Long-Term Changes in the Thermal and Ice Regime of the Biebrza River (Northeastern Poland) in the Era of Global Warming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Linear Regression
2.3.2. Mann–Kendall Test
2.3.3. Pearson Correlation
2.3.4. Pettitt’s Test
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sloat, M.R.; Osterback, A.M.K. Wild Salmon CeMaximum stream temperature and the occurrence, abundance, and behavior of steelhead trout (Oncorhynchus mykiss) in a southern California stream. Can. J. Fish. Aquat. Sci. 2013, 70, 64–73. [Google Scholar] [CrossRef]
- Estrela-Segrelles, C.; Gómez-Martínez, G.; Pérez-Martín, M.Á. Climate Change Risks on Mediterranean River Ecosystems and Adaptation Measures (Spain). Water Resour. Manag. 2023, 37, 2757–2770. [Google Scholar] [CrossRef]
- Kindt, A.C.; Small, P.F. Correlation between temperature, colonization rate, and population density of the diatom cocconeis placentula in freshwater streams. J. Freshw. Ecol. 2002, 17, 441–445. [Google Scholar] [CrossRef]
- Yang, J.; Pei, C.; She, Y.; Loewen, M. Investigation of anchor ice evolution in rivers and the impact of hydrometeorological conditions. J. Hydrol. 2024, 642, 131851. [Google Scholar] [CrossRef]
- Chen, L.; Liao, Y.; Zeng, K.; Wu, Y.; Li, Y.; Wang, H. Microplastic Occurrence Characteristics and Ecological Risk Assessment of Urban River in Cold Regions during Ice-Covered Periods. Sustainability 2024, 16, 2731. [Google Scholar] [CrossRef]
- Das, A.; Budhathoki, S.; Lindenschmidt, K.E. A stochastic modelling approach to forecast real-time ice jam flood severity along the transborder (New Brunswick/Maine) Saint John River of North America. Stoch. Environ. Res. Risk Assess. 2022, 36, 1903–1915. [Google Scholar] [CrossRef]
- Andaryani, S.; Afkhaminia, A. Real-Time Prediction of River Ice Breakup Phenomena: A Jittered Genetic Programming Model and Wavelet Analysis Integrating Remotely Sensed Imagery and Machine Learning. J. Hydrol. 2024, 644, 132097. [Google Scholar] [CrossRef]
- Sediqi, S.; Sui, J.; Li, G.; Dziedzic, M. Characteristics of turbulent flow around bridge abutments in the presence of vegetation in channel bed under ice-covered flow conditions. Cold Reg. Sci. Technol. 2024, 221, 104172. [Google Scholar] [CrossRef]
- Barahimi, M.; Sui, J. Deformation of vegetated channel bed under ice-covered flow conditions. J. Hydrol. 2024, 636, 131280. [Google Scholar] [CrossRef]
- Chen, X.; Yin, J.; Fang, X.; Tu, X.; Chen, L.; Yu, Z. Rough ice cover modified hyporheic exchange: A numerical study on the mechanical effect propagating from the ice-water interface to the sediment-water interface. J. Hydrol. 2024, 637, 131415. [Google Scholar] [CrossRef]
- Punzet, M.; Voß, F.; Voß, A.; Kynast, E.; Bärlund, I. A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first-order decay rates. J. Hydrometeorol. 2012, 13, 1052–1065. [Google Scholar] [CrossRef]
- Lesack, L.F.W.; Marsh, P.; Hicks, F.E.; Forbes, D.L. Local spring warming drives earlier river-ice breakup in a large Arctic delta. Geophys. Res. Lett. 2014, 41, 1560–1566. [Google Scholar] [CrossRef]
- Norrgård, S.; Helama, S. Historical trends in spring ice breakup for the Aura River in Southwest Finland, AD 1749–2018. Holocene 2019, 29, 953–963. [Google Scholar] [CrossRef]
- Seyedhashemi, H.; Vidal, J.-P.; Diamond, J.S.; Thiéry, D.; Monteil, C.; Hendrickx, F.; Maire, A.; Moatar, F. Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature. Hydrol. Earth Syst. Sci. 2022, 26, 2583–2603. [Google Scholar] [CrossRef]
- Ptak, M.; Choiński, A.; Strzelczak, A.; Targosz, A. Disappearance of Lake Jelenino since the end of the XVIII century as an effect of anthropogenic transformations of the natural environment. Pol. J. Environ. Stud. 2013, 22, 191–196. [Google Scholar]
- Winter, H.V.; Lapinksa, M.; de Leeuw, J.J. The River Vecht fish community after rehabilitation measures: A comparison to the historical situation by using the River Biebrza as a geographical reference. River Res. Appl. 2009, 25, 16–28. [Google Scholar] [CrossRef]
- De Doncker, L.; Troch, P.; Verhoeven, R.; Bal, K.; Meire, P.; Quintelier, J. Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river. Environ. Fluid Mech. 2009, 9, 549–567. [Google Scholar] [CrossRef]
- Batelaan, O.; Kuntohadi, T. Development and application of a groundwater model for the Upper Biebrza River basin. Ann. Wars. Agric. Univ. SGGW Land Reclam. 2002, 33, 57–69. [Google Scholar]
- Venegas-Cordero, N.; Marcinkowski, P.; Stachowicz, M.; Grygoruk, M. On the role of water balance as a prerequisite for aquatic and wetland ecosystems management: A case study of the Biebrza catchment, Poland. Ecohydrol. Hydrobiol. 2024, in press. [Google Scholar] [CrossRef]
- Glińska-Lewczuk, K.; Burandt, P.; Kujawa, R.; Kobus, S.; Obolewski, K.; Dunalska, J.; Grabowska, M.; Lew, S.; Chormański, J. Environmental Factors Structuring Fish Communities in Floodplain Lakes of the Undisturbed System of the Biebrza River. Water 2016, 8, 146. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Piniewski, M.; Grygoruk, M.; Mirosław-Świątek, D. Climate change in the Biebrza Basin—Projections and ecohydrological implications. Ecohydrol. Hydrobiol. 2024, in press. [Google Scholar] [CrossRef]
- Grodzka-Łukaszewska, M.; Sinicyn, G.; Grygoruk, M.; Mirosław-Świątek, D.; Kardel, I.; Okruszko, T. The Role of the River in the Functioning of Marginal Fen: A Case Study from the Biebrza Wetlands. PeerJ 2022, 10, e13418. [Google Scholar] [CrossRef] [PubMed]
- Górniak, A. Termika wód powierzchniowych. In Kotlina Biebrzańska i Biebrzański Park Narodowy. Aktualny Stan, Walory, Zagrożenia i Potrzeby Czynnej Ochrony Środowiska; Banaszuk, H., Ed.; Monografia przyrodnicza; Wydawnictwo Ekonomia i Środowisko: Białystok, Poland, 2004; pp. 355–362. [Google Scholar]
- Marszelewski, W.; Pius, B. Relation between Air Temperature and Inland Surface Water Temperature during Climate Change (1961–2014): Case Study of the Polish Lowland. In Water Management and the Environment: Case Studies; Zelenakova, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 175–195. [Google Scholar]
- Ptak, M. Long-term temperature fluctuations in rivers of the Fore-Sudetic region in Poland. Geografie 2018, 123, 279–294. [Google Scholar] [CrossRef]
- Ptak, M.; Choiński, A. Ice phenomena in rivers of the coastal zone (Southern Baltic) in the years 1956-2015. Balt. Coast. Zone 2016, 20, 73–83. [Google Scholar]
- Ptak, M.; Sojka, M.; Graf, R.; Choiński, A.; Zhu, S.; Nowak, B. Warming Vistula River - the effects of climate and local conditions on water temperature in one of the largest rivers in Europe. J. Hydrol. Hydromech. 2022, 70, 1–11. [Google Scholar] [CrossRef]
- Leach, J.A.; Kelleher, C.; Kurylyk, B.L.; Moore, R.D.; Neilson, B.T. A primer on stream temperature processes. WIREs Water 2023, 10, e1643. [Google Scholar] [CrossRef]
- Byczkowski, A.; Fal, B. Wody powierzchniowe. In Kotlina Biebrzańska i Biebrzański Park Narodowy. Aktualny Stan, Walory, Zagrożenia i Potrzeby Czynnej Ochrony Środowiska; Banaszuk, H., Ed.; Monografia przyrodnicza; Wydawnictwo Ekonomia i Środowisko: Białystok, Poland, 2004; pp. 113–183. [Google Scholar]
- Wrzesiński, D. Entropia odpływu rzek w Polsce. In Studia i Prace z Geografii i Geologii; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2013; Volume 33. [Google Scholar]
- Kondracki, J. Geografia Regionlana Polski; PWN: Warszawa, Poland, 2013. [Google Scholar]
- Pałczyński, A. Bagna Biebrzańskie; Liga Ochrony Przyrody: Warszawa, Poland, 1988. [Google Scholar]
- Available online: https://bbpn.gov.pl/o-parku (accessed on 10 October 2024).
- Jekatierynczuk-Rudczyk, E. Biebrzański Park Narodowy. In Wody w Parkach Narodowych Polski; Bogdanowicza, R., Jokiela, P., Pociask-Karteczki, J., Eds.; Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego: Kraków, Poland, 2012. [Google Scholar]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank and product-moment correlation. Biometrika 1949, 36, 177–193. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Pearson, K. Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philos. Trans. R. Soc. Lond. 1896, 187, 253–318. [Google Scholar]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Floury, M.; Delattre, C.; Ormerod, S.J.; Souchon, Y. Global versus local change effects on a large European river. Sci. Total Environ. 2012, 441, 220–229. [Google Scholar] [CrossRef]
- Arora, R.; Tockner, K.; Venohr, M. Changing river temperatures in northern Germany: Trends and drivers of change. Hydrol. Process 2016, 30, 3084–3096. [Google Scholar] [CrossRef]
- Huang, F.; Qian, B.; Ochoa, C.G. Long-term river water temperature reconstruction and investigation: A case study of the Dongting Lake Basin, China. J. Hydrol. 2023, 616, 128857. [Google Scholar] [CrossRef]
- Klavins, M.; Briede, A.; Rodinov, V. Long term changes in ice and discharge regime of rivers in the Baltic region in relation to climatic variability. Clim. Change 2009, 95, 485–498. [Google Scholar] [CrossRef]
- Takács, K.; Kern, Z.; Pásztor, L. Long-term ice phenology records from eastern–central Europe. Earth Syst. Sci. Data 2018, 10, 391–404. [Google Scholar] [CrossRef]
- Chen, Y.; She, Y. Long-term variations of river ice breakup timing across Canada and its response to climate change. Cold Reg. Sci. Technol. 2020, 176, 103091. [Google Scholar] [CrossRef]
- Nowak, B.; Skolasińska, K.; Stanek, P. Zmiany Warunków Termicznych i Lodowych Rzeki Warty w Sieradzu w Wieloleciu 1956–2014; Varia. Prace z Zakresu Geografii; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2019; pp. 27–46. [Google Scholar]
- Kędra, M. Regional Response to Global Warming: Water Temperature Trends in Semi-Natural Mountain River Systems. Water 2020, 12, 283. [Google Scholar] [CrossRef]
- Ptak, M.; Nowak, B. Zmiany temperatury wody w Prośnie w latach 1965–2014. Woda-Środowisko-Obszary Wiejskie 2017, 17, 101–112. [Google Scholar]
- Gorączko, M. Zmienność przebiegu zjawisk lodowych na Wiśle w rejonie Bydgoszczy. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska 2013, 62, 382–388. [Google Scholar]
- Łukaszewicz, J.; Jawgiel, K. Przebieg i charakter zjawisk lodowych na rzece Łebie. Badania Fizjogr. A Geogr. Fiz. 2016, 7, 99–117. [Google Scholar]
- Bączyk, A.; Suchożebrski, J. Zmienność przebiegu zjawisk lodowych na Bugu w latach 1903–2012. Inżynieria Ekologiczna 2016, 49, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Polakowski, M.; Kułakowski, T.; Jankowiak, Ł.; Broniszewska, M. Zimowanie ptaków wodno-błotnych i szponiastych na wybranych odcinkach rzek w północno podlaskim dorzeczu Narwi (2001–2011). Chrońmy Przyr. Ojcz. 2013, 69, 3–12. [Google Scholar]
- Ptak, M.; Sojka, M. The disappearance of ice cover on temperate lakes (Central Europe) as a result of climate warming. Geogr. J. 2021, 187, 200–213. [Google Scholar] [CrossRef]
- Wiśniewolski, W.; Szlakowski, J.; Buras, P.; Klein, M. Ichtiofauna Biebrzańskiego Parku Narodowego. In Kotlina Biebrzańska i Biebrzański Park Narodowy. Aktualny Stan, Walory, Zagrożenia i Potrzeby Czynnej Ochrony Środowiska; Banaszuk, H., Ed.; Monografia przyrodnicza; Wydawnictwo Ekonomia i Środowisko: Białystok, Poland, 2004; pp. 455–489. [Google Scholar]
- Skoczko, I. Analiza wybranych dopływów zanieczyszczających rzekę Biebrzę. Rocz. Ochr. Śr. 2004, 6, 245–263. [Google Scholar]
- Karta Charakterystyki, J.C.W.P. Biebrza od Kropiwnej do Horodnianki. Available online: https://wody.isok.gov.pl/imap_kzgw/?gpmap=gpPGW (accessed on 10 October 2024).
- Ejankowski, W.; Gorzel, M.; Kłonowska-Olejnik, M.; Nawrocka, L.; Wojtal, A. Raport Roczny z Wyników Analiz Laboratoryjnych w roku 2018; Renaturyzacja sieci hydrograficznej w Basenie Środkowym doliny Biebrzy. Etap II, 2018. Available online: https://www.renaturyzacja2.biebrza.org.pl/plik,4852,raport-roczny-z-monitoringu-elementow-biologicznych-jakosci-wod-w-2018-r.pdf#page=5 (accessed on 10 October 2024).
- Desortová, B.; Punčochář, P. Variability of Phytoplankton Biomass in a Lowland River: Response to Climate Conditions. Limnologica 2011, 41, 160–166. [Google Scholar] [CrossRef]
- Bowes, M.J.; Loewenthal, M.; Read, D.S.; Hutchins, M.G.; Prudhomme, C.; Armstrong, L.K.; Harman, S.A.; Wickham, H.D.; Gozzard, E.; Carvalho, L. Identifying multiple stressor controls on phytoplankton dynamics in the River Thames (UK) using high-frequency water quality data. Sci. Total Environ. 2016, 569, 1489–1499. [Google Scholar] [CrossRef]
- Ptak, M.; Nowak, B. Variability of oxygen-thermal conditions in selected lakes in Poland. Ecol. Chem. Eng. S 2016, 23, 639–650. [Google Scholar] [CrossRef]
- Rajesh, M.; Rehana, S. Impact of climate change on river water temperature and dissolved oxygen: Indian riverine thermal regimes. Sci. Rep. 2022, 12, 9222. [Google Scholar] [CrossRef]
Period | Slope | Intercept | p-Value |
---|---|---|---|
Preconditioning | 0.016 | −26.38 | 0.020 |
Ice season | 0.047 | −97.09 | 0.002 |
Melting period | 0.024 | −41.83 | 0.002 |
Statistical Test | Sztabin | Burzyn | ||
---|---|---|---|---|
Value | p-Value | Value | p-Value | |
Kendall’s Tau—(preconditioning) | 0.66 | 0.0000 | 0.66 | 0.0000 |
Kendall’s Tau—(ice season) | 0.43 | 0.0000 | 0.39 | 0.0000 |
Kendall’s Tau—(melting period) | 0.71 | 0.0000 | 0.70 | 0.0000 |
Pearson correlation—(preconditioning) | 0.84 | 0.0000 | 0.84 | 0.0000 |
Pearson correlation—(ice season) | 0.42 | 0.0000 | 0.43 | 0.0000 |
Pearson correlation—(melting period) | 0.87 | 0.0000 | 0.86 | 0.0000 |
Parameter | Sztabin | Burzyn | ||||
---|---|---|---|---|---|---|
Slope | Intercept | p-Value | Slope | Intercept | p-Value | |
Water temperature | 0.025 | −40.87 | 0.0000 | 0.031 | −54.36 | 0.0000 |
Ice start | 0.084 | −131.67 | 0.5816 | 0.260 | −479.70 | 0.0251 |
Ice end | −0.38 | 880.41 | 0.0081 | −0.382 | 893.80 | 0.0042 |
Statistical Test | Sztabin | Burzyn | ||
---|---|---|---|---|
Value | p-Value | Value | p-Value | |
Kendall’s Tau—water temperature | 0.446 | 0.0000 | 0.451 | 0.0000 |
Kendall’s Tau—air temperature | 0.401 | 0.0000 | 0.401 | 0.0000 |
Pearson correlation—ice start–air temp | 0.145 | 0.254 | 0.293 | 0.019 |
Pearson correlation—ice end–air temp | −0.688 | 0.0000 | −0.672 | 0.0000 |
Pettitt’s test—water temperature | 64 | 1.83 | 64 | 1.83 |
Pettitt’s test—air temperature | 64 | 1.83 | 64 | 1.83 |
Pettitt’s test—ice start | 47 | 0.659 | 41 | 0.044 |
Pettitt’s test—ice end | 2 | 1.96 | 2 | 1.82 |
Statistical Test | Sztabin | Burzyn | ||
---|---|---|---|---|
Value | p-Value | Value | p-Value | |
Kendall’s Tau—(preconditioning) | −0.11 | 0.195 | −0.13 | 0.128 |
Kendall’s Tau—(ice season) | −0.41 | 0.0000 | −0.42 | 0.0000 |
Kendall’s Tau—(melting period) | −0.43 | 0.0000 | −0.44 | 0.0000 |
Pearson correlation—(preconditioning) | −0.17 | 0.166 | −0.16 | 0.190 |
Pearson correlation—(ice season) | −0.55 | 0.0000 | −0.60 | 0.0000 |
Pearson correlation—(melting period) | −0.59 | 0.0000 | −0.60 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptak, M.; Heddam, S.; Haddout, S.; Sojka, M.; Amnuaylojaroen, T. Long-Term Changes in the Thermal and Ice Regime of the Biebrza River (Northeastern Poland) in the Era of Global Warming. Water 2024, 16, 3211. https://doi.org/10.3390/w16223211
Ptak M, Heddam S, Haddout S, Sojka M, Amnuaylojaroen T. Long-Term Changes in the Thermal and Ice Regime of the Biebrza River (Northeastern Poland) in the Era of Global Warming. Water. 2024; 16(22):3211. https://doi.org/10.3390/w16223211
Chicago/Turabian StylePtak, Mariusz, Salim Heddam, Soufiane Haddout, Mariusz Sojka, and Teerachai Amnuaylojaroen. 2024. "Long-Term Changes in the Thermal and Ice Regime of the Biebrza River (Northeastern Poland) in the Era of Global Warming" Water 16, no. 22: 3211. https://doi.org/10.3390/w16223211
APA StylePtak, M., Heddam, S., Haddout, S., Sojka, M., & Amnuaylojaroen, T. (2024). Long-Term Changes in the Thermal and Ice Regime of the Biebrza River (Northeastern Poland) in the Era of Global Warming. Water, 16(22), 3211. https://doi.org/10.3390/w16223211