J.; Azizi Nadian, H.; Valipour, M.; Bahmanpouri, F.; Khedri, P. Redesigning the Fuse Plug, Emergency Spillway, and Flood Warning System: An Application of Flood Management. Water 2024, 16, 3694. https://doi.org/10.3390/w16243694
Sajjadi SM, Barihi S, Ahadiyan J, Azizi Nadian H, Valipour M, Bahmanpouri F, Khedri P. Redesigning the Fuse Plug, Emergency Spillway, and Flood Warning System: An Application of Flood Management. Water. 2024; 16(24):3694. https://doi.org/10.3390/w16243694
Chicago/Turabian StyleSajjadi, Seyed Mohsen, Samireh Barihi, Javad Ahadiyan, Hossein Azizi Nadian, Mohammad Valipour, Farhad Bahmanpouri, and Poria Khedri. 2024. "Redesigning the Fuse Plug, Emergency Spillway, and Flood Warning System: An Application of Flood Management" Water 16, no. 24: 3694. https://doi.org/10.3390/w16243694
APA StyleSajjadi, S. M., Barihi, S., Ahadiyan, J., Azizi Nadian, H., Valipour, M., Bahmanpouri, F., & Khedri, P. (2024). Redesigning the Fuse Plug, Emergency Spillway, and Flood Warning System: An Application of Flood Management. Water, 16(24), 3694. https://doi.org/10.3390/w16243694