Assessment of Emergency Water Sources Using Electrical Resistivity Tomography: A Case Study in the Longmen Shan Fault Zone
Abstract
:1. Introduction
2. Geological Context of the Study Area
3. Materials and Methods
3.1. ERT Principle and Its Relation to Groundwater
3.2. Basic Principle of ERT Inversion
4. Results and Discussion
4.1. Survey Results
4.2. Geological Interpretation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jafarpour, K.; Leangkim, K.; Anuar, A.N.; Yuzir, A.M.; Ros, F.C.; Said, N.F.; Asanuma, J. Impact of earthquake on river water quality based on combination of satellite data and groundwater analysis. Watershed Ecol. Environ. 2024, 6, 114–124. [Google Scholar] [CrossRef]
- Yang, Y.; Li, L.; Zhan, F.B.; Zhuang, Y.H. Probabilistic Analysis of Earthquake-Led Water Contamination: A Case of Sichuan, China. Pure Appl. Geophys. 2016, 173, 1859–1879. [Google Scholar] [CrossRef]
- Pant, B.R.; Thapa, K.; Koju, R. Post-earthquake drinking water quality in the Kathmandu valley: A pilot study. Al Ameen J. Med. Sci. 2016, 9, 130–133. [Google Scholar]
- Ruan, F.M.; Zhu, S.Y.; Chang, W.J.; Zhang, Q.; Cao, G.W. Investigation on organism pollution of various water resources after devastating earthquake in Yingxin Town of Wenchuan County. Acad. J. Second. Mil. Med. Univ. 2008, 12, 737–740. [Google Scholar]
- Mainoo, P.A.; Manu, E.; Yidana, S.M.; Agyekum, W.A.; Stigter, T.; Duah, A.A.; Preko, K. Application of 2D-Electrical resistivity tomography in delineating groundwater potential zones: Case study from the voltaian super group of Ghana. J. Afr. Earth Sci. 2019, 160, 103618. [Google Scholar] [CrossRef]
- Bahkaly, I.M.; El-Waheidi, M.M.; Jallouli, C.; Batayneh, A.T. Assessment of shallow aquifer salinity in the Aqaba Coastal plain using ERT method: A case study of Maqnah region, northwestern Saudi Arabia. Environ. Earth Sci. 2015, 74, 2105–2114. [Google Scholar] [CrossRef]
- Park, M.K.; Park, S.; Yi, M.J.; Kim, C.; Son, J.S.; Kim, J.H.; Abraham, A.A. Application of electrical resistivity tomography (ERT) technique to detect underground cavities in a karst area of South Korea. Environ. Earth Sci. 2014, 71, 2797–2806. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Akhter, G.; Jin, W. Application of VES and ERT for delineation of fresh-saline interface in alluvial aquifers of Lower Bari Doab, Pakistan. J. Appl. Geophys. 2019, 164, 200–213. [Google Scholar] [CrossRef]
- Mensah, V.; Boateng, C.; Gidigasu, S.; Wemegah, D.; Aryee, J.; Osei, M.; Toure, H.; Gilbert, J.; Afful, S.K. Groundwater Exploration Methods in West Africa: A Review. Earth arXiv. 2024. [Google Scholar] [CrossRef]
- Saoanunt, N.; Yungsukkasam, N. Electrical resistivity tomography (ERT) exploration data in drought prone areas case study: Buriram Province, Thailand. J. Water Land Dev. 2024, 61, 79–85. [Google Scholar] [CrossRef]
- Nouradine, H.; Schamper, C.; Valdes, D.; Moussa, I.; Ramel, D.; Plagnes, V. Integrating geological, hydrogeological and geophysical data to identify groundwater resources in granitic basement areas (Guéra Massif, Chad). Hydrogeol. J. 2024, 32, 759–784. [Google Scholar] [CrossRef]
- Orozco, A.F.; Aigner, L.; Montes-Avila, I.; Moser, C.; Cerca-Ruiz, F.; Giácoman-Vallejos, G.; Cardona-Benavides, A. Application of Transient Electromagnetic to Understand Infiltration in Farmlands in Karst Areas of Yucatan, Mexico; EGU: Wien, Austria, 2024. [Google Scholar]
- Morozov, D.; McLaughlin, C.; Grunewald, E.D.; Irons, T.; Walsh, D.O. Gradient-based surface nuclear magnetic resonance for groundwater investigation. Geophysics. 2024, 89, J19–J32. [Google Scholar] [CrossRef]
- Zhu, Z.; Shan, Z.; Pang, Y.; Wang, W.; Chen, M.; Li, G.; Sun, H.; Revil, A. The transient electromagnetic (TEM) method reveals the role of tectonic faults in seawater intrusion at Zhoushan islands (Hangzhou Bay, China). Eng. Geol. 2024, 330, 107425. [Google Scholar] [CrossRef]
- Auken, E.; Jørgensen, F.; Sørensen, K.I. Large-scale TEM investigation for groundwater. Explor. Geophys. 2003, 34, 188–194. [Google Scholar] [CrossRef]
- Walsh, D.; Turner, P.; Grunewald, E.; Zhang, H.; Butler, J.J.; Reboulet, E., Jr.; Fitzpatrick, A. A small-diameter NMR logging tool for groundwater investigations. Ground Water. 2013, 51, 914–926. [Google Scholar] [CrossRef]
- Allen, D. Groundwater applications of towed TEM in diverse geology at farm scale. ASEG Ext. Abstr. 2019, 1, 1–4. [Google Scholar] [CrossRef]
- Larsen, J.J.; Liu, L.; Grombacher, D.; Osterman, G.; Auken, E. Apsu—A new compact surface nuclear magnetic resonance system for groundwater investigation. Geophysics 2020, 85, JM1–JM11. [Google Scholar] [CrossRef]
- Sharifi, M.; Young, B. Electrical Resistance Tomography (ERT) applications to Chemical Engineering. Chem. Eng. Res. Des. 2013, 91, 1625–1645. [Google Scholar] [CrossRef]
- Cui, P.; Chen, X.-Q.; Zhu, Y.-Y.; Su, F.-H.; Wei, F.-Q.; Han, Y.-S.; Zhuang, J.-Q. The Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards. Nat. Hazards. 2009, 56, 19–36. [Google Scholar] [CrossRef]
- Huang, R.; Li, W. Post-earthquake landsliding and long-term impacts in the Wenchuan earthquake area, China. Eng. Geol. 2014, 182, 111–120. [Google Scholar] [CrossRef]
- Zhang, L.M.; Zhang, S.; Huang, R.Q. Multi-hazard scenarios and consequences in Beichuan, China: The first five years after the 2008 Wenchuan earthquake. Eng. Geol. 2014, 180, 4–20. [Google Scholar] [CrossRef]
- Lei, J.; Zhao, D. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (Ms 8.0). Geochem. Geophys. Geosystems. 2009, 10, 10. [Google Scholar] [CrossRef]
- Lei, J.S.; Zhao, D.P.; Su, J.R.; Zhang, G.W.; Li, F. Fine Seismic Structure Under the Longmenshan Fault Zone and the Mechanism of the Large Wenchuan Earthquake. Chin. J. Geophys. 2013, 52, 112–119. [Google Scholar] [CrossRef]
- Liang, M.; Ran, Y.; Wang, H.; Li, Y.; Gao, S. A Possible Tectonic Response Between the Qingchuan Faultand the Beichuan-Yingxiu Fault of the Longmen Shan Fault Zone? Evidence from Geologic Observations by Paleoseismic Trenching and Radiocarbon Dating. Tectonics 2018, 37, 4086–4096. [Google Scholar] [CrossRef]
- Ran, Y.; Chen, W.; Xu, X.; Chen, L.; Wang, H.; Li, Y. Late Quaternary paleoseismic behavior and rupture segmentation of the Yingxiu-Beichuan fault along the Longmen Shan fault zone, China. Tectonics 2014, 33, 2218–2232. [Google Scholar] [CrossRef]
- Xiao, D.; Zhongquan, L.; Dian, L.; Yiling, H.; Wei, L.; Jianing, L.; Henglin, L. Analysis on multi period activity and evolution of Yingxiu-Beichuan fault in Longmenshan area. Ore Energy Resour. Geol. 2023, 15, 100021. [Google Scholar] [CrossRef]
- Daily, W.; Ramirez, A.; Binley, A.; LaBrecque, D. Electrical resistance tomography—Theory and practice. In Near-Surface Geophysics; SEG: Houston, TX, USA, 2005. [Google Scholar]
- Martorana, R.; Capizzi, P.; D’Alessandro, A.; Luzio, D. Comparison of different sets of array configurations for multichannel 2D ERT acquisition. J. Appl. Geophys. 2017, 137, 34–48. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Brace, W.; Orange, A.; Madden, T. The effect of pressure on the electrical resistivity of water-saturated crystalline rocks. J. Geophys. Res. 1965, 70, 5669–5678. [Google Scholar] [CrossRef]
- Llera, F.J.; Sato, M.; Nakatsuka, K.; Yokoyama, H. Temperature dependence of the electrical resistivity of water-saturated rocks. Geophysics 1990, 55, 576–585. [Google Scholar] [CrossRef]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Parasnis, D.S. Principles of Applied Geophysics, Chapman and Hall; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Keller, G.V.; Frischknecht, F.C. Electrical Methods in Geophysical Prospecting; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Dobrin, M.B. Introduction to Geophysical Prospecting, 4th ed.; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Keller, G.V. Geophysical Prospecting for Groundwater; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Datsios, Z.; Mikropoulos, P.; Karakousis, I. Laboratory characterization and modeling of DC electrical resistivity of sandy soil with variable water resistivity and content. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3063–3072. [Google Scholar] [CrossRef]
- Park, S.; Shin, S.; Lee, D.; Kim, C.; Son, J. Relationship between electrical resistivity and physical properties of rocks. In Proceedings of the Near Surface Geoscience 2016—First Conference on Geophysics for MIneral Exploration and Mining, Barcelona, Spain, 4–8 September 2016. [Google Scholar]
- Udosen, N.I.; George, N.J. A finite integration forward solver and a domain search reconstruction solver for electrical resistivity tomography (ERT). Model. Earth Syst. Environ. 2018, 4, 1–12. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, Z.; Dong, Z.; Liu, B.; Pang, Y.; Liu, J. Forward Modeling Analysis of Cross-hole Resistivity Tomography (ERT) Using Unstructured Grids. J. Phys. Conf. Ser. 2023, 2651, 012056. [Google Scholar] [CrossRef]
- Rücker, C.; Günther, T. The simulation of finite ERT electrodes using the complete electrode model. Geophysics. 2011, 76, F227–F238. [Google Scholar] [CrossRef]
- Hojat, A.; Loke, M.; Karimi-Nasab, S.; Ranjbar, H.; Zanzi, L. Two-dimensional ERT simulations to compare different electrode configurations in detecting qanats. In Proceedings of the 3rd Asia Pacific Meeting on Near Surface Geoscience & Engineering, Chiang Mai, Thailand, 2–5 November 2020. [Google Scholar]
- Sasaki, Y. Resolution of Resistivity Tomography Inferred from Numerical Simulation1. Geophys. Prospect. 2006, 40, 453–463. [Google Scholar] [CrossRef]
- Dahlin, T.; Loke, M.H. Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling. J. Appl. Geophys. 1998, 38, 237–249. [Google Scholar] [CrossRef]
- El-Raouf, A.A.; Iqbal, I.; Meister, J.; Abdelrahman, K.; Alzahrani, H.; Badran, O.M. Earthflow reactivation assessment by multichannel analysis of surface waves and electrical resistivity tomography: A case study. Open Geosci. 2021, 13, 1328–1344. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, G.; Qi, Y.; Zhou, Y.; Zhao, X.; Ge, K. Application of combined electrical resistivity tomography and seismic reflection method to explore hidden active faults in Pingwu, Sichuan, China. Open Geosci. 2020, 12, 174–189. [Google Scholar] [CrossRef]
Rock Type | Resistivity (Ω·m) | Natural Water | Resistivity (Ω·m) |
---|---|---|---|
Granite | 103~108 | Rainwater | <200 |
Metamorphic Rock | 102~106 | Groundwater | <100 |
Limestone | 50~107 | River Water | 1~100 |
Sandstone | 10~105 | Mine Water | 0.5~10 |
Shale | 10~104 | Seawater | 0.2~1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Liu, S.; Chen, C.; Hong, T.; Xiao, Y.; He, S. Assessment of Emergency Water Sources Using Electrical Resistivity Tomography: A Case Study in the Longmen Shan Fault Zone. Water 2024, 16, 2967. https://doi.org/10.3390/w16202967
Liu P, Liu S, Chen C, Hong T, Xiao Y, He S. Assessment of Emergency Water Sources Using Electrical Resistivity Tomography: A Case Study in the Longmen Shan Fault Zone. Water. 2024; 16(20):2967. https://doi.org/10.3390/w16202967
Chicago/Turabian StyleLiu, Pan, Shengbo Liu, Changjing Chen, Tao Hong, Yifei Xiao, and Siyuan He. 2024. "Assessment of Emergency Water Sources Using Electrical Resistivity Tomography: A Case Study in the Longmen Shan Fault Zone" Water 16, no. 20: 2967. https://doi.org/10.3390/w16202967
APA StyleLiu, P., Liu, S., Chen, C., Hong, T., Xiao, Y., & He, S. (2024). Assessment of Emergency Water Sources Using Electrical Resistivity Tomography: A Case Study in the Longmen Shan Fault Zone. Water, 16(20), 2967. https://doi.org/10.3390/w16202967