Reconstruction of Surface Water Temperature in Lakes as a Source for Long-Term Analysis of Its Changes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quinn, F.H. Secular Changes in Great Lakes Water Level Seasonal Cycles. J. Great Lakes Res. 2002, 28, 451–465. [Google Scholar] [CrossRef]
- Hackl, P.; Ledolter, J. A Statistical Analysis of the Water Levels at Lake Neusiedl. Austrian J. Stat. 2023, 52, 87–100. [Google Scholar] [CrossRef]
- Babayan, G.; Adamovich, B. Water Quality Assessment of Large Alpine Sevan Lake. Environ. Process. 2023, 10, 52. [Google Scholar] [CrossRef]
- Roy, R.; Majumder, M. Assessment of water quality trends in Rudrasagar Lake, Tripura, India. Desalin. Water Treat. 2023, 294, 60–70. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H.; Robertson, D.M.; Lathrop, R.C.; Hamilton, D.P. Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers. Hydrol. Earth Syst. Sci. 2016, 20, 1681–1702. [Google Scholar] [CrossRef]
- Solarski, M.; Rzetala, M. A Comparison of Model Calculations of Ice Thickness with the Observations on Small Water Bodies in Katowice Upland (Southern Poland). Water 2022, 14, 3886. [Google Scholar] [CrossRef]
- Öğlü, B.; Möls, T.; Kaart, T.; Cremona, F.; Kangur, K. Parameterization of surface water temperature and long-term trends in Europe’s fourth largest lake shows recent and rapid warming in winter. Limnologica 2020, 82, 125777. [Google Scholar] [CrossRef]
- Brkić, Z. Increasing water temperature of the largest freshwater lake on the Mediterranean islands as an indicator of global warming. Heliyon 2023, 9, e19248. [Google Scholar] [CrossRef]
- Wan, W.; Li, H.; Xie, H.; Hong, Y.; Long, D.; Zhao, L.; Han, Z.; Cui, Y.; Liu, B.; Wang, C.; et al. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015. Sci. Data 2017, 4, 170095. [Google Scholar] [CrossRef]
- Attiah, G.; Pour, H.K.; Scott, K.A. Lake surface temperature retrieved from Landsat satellite series (1984 to 2021) for the North Slave Region. Earth Syst. Sci. Data 2023, 15, 1329–1355. [Google Scholar] [CrossRef]
- Sojka, M.; Ptak, M.; Szyga-Pluta, K.; Zhu, S. How Useful Are Moderate Resolution Imaging Spectroradiometer Observations for inland water temperature monitoring and warming trend assessment in temperate lakes in Poland? Remote Sens. 2024, 16, 2727. [Google Scholar] [CrossRef]
- Xu, W.; Duan, L.; Wen, X.; Li, H.; Li, D.; Zhang, Y.; Zhang, H. Effects of Seasonal Variation on Water Quality Parameters and Eutrophication in Lake Yangzong. Water 2022, 14, 2732. [Google Scholar] [CrossRef]
- Haddout, S.; Priya, K.; Boko, M. Thermal response of Moroccan lakes to climatic warming: First results. Ann. Limnol. Int. J. Limnol. 2018, 54, 2. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Choiński, A.; Nowak, B. Effect of Environmental Conditions and Morphometric Parameters on Surface Water Temperature in Polish Lakes. Water 2018, 10, 580. [Google Scholar] [CrossRef]
- Zhang, Y. Effect of climate warming on lake thermal and dissolved oxygen stratifications: A review. Adv. Water Sci. 2015, 26, 130–139. [Google Scholar]
- Ptak, M.; Nowak, B. Variability of oxygen-thermal conditions in selected lakes in Poland. Ecol. Chem. Eng. S 2016, 23, 639–650. [Google Scholar]
- Yindong, T.; Xiwen, X.; Miao, Q.; Jingjing, S.; Yiyan, Z.; Wei, Z.; Mengzhu, W.; Xuejun, W.; Yang, Z. Lake warming intensifies the seasonal pattern of internal nutrient cycling in the eutrophic lake and potential impacts on algal blooms. Water Res. 2021, 188, 116570. [Google Scholar] [CrossRef]
- Rahel, F.J.; Olden, J.D. Assessing the Effects of Climate Change on Aquatic Invasive Species. Conserv. Biol. 2008, 22, 521–533. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). 2019. Available online: https://wmo.int/topics/climate/ (accessed on 1 October 2024).
- Shen, M.; Chen, J.; Zhuan, M.; Chen, H.; Xu, C.-Y.; Xiong, L. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J. Hydrol. 2018, 556, 10–24. [Google Scholar] [CrossRef]
- Al-Madhhachi, A.-S.T.; Rahi, K.A.; Leabi, W.K. Hydrological Impact of Ilisu Dam on Mosul Dam; the River Tigris. Geosciences 2020, 10, 120. [Google Scholar] [CrossRef]
- Panahi, D.M.; Kalantari, Z.; Ghajarnia, N.; Seifollahi-Aghmiuni, S.; Destouni, G. Variability and change in the hydro-climate and water resources of Iran over a recent 30-year period. Sci. Rep. 2020, 10, 7450. [Google Scholar] [CrossRef]
- Herbert, Z.C.; Asghar, Z.; Oroza, C.A. Long-term Reservoir Inflow Forecasts: Enhanced Water Supply and Inflow Volume Accuracy Using Deep Learning. J. Hydrol. 2021, 601, 126676. [Google Scholar] [CrossRef]
- Collados-Lara, A.-J.; Gómez-Gómez, J.-D.; Pulido-Velazquez, D.; Pardo-Igúzquiza, E. An approach to identify the best climate models for the assessment of climate change impacts on meteorological and hydrological droughts. Nat. Hazards Earth Syst. Sci. 2022, 22, 599–616. [Google Scholar] [CrossRef]
- Wang, L.; Xu, B.; Zhang, C.; Fu, G.; Chen, X.; Zheng, Y.; Zhang, J. Surface water temperature prediction in large-deep reservoirs using a long short-term memory model. Ecol. Indic. 2022, 134, 108491. [Google Scholar] [CrossRef]
- Di Nunno, F.; Zhu, S.; Ptak, M.; Sojka, M.; Granata, F. A stacked machine learning model for multi-step ahead prediction of lake surface water temperature. Sci. Total Environ. 2023, 890, 164323. [Google Scholar] [CrossRef]
- Choiński, A. Katalog Jezior Polski; Wydawnictwao Naukowe UAM: Poznań, Poland, 2016. [Google Scholar]
- Sojka, M.; Ptak, M. Possibilities of River Water Temperature Reconstruction Using Statistical Models in the Context of Long-Term Thermal Regime Changes Assessment. Appl. Sci. 2022, 12, 7503. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; O’Brien, N. Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests, Version 1.6. 31 October 2022. Available online: https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf (accessed on 30 September 2024).
- Piccolroaz, S.; Woolway, R.I.; Merchant, C.J. Global reconstruction of twentieth century lake surface water temperature reveals different warming trends depending on the climatic zone. Clim. Chang. 2020, 160, 427–442. [Google Scholar] [CrossRef]
- Zhu, S.; Luo, Y.; Graf, R.; Wrzesiński, D.; Sojka, M.; Sun, B.; Kong, L.; Ji, Q.; Luo, W. Reconstruction of long-term water temperature indicates significant warming in Polish rivers during 1966–2020. J. Hydrol. Reg. Stud. 2022, 44, 101281. [Google Scholar] [CrossRef]
- Lepori, F.; Roberts, J.J. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers? J. Great Lakes Res. 2015, 41, 973–981. [Google Scholar] [CrossRef]
- Noori, R.; Woolway, R.I.; Jun, C.; Bateni, S.M.; Naderian, D.; Partani, S.; Maghrebi, M.; Pulkkanen, M. Multi-decadal change in summer mean water temperature in Lake Konnevesi, Finland (1984–2021). Ecol. Inform. 2023, 78, 102331. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Nowak, B. Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland –Lake Śniardwy. J. Hydrol. Hydromech. 2020, 68, 260–270. [Google Scholar] [CrossRef]
- Richardson, D.C.; Melles, S.J.; Pilla, R.M.; Hetherington, A.L.; Knoll, L.B.; Williamson, C.E.; Kraemer, B.M.; Jackson, J.R.; Long, E.C.; Moore, K.; et al. Transparency, Geomorphology and Mixing Regime Explain Variability in Trends in Lake Temperature and Stratification across Northeastern North America (1975–2014). Water 2017, 9, 442. [Google Scholar] [CrossRef]
- Cremona, F.; Blank, K.; Haberman, J. Effects of environmental stressors and their interactions on zooplankton biomass and abundance in a large eutrophic lake. Hydrobiologia 2021, 848, 4401–4418. [Google Scholar] [CrossRef]
- Hesselschwerdt, J.; Wantzen, K.M. Global warming may lower thermal barriers against invasive species in freshwater ecosystems—A study from Lake Constance. Sci. Total. Environ. 2018, 645, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, J.; Witkowski, A.; Kotusz, J. Inwazyjne gatunki ryb w Polskich wodach—zagrożenie dla rodzimej ichtiofauny. Użytkowskik Ryb.–Nowa Rzeczyw. PZW 2008, 2008, 90–96. [Google Scholar]
- Mooij, W.M.; De Domis, L.N.S.; Hülsmann, S. The impact of climate warming on water temperature, timing of hatching and young-of-the-year growth of fish in shallow lakes in the Netherlands. J. Sea Res. 2008, 60, 32–43. [Google Scholar] [CrossRef]
- Available online: https://wody.isok.gov.pl/imap_kzgw_test/?gpmap=gpPGW (accessed on 1 October 2024).
- Malmaeus, J.; Blenckner, T.; Markensten, H.; Persson, I. Lake phosphorus dynamics and climate warming: A mechanistic model approach. Ecol. Model. 2006, 190, 1–14. [Google Scholar] [CrossRef]
- Mei, X.; Gao, S.; Liu, Y.; Hu, J.; Razlustkij, V.; Rudstam, L.G.; Jeppesen, E.; Liu, Z.; Zhang, X. Effects of Elevated Temperature on Resources Competition of Nutrient and Light Between Benthic and Planktonic Algae. Front. Environ. Sci. 2022, 10, 908088. [Google Scholar] [CrossRef]
- Dory, F.; Nava, V.; Spreafico, M.; Orlandi, V.; Soler, V.; Leoni, B. Interaction between temperature and nutrients: How does the phytoplankton community cope with climate change? Sci. Total Environ. 2024, 906, 167566. [Google Scholar] [CrossRef]
- Krauze, K.; Wagner, I. An ecohydrological approach for the protection and enhancement of ecosystem services. In Use of Landscape Sciences for the Assessment of Environmental Security; Petrosillo, I., Jones, B., Muller, F., Zurlini, G., Krauze, K., Victorov, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 177–207. [Google Scholar]
No. | Lake | Period | No. | Meteorological Station | Period |
---|---|---|---|---|---|
1 | Morzycko | 2006–2022 | A | Szczecin | 1993–2022 |
2 | Niesłysz | 2008–2022 | B | Zielona Góra | |
3 | Ińsko | 2011–2022 | A | Szczecin | |
4 | Sławskie | 1993–2022 | B | Zielona Góra | |
5 | Lubie | 1993–2022 | C | Piła | |
6 | Ostrowite | 2007–2022 | C | Piła | |
7 | Drawsko | 2000–2022 | C | Piła | |
8 | Komorze | 2006–2022 | C | Piła | |
9 | Sławianowskie | 2007–2022 | C | Piła | |
10 | Sępoleńskie | 1993–2022 | D | Chojnice | |
11 | Dejguny | 2005–2022 | E | Kętrzyn | |
12 | Litygajno | 1993–2022 | E | Kętrzyn | |
13 | Rospuda Filipowska | 2005–2022 | F | Suwałki |
Lake | Area (ha) | Volume (106 m3) | Mean Depth (m) | Max Depth (m) |
---|---|---|---|---|
Morzycko | 317.5 | 49.8 | 14.5 | 60.7 |
Niesłysz | 526 | 34.4 | 6.9 | 34.7 |
Ińsko | 529 | 65.1 | 11 | 41.7 |
Sławskie | 822.5 | 42.6 | 5.2 | 12.3 |
Lubie | 1487.5 | 169.8 | 11.6 | 46.2 |
Ostrowite | 387.6 | 36.4 | 9.4 | 28.5 |
Drawsko | 1797.5 | 331.4 | 17.7 | 82.2 |
Komorze | 386 | 49.3 | 11.8 | 34.7 |
Sławianowskie | 269 | 18.3 | 6.6 | 15 |
Sępoleńskie | 157.5 | 7.5 | 4.8 | 10.9 |
Dejguny | 762.5 | 92.6 | 12 | 45 |
Litygajno | 154.5 | 9.7 | 6 | 16.4 |
Rospuda Filipowska | 323.5 | 49.7 | 14.5 | 38.9 |
Lake | Series | Scope of Data Reconstruction | |
---|---|---|---|
Learning | Validation | ||
Niesłysz | 2012–2022 (n = 132) | 2008–2011 (n = 48) | 1993–2007 (n = 180) |
Morzycko | 2011–2023 (n = 142) Without Jun. and Aug. 2011 | 2006–2010 (n = 60) | 1993–2005 With Jul. and Aug. 2011 (n = 158) |
Ostrowite | 2012–2022 (n = 132) | 2007–2011 (n = 60) | 1993–2006 (n = 168) |
Komorze | 2011–2022 (n = 143) Without May 2019 | 2006–2010 (n = 60) | 1993–2005 (n = 157) With May 2019 |
Drawsko | 2008–2022 (n = 180) | 2000–2007 (n = 92) Without Nov. 2011 and Mar., Apr., and May 2006 | 1993–1999 (n = 88) With Nov. 2011 and Mar., Apr., and May 2006 |
Insko | 2014–2022 (n = 108) | 2011–2013 (n = 36) | 1993–2010 (n = 216) |
Sławianowskie | 2012–2022 (n = 132) | 2007–2011 (n = 60) | 1993–2006 (n = 168) |
Dejguny | 2010–2022 (n = 156) | 2005–2009 (n = 60) | 1993–2004 (n = 144) |
Rospuda Filipowska | 2010–2022 (n = 156) | 2005–2009 (n = 60) | 1993–2004 (n = 144) |
Lake | S | Z-Value | p-Value | Sen’s Slope °C per Decade |
---|---|---|---|---|
Lubie | 252 | 4.71 | 0.000 | 0.64 |
Sępoleńskie | 186 | 3.47 | 0.001 | 0.36 |
Sławskie | 252 | 4.71 | 0.000 | 0.59 |
Litygajno | 236 | 4.41 | 0.000 | 0.63 |
Sławianowskie | 178 | 3.32 | 0.001 | 0.38 |
Ostrowite | 236 | 4.41 | 0.000 | 0.55 |
Niesłysz | 226 | 4.22 | 0.000 | 0.61 |
Morzycko | 224 | 4.18 | 0.000 | 0.49 |
Komorze | 226 | 4.22 | 0.000 | 0.53 |
Ińsko | 212 | 3.96 | 0.000 | 0.42 |
Drawsko | 150 | 2.79 | 0.005 | 0.43 |
Dejguny | 218 | 4.07 | 0.000 | 0.48 |
Rospuda Filipowska | 216 | 4.03 | 0.000 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sojka, M.; Ptak, M. Reconstruction of Surface Water Temperature in Lakes as a Source for Long-Term Analysis of Its Changes. Water 2024, 16, 3347. https://doi.org/10.3390/w16233347
Sojka M, Ptak M. Reconstruction of Surface Water Temperature in Lakes as a Source for Long-Term Analysis of Its Changes. Water. 2024; 16(23):3347. https://doi.org/10.3390/w16233347
Chicago/Turabian StyleSojka, Mariusz, and Mariusz Ptak. 2024. "Reconstruction of Surface Water Temperature in Lakes as a Source for Long-Term Analysis of Its Changes" Water 16, no. 23: 3347. https://doi.org/10.3390/w16233347
APA StyleSojka, M., & Ptak, M. (2024). Reconstruction of Surface Water Temperature in Lakes as a Source for Long-Term Analysis of Its Changes. Water, 16(23), 3347. https://doi.org/10.3390/w16233347