Case Study on the Adaptive Assessment of Floods Caused by Climate Change in Coastal Areas of the Republic of Korea
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Climate Change Scenario
2.2.1. Rainfall
2.2.2. Storm Surge and Sea Level Rise
2.2.3. Typhoon Scenario and Intensity Increase
2.3. Models
3. Results
3.1. Analysis of Storm Surge and Validation
3.2. Calculation of the Wave Overtopping Rate and Tide Level
3.3. Inundation Simulation
3.3.1. Rainfall–Runoff and the Inundation Simulation Model by XP-SWMM
3.3.2. Validation of the Inundation Simulation Model
3.3.3. Inundation Simulation Results
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bevacqua, E.; Vousdoukas, M.I.; Zappa, G.; Hodges, K.; Shepherd, T.G.; Maraun, D.; Mentaschi, L.; Feyen, L. More meteorological events that drive compound coastal flooding are projected under climate change. Commun. Earth Environ. 2020, 1, 47. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Lee, D.K. Prediction of coastal flooding risk under climate change impacts in South Korea using machine learning algorithms. Environ. Res. Lett. 2020, 15, 094052. [Google Scholar] [CrossRef]
- Ghanbari, M.; Arabi, M.; Kao, S.C.; Obeysehrea, J.; Sweet, W. Climate change and changes in compound coastal-riverine flooding hazard along the U.S. coasts. Earth’s Future 2021, 9, EF002055. [Google Scholar] [CrossRef]
- Lee, S.; Kang, T.; Sun, D.; Park, J.J. Enhancing an analysis method of compound flooding in coastal areas by linking flow simulation models of coasts and watershed. Sustainability 2020, 12, 6572. [Google Scholar] [CrossRef]
- Wang, S.; Najafi, M.R.; Cannon, A.J.; Khan, A.A. Uncertaionties in riverine and coastal flood lmpacts under climate change. Water 2021, 13, 1774. [Google Scholar] [CrossRef]
- Karim, M.F.; Mimura, N. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Glob. Environ. Chang. 2008, 18, 490–500. [Google Scholar] [CrossRef]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Chang. 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 22nd-century sea-level projections at a global network of tide-gauge sites. Earths Future 2014, 2, 383–406. [Google Scholar] [CrossRef]
- Walsh, K.J.; McBride, J.L.; Klotzbach, P.J.; Balachandran, S.; Camargo, S.J.; Holland, G.; Knutson, T.R.; Kossin, J.P.; Lee, T.C.; Sobel, A.; et al. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 65–89. [Google Scholar] [CrossRef]
- Dinan, T. Projected increases in hurricane damage in the United States: The role of climate change and coastal development. Ecol. Econ. 2017, 138, 186–198. [Google Scholar] [CrossRef]
- Marsooli, R.; Lin, N.; Emanuel, K.; Feng, K. Climate change exacerbates hurricane floodhazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 2019, 10, 3785. [Google Scholar] [CrossRef] [PubMed]
- Camelo, J.; Mayo, T.L.; Gutmann, E.D. Projected climate change impacts on hurricane storm surge inundation in the coastal Unites States. Front. Built Environ. 2020, 207, 588049. [Google Scholar]
- Ho, M.; Wasko, C.; O’Shea, D.; Nathan, R.; Vogel, E.; Sharma, A. Changes in flood-associated rainfall losses under climate change. J. Hydrol. 2023, 625, 129950. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Sreejith, O.P.; Menon, P.A. Impact of climate change on extreme rainfall events and flood risk in India. J. Earth Syst. Sci. 2011, 120, 359–373. [Google Scholar] [CrossRef]
- Kapersen, P.S.; Halsnaes, K. Integrated climate change risk assessment: A practical application for urban flooding during extreme precipitation. Clim. Serv. 2017, 6, 55–64. [Google Scholar] [CrossRef]
- Nile, B.K.; Hassna, W.H.; Alshama, G.A. Analysis of the effect of climate change on rainfall intensity and expected flooding by using ANN and SWMM programs. ARPN J. Eng. Appl. Sci. 2019, 14, 974–984. Available online: https://www.researchgate.net/publication/332060463_Analysis_of_the_effect_of_climate_change_on_rainfall_intensity_and_expected_flooding_by_using_ANN_and_SWMM_programs (accessed on 12 December 2023).
- Agarwal, S.; Kumar, S. Urban flood modeling using SWMM for historical and future extreme rainfall events under climate change scenario. Indian J. Ecol. 2020, 47, 48–53. Available online: https://www.researchgate.net/publication/343905044_Urban_Flood_Modeling_using_SWMM_for_Historical_and_Future_Extreme_Rainfall_Events_under_Climate_Change_Scenario (accessed on 12 December 2023).
- Bilskie, M.V.; Hagen, S.C.; Medeiros, S.C.; Passeri, D.L. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophys. Res. Lett. 2014, 41, 927–934. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef]
- Li, X.; Fu, D.; Gammon, J.N.; Gangrade, S.; Kao, S.C.; Chang, P.; Hernandez, M.M.; Voisin, N.; Zhang, Z.; Gao, H. Impacts of climate change on future hurricane-induced rainfall and flooding in a coastal watershed: A case study on Hurricane Harvey. J. Hydrol. 2023, 616, 128774. [Google Scholar] [CrossRef]
- Benavente, J.; Del Río, L.; Gracia, F.J.; Martínez-del-Pozo, J.A. Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain). Cont. Shelf Res. 2006, 26, 1061–1076. [Google Scholar] [CrossRef]
- Muis, S.; Verlaan, M.; Winsemius, H.C.; Aerts, J.C.; Ward, P.J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 2016, 7, 11969. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Shullman, E. Dealing with hurricane surge flooding in a changing environment: Part I. Risk assessment considering storm climatology change, sea level rise, and coastal development. Stoch. Environ. Res. Risk Assess. 2017, 31, 2379–2400. [Google Scholar] [CrossRef]
- Bevacqua, E.; Maraun, D.; Vousdoukas, M.I.; Voukouvalas, E.; Vrac, M.; Mentaschi LWidmann, M. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Sci. Adv. 2019, 5, eaaw5531. [Google Scholar] [CrossRef]
- Fowler, H.J.; Lenderink, G.; Prein, A.F.; Westra, S.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Do, H.X.; et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2021, 2, 107–122. [Google Scholar] [CrossRef]
- Ministry of the Interior and Safety (MOIS). Criteria for Establishment and Operation of Disaster Prevention Performance Target by Region: Considering Future Climate Change Impacts; Ministry of the Interior and Safety (MOIS): Sejong City, Republic of Korea, 2017. (In Korean)
- Ministry of Environment (ME). Standard Guidelines for Flood Volume Estimation; Ministry of Environment (ME): Sejong City, Republic of Korea, 2019. (In Korean)
- Ministry of the Interior and Safety (MOIS). Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change; Ministry of the Interior and Safety (MOIS): Sejong City, Republic of Korea, 2018. (In Korean)
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p, Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 30 January 2024).
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA 2013, 110, 12219–12224. [Google Scholar] [CrossRef]
- Kim, S.; Oh, J.; Suh, K.D.; Mase, H. Estimation of climate change impact on storm surges: Application to Korean Peninsula. Coast. Eng. J. 2017, 59, 1740004-1–1740004-32. [Google Scholar] [CrossRef]
- Yang, J.A.; Kim, S.; Mori, N.; Mase, H. Assessment of long-term impact of storm surges around the Korean Peninsula based on a large ensemble of climate projections. Coast. Eng. 2018, 142, 1–8. [Google Scholar] [CrossRef]
Sea Area | Target Areas | Area (km2) | Major Characteristics | Pump Facility | Number of Major Outfalls |
---|---|---|---|---|---|
The south coast | Marine City (Busan) | 0.53 | Wave overtopping | - | 8 |
Oedo-dong (Jeju) | 1.53 | Wave overtopping | - | 5 | |
The west coast | Jungang-dong (Gunsan) | 0.79 | Poor interior drainage at high tide level | 3 | 3 |
Ocheon Port (Boryeong) | 0.41 | High tide level | - | 5 | |
The east coast | Gampo Port (Gyeongju) | 0.55 | Wave overtopping | - | 5 |
Imwon Port (Samcheok) | 0.20 | Wave overtopping | - | 6 |
Sea Area | Target Areas | Rate of Increase in Probability Rainfall (%) | |
---|---|---|---|
In 2050 | In 2100 | ||
The south coast | Marine City (Busan) | 5.80 | 11.78 |
Oedo-dong (Jeju) | 4.04 | 9.86 | |
The west coast | Jungang-dong (Gunsan) | 6.21 | 6.75 |
Ocheon Port (Boryeong) | 0.83 | 5.09 | |
The east coast | Gampo Port (Gyeongju) | 3.35 | 6.69 |
Imwon Port (Samcheok) | 4.14 | 17.47 |
Region | Duration (hour) | 100-yr Return Period Rainfall Amount (mm) | Selection | ||
---|---|---|---|---|---|
Present | 2050 | 2100 | |||
Busan | 1 | 108.2 | 114.5 | 121.0 | O |
2 | 142.6 | 155.4 | 172.5 | ||
Jeju | 1 | 90.3 | 94.0 | 99.3 | O |
2 | 123.6 | 134.1 | 148.2 | ||
Gunsan | 1 | 81.5 | 86.5 | 87.0 | |
2 | 123.6 | 131.2 | 131.9 | O | |
Boryeong | 1 | 102.7 | 103.6 | 107.9 | O |
2 | 147.8 | 149.0 | 155.3 | ||
Gyeongju | 1 | 64.7 | 70.4 | 78.2 | |
2 | 90.2 | 98.1 | 108.8 | O | |
Samcheok | 1 | 74.8 | 81.6 | 90.9 | O |
2 | 91.3 | 100.1 | 111.9 |
Sea Area | Target Areas | Current Storm Surge Height for 100 yr-Return Period (m) | Sea Level Rise (m) | |
---|---|---|---|---|
In 2050 | In 2100 | |||
The south coast | Marine City (Busan) | 0.97 | 0.204 | 0.848 |
Oedo-dong (Jeju) | 0.90 | 0.273 | 1.032 | |
The west coast | Jungang-dong (Gunsan) | 1.39 | 0.210 | 0.864 |
Ocheon Port (Boryeong) | 1.58 | |||
The east coast | Gampo Port (Gyeongju) | 0.77 | 0.195 | 0.768 |
Imwon Port (Samcheok) | 0.72 |
Sea Area | Condition /Case | Movement Speed | Invasion Angle | Movement Path | Central Pressure | Maximum Wind Radius | Tidal | Total Cases | |
---|---|---|---|---|---|---|---|---|---|
Longitude | Latitude | ||||||||
The south coast | Condition | 30 km/h | S~WSW (interval: 22.5°) | −1.5°~+1.5° based on the area (interval: 0.25°) | - | 930~970 hPa (interval: 10 hPa) | 80 km/h | Approx. H.H.W. | 260 |
Case | 1 | 4 | 13 | - | 5 | 1 | 1 | ||
The west coast | Condition | 30 km/h | S~SW (interval: 22.5°) | 125.0~127.5° (interval: 0.5°) | 0~1° based on the area (interval: 0.25°) | 950~980 hPa (interval: 10 hPa) | 80 km/h | Approx. H.H.W. | 240 |
Case | 1 | 3 | 5 | 4 | 4 | 1 | 1 | ||
The east coast | Condition | 30 km/h | 348.75°~33.75° (interval: 22.5°) | 129.0~130.0° (interval: 0.25°) | −0.25~0.25° based on the area (interval: 0.25°) | 950~980 hPa (interval: 10 hPa) | 80 km/h | Approx. H.H.W. | 300 |
Case | 1 | 5 | 5 | 4 | 4 | 1 | 1 |
Name of Typhoon (Number) | Tidal Station | Obs. (cm) | Cal. (cm) | ARE (%) |
---|---|---|---|---|
MAEMI (0314) | BS | 77 | 75 | 2.6 |
YS | 228 | 211 | 7.5 | |
US | 59 | 60 | 1.7 | |
BOLAVEN (1215) | IC | 151 | 152 | 0.7 |
WD | 76 | 75 | 1.3 | |
HSD | 84 | 82 | 2.4 | |
SANBA (1216) | BS | 80 | 79 | 1.3 |
US | 76 | 75 | 1.3 | |
CHABA (1618) | BS | 89 | 87 | 2.2 |
YS | 117 | 123 | 5.1 | |
LINGLING (1913) | IC | 147 | 148 | 0.7 |
WD | 64 | 60 | 6.3 |
Scenario | Max. Significant Wave Height (m) | Max. Storm Surge Height (m) | Direction of Wave (deg.) | Central Pressure (hPa) | Invasion Angle (deg.) | Longitude (deg.) | Period (s) |
---|---|---|---|---|---|---|---|
P1 | 7.25 | 0.94 | 164.2 | 930 | 247.5 | 129.25 | 16.0 |
P2 | 7.20 | 0.94 | 163.3 | 940 | 247.5 | 129.50 | 15.6 |
P3 | 7.21 | 0.96 | 163.0 | 940 | 225.0 | 129.00 | 15.2 |
P4 | 7.18 | 0.96 | 162.7 | 940 | 247.5 | 129.75 | 15.2 |
P5 | 7.11 | 0.95 | 159.7 | 940 | 247.5 | 130.00 | 14.3 |
P6 | 6.94 | 0.96 | 158.1 | 940 | 222.5 | 129.50 | 13.4 |
P7 | 6.60 | 0.94 | 142.1 | 950 | 180.0 | 129.00 | 13.7 |
Sea Area | Region | Rate of Increase in Inundation Area (%) | Rate of Increase in Total Flooding Volume (%) | ||
---|---|---|---|---|---|
In 2050 | In 2100 | In 2050 | In 2100 | ||
The south coast | Marine City (Busan) | 9.3 | 25.6 | 5.5 | 25.9 |
Oedo-dong (Jeju) | 45.7 | 146.1 | 48.9 | 290.5 | |
The west coast | Jungang-dong (Gunsan) | 36.7 | 84.0 | 89.3 | 321.3 |
Ocheon Port (Boryeong) | 10.6 | 33.8 | 26.9 | 129.2 | |
The east coast | Gampo Port (Gyeongju) | 2.5 | 12.2 | 5.1 | 17.2 |
Imwon Port (Samcheok) | 6.1 | 117.1 | 6.8 | 163.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, T.; Lee, J. Case Study on the Adaptive Assessment of Floods Caused by Climate Change in Coastal Areas of the Republic of Korea. Water 2024, 16, 2987. https://doi.org/10.3390/w16202987
Kang T, Lee J. Case Study on the Adaptive Assessment of Floods Caused by Climate Change in Coastal Areas of the Republic of Korea. Water. 2024; 16(20):2987. https://doi.org/10.3390/w16202987
Chicago/Turabian StyleKang, Taeuk, and Jungmin Lee. 2024. "Case Study on the Adaptive Assessment of Floods Caused by Climate Change in Coastal Areas of the Republic of Korea" Water 16, no. 20: 2987. https://doi.org/10.3390/w16202987
APA StyleKang, T., & Lee, J. (2024). Case Study on the Adaptive Assessment of Floods Caused by Climate Change in Coastal Areas of the Republic of Korea. Water, 16(20), 2987. https://doi.org/10.3390/w16202987