Predictions of Peak Discharge of Dam Failures Based on the Combined GA and BP Neural Networks
Abstract
:1. Introduction
2. Problem Descriptions and Database
2.1. Experimental Setups and Results
2.1.1. Experimental Setups
2.1.2. Summary of Experimental Tests
2.2. Summary of Available Data
3. Details of the Neural Network
3.1. GA Network
3.2. BP Model
3.3. Developed the GA-BP Neural Network
- A set of combinations of weight and bias is considered as an individual.
- The error between the output and the real value is taken as the fitness function of GA.
- Through finite iterations, the individual with the highest fitness is considered the optimal value of the network.
3.4. Performance Evaluation of the Neural Network
4. Results and Discussion
4.1. Prediction of Peak Discharge Based on BP
4.2. Prediction of Peak Discharge Based on GA-BP
4.3. Comparison of Peak Discharge between BP and GA-BP
4.4. Sensitivity Analysis
5. Discussions
6. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Andre, S.; Boillat, J.L.; Schleiss, A. Ecoulements aérés sur évacuateurs en marches d’escalier équipées de macro-rugosités-Partie I: Caractéristiques hydrauliques. La Houille Blanche 2008, 94, 91–100. [Google Scholar] [CrossRef]
- Maranzoni, A.; Tomirotti, M. Three-dimensional numerical modelling of real-field dam-break flows: Review and recent advances. Water 2023, 15, 3130. [Google Scholar] [CrossRef]
- Selvi, T.; RS, S.S. IoT-Enabled Flood Monitoring System for Enhanced Dam Surveillance and Risk Mitigation. Int. Res. J. Multidiscip. Technovation 2024, 6, 144–153. [Google Scholar]
- Tolentino, L.K.S.; Baron, R.E.; Blacer, C.A.C. Real time flood detection, alarm and monitoring system using image processing and multiple linear regression. J. Comput. Innov. Eng. Appl. 2022, 7. [Google Scholar] [CrossRef]
- Venkanna, M.P. Floodguard: An IoT-Powered real-time flash flood monitoring and forecasting system. Int. J. Res. Appl. Sci. Eng. Technol. 2024. [Google Scholar] [CrossRef]
- Hapuarachchi, H.A.P.; Wang, Q.J.; Pagano, T.C. A review of advances in flash flood forecasting. Hydrol. Process. 2011, 25, 2771–2784. [Google Scholar]
- Chang, M.J.; Huang, I.H.; Hsu, C.T.; Wu, S.J.; Lai, J.S.; Lin, G.F. Long-Term Flooding Maps Forecasting System Using Series Machine Learning and Numerical Weather Prediction System. Water 2022, 14, 3346. [Google Scholar] [CrossRef]
- Ming, X.; Liang, Q.; Xia, X.; Li, D.; Fowler, H.J. Real-time flood forecasting based on a high-performance 2-D hydrodynamic model and numerical weather predictions. Water Resour. Res. 2020, 56, e2019WR025583. [Google Scholar] [CrossRef]
- Antwi-Agyakwa, K.T.; Afenyo, M.K.; Angnuureng, D.B. Know to predict, forecast to warn: A review of flood risk prediction tools. Water 2023, 15, 427. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Guo, Y.; Wu, Z.; Yan, D. Urban flood forecasting based on the coupling of numerical weather model and stormwater model: A case study of Zhengzhou city. J. Hydrol. Reg. Stud. 2022, 39, 100985. [Google Scholar] [CrossRef]
- Takayama, S.; Miyata, S.; Fujimoto, M.; Satofuka, Y. Numerical simulation method for predicting a flood hydrograph due to progressive failure of a landslide dam. Landslides 2021, 18, 3655–3670. [Google Scholar] [CrossRef]
- Akazawa, F.; Ikeda, A.; Hayami, S.; Harada, N.; Satofuka, Y.; Miyata, S.; Tsutsumi, D. Numerical simulation of landslide dam deformation by overtopping flow. Int. J. Eros. Control Eng. 2014, 7, 85–91. [Google Scholar] [CrossRef]
- Hakimzadeh, H.; Nourani, V.; Amini, A.B. Genetic programming simulation of dam breach hydrograph and peak outflow discharge. J. Hydrol. Eng. 2014, 19, 757–768. [Google Scholar] [CrossRef]
- Hussain, F.; Wu, R.S.; Wang, J.X. Comparative study of very short-term flood forecasting using physics-based numerical model and data-driven prediction model. Nat. Hazards 2021, 107, 249–284. [Google Scholar] [CrossRef]
- Walder, J.S.; Iverson, R.M.; Godt, J.W.; Logan, M.; Solovitz, S.A. Controls on the breach geometry and flood hydrograph during overtopping of noncohesive earthen dams. Water Resour. Res. 2015, 51, 6701–6724. [Google Scholar] [CrossRef]
- Al-Riffai, M. Experimental Study of Breach Mechanics in Overtopped Noncohesive Earthen Embankments. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, 2014. [Google Scholar]
- Liu, J.; Zhou, C.X.; Chen, W.; Hong, X. Breach discharge estimates and surface velocity measurements for an Earth dam failure process due to overtopping based on the LS-PIV method. Arab. J. Sci. Eng. 2019, 44, 329–339. [Google Scholar] [CrossRef]
- Guo, Z.; Leitao, J.P.; Simões, N.E.; Moosavi, V. Data-driven flood emulation: Speeding up urban flood predictions by deep convolutional neural networks. J. Flood Risk Manag. 2021, 14, e12684. [Google Scholar] [CrossRef]
- Berkhahn, S.; Fuchs, L.; Neuweiler, I. An ensemble neural network model for real-time prediction of urban floods. J. Hydrol. 2019, 575, 743–754. [Google Scholar] [CrossRef]
- Bi, H. Flood and sediment prediction based on BP neural network. South-to-North Water Transfers and Water Science & Technology. South–North Water Transf. Water Sci. Technol. 2015, 13, 406–416. [Google Scholar]
- Ye, F.; Kong, X. Prediction of flood level in downstream of the Yellow River based on BP neural network. Open J. Soil Water Conserv. 2022, 10, 41–46. [Google Scholar]
- Chen, C.S.; Chen, B.P.T.; Chou, F.N.F.; Yang, C.C. Development and application of a decision group Back-Propagation Neural Network for flood forecasting. J. Hydrol. 2010, 385, 173–182. [Google Scholar] [CrossRef]
- He, Y.; Jin, B.; Lv, Q.; Yang, S. Improving BP neural network for the recognition of face direction. In Proceedings of the 2011 International Symposium on Computer Science and Society, Kota Kinabalu, Malaysia, 16–17 July 2011; IEEE: New York, NY, USA; pp. 79–82. [Google Scholar]
- Liu, B. Review of swarm intelligence algorithm optimization of BP neural network. Acad. J. Comput. Inf. Sci. 2023, 6, 151–155. [Google Scholar]
- Zhang, A.; Sun, G.; Wang, Z.; Yao, Y. A hybrid genetic algorithm and gravitational search algorithm for global optimization. Neural Netw. World 2015, 25, 53–73. [Google Scholar] [CrossRef]
- Chak, C.K.; Feng, G. Accelerated genetic algorithms: Combined with local search techniques for fast and accurate global search. In Proceedings of the 1995 IEEE International Conference on Evolutionary Computation, Perth, WA, Australia, 29 November–1 December 1995; IEEE: New York, NY, USA; Volume 1, p. 378. [Google Scholar]
- Yu, Q.; Yu, X. An adaptive genetic algorithm based on simulated annealing strategy. In Proceedings of the Third International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2024), Changchun, China, 22–24 September 2023; SPIE: Bellingham, WA, USA, 2024; Volume 13181, pp. 1221–1227. [Google Scholar]
- Liu, J.; He, X.; Huang, H.; Yang, J.; Dai, J.; Shi, X.; Xue, F.; Rabczuk, T. Predicting gas flow rate in fractured shale reservoirs using discrete fracture model and GA-BP neural network method. Eng. Anal. Bound. Elem. 2024, 159, 315–330. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Ren, P.; Ding, L.; Hao, W.; An, C.; Xu, A. Analysis of energy consumption prediction for office buildings based on GA-BP and BP algorithm. Case Stud. Therm. Eng. 2023, 50, 103445. [Google Scholar] [CrossRef]
- Moayedi, H.; Raftari, M.; Sharifi, A.; Jusoh, W.A.W.; Rashid, A.S.A. Optimization of ANFIS with GA and PSO estimating α ratio in driven piles. Eng. Comput. 2020, 36, 227–238. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Dashti, A.; Asghari, M.; Shirazian, S. H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int. J. Hydrogen Energy 2017, 42, 15211–15225. [Google Scholar] [CrossRef]
- Zhou, J.; Li, C.; Arslan, C.A.; Hasanipanah, M.; Bakhshandeh Amnieh, H. Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting. Eng. Comput. 2021, 37, 265–274. [Google Scholar] [CrossRef]
- Li, L.; Gu, Q.; Liu, L. Research on path planning algorithm for multi-UAV maritime targets search based on genetic algorithm. In Proceedings of the 2020 IEEE International Conference on Information Technology Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 6–8 November 2020; IEEE: New York, NY, USA, 2020; Volume 1, pp. 840–843. [Google Scholar]
- Zheng, D.; Qian, Z.D.; Liu, Y.; Liu, C.B. Prediction and sensitivity analysis of long-term skid resistance of epoxy asphalt mixture based on GA-BP neural network. Constr. Build. Mater. 2018, 158, 614–623. [Google Scholar] [CrossRef]
- Peng, Y.; Xiang, W. Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction. Phys. A Stat. Mech. Its Appl. 2020, 549, 123913. [Google Scholar] [CrossRef]
- Marangoz, H.O.; Anılan, T.; Karasu, S. Investigating the non-linear effects of breach parameters on a dam break study. Water Resour. Manag. 2024, 38, 1773–1790. [Google Scholar] [CrossRef]
- Coleman, S.E.; Andrews, D.P.; Webby, M.G. Overtopping breaching of noncohesive homogeneous embankments. J. Hydraul. Eng. 2002, 128, 829–838. [Google Scholar] [CrossRef]
Test | Dam Height, Hd (m) | Crest Width, Lc (m) | Base Width, Lb (m) | Dam Width, Ld (m) | Initial Water Depth, H (m) | Median Diameter, D50 (mm) | Slotting or Not | Storage Capacity, Sc (m3) | Porosity, P | Peak Discharge, Q (m3/s) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.30 | 0.300 | 1.90 | 0.4 | 0.30 | 2.5 | No | 0.5640 | 0.512 | 0.0042 |
2 | 0.30 | 0.300 | 1.90 | 0.4 | 0.30 | 2.5 | No | 0.5640 | 0.512 | 0.0043 |
3 | 0.30 | 0.300 | 1.90 | 0.4 | 0.30 | 2.5 | No | 0.5640 | 0.512 | 0.0048 |
4 | 0.30 | 0.300 | 1.90 | 0.4 | 0.30 | 2.5 | Yes | 0.5640 | 0.512 | 0.0040 |
5 | 0.30 | 0.250 | 1.75 | 0.4 | 0.30 | 2.5 | Yes | 0.5640 | 0.512 | 0.0058 |
6 | 0.30 | 0.225 | 1.58 | 0.4 | 0.30 | 2.5 | Yes | 0.5640 | 0.512 | 0.0060 |
7 | 0.30 | 0.225 | 1.45 | 0.4 | 0.30 | 2.5 | Yes | 0.5640 | 0.512 | 0.0078 |
8 | 0.30 | 0.250 | 1.60 | 0.4 | 0.30 | 2.5 | Yes | 0.5640 | 0.512 | 0.0050 |
9 | 0.15 | 0.150 | 0.90 | 0.4 | 0.15 | 2.5 | Yes | 0.2820 | 0.512 | 0.0033 |
10 | 0.20 | 0.200 | 1.27 | 0.4 | 0.20 | 2.5 | Yes | 0.3760 | 0.512 | 0.0034 |
11 | 0.22 | 0.220 | 1.39 | 0.4 | 0.22 | 2.5 | Yes | 0.4136 | 0.512 | 0.0039 |
12 | 0.24 | 0.240 | 1.51 | 0.4 | 0.24 | 2.5 | Yes | 0.4512 | 0.512 | 0.0040 |
13 | 0.30 | 0.300 | 1.90 | 0.4 | 0.30 | 2.5 | Yes | 0.4440 | 0.512 | 0.0031 |
14 | 0.30 | 0.300 | 1.90 | 0.4 | 0.30 | 2.5 | Yes | 0.3240 | 0.512 | 0.0022 |
Case | Hd (m) | Lc (m) | Lb (m) | Ld (m) | H (m) | D50 (mm) | Slotting or Not | Sc (m3) | P | Q (m3/s) | Researchers |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.00 | 0.350 | 3.500 | 2.0 | 0.9500 | 0.210 | Yes | 12.74 | 0.430 | 0.1260 | Walder (2015) [15] |
2 | 1.00 | 0.350 | 3.500 | 2.0 | 0.9500 | 0.210 | Yes | 12.74 | 0.430 | 0.1300 | |
3 | 1.00 | 0.350 | 3.500 | 2.0 | 0.9500 | 0.210 | Yes | 12.74 | 0.430 | 0.1370 | |
4 | 1.00 | 0.350 | 3.500 | 2.0 | 0.9500 | 0.210 | Yes | 12.74 | 0.430 | 0.1720 | |
5 | 1.02 | 0.315 | 3.500 | 2.0 | 0.9700 | 0.210 | Yes | 12.95 | 0.430 | 0.1480 | |
6 | 0.76 | 1.155 | 3.500 | 2.0 | 0.7100 | 0.210 | Yes | 7.82 | 0.430 | 0.0870 | |
7 | 0.58 | 1.750 | 3.500 | 2.0 | 0.5300 | 0.210 | Yes | 4.60 | 0.430 | 0.0410 | |
8 | 0.57 | 1.785 | 3.500 | 2.0 | 0.5200 | 0.210 | Yes | 4.42 | 0.430 | 0.0430 | |
9 | 1.00 | 0.350 | 3.500 | 2.0 | 0.9500 | 0.210 | Yes | 12.74 | 0.430 | 0.1340 | |
10 | 0.75 | 1.190 | 3.500 | 2.0 | 0.7000 | 0.210 | Yes | 7.62 | 0.430 | 0.0720 | |
11 | 0.87 | 0.735 | 3.500 | 2.0 | 0.8200 | 0.210 | Yes | 10.33 | 0.430 | 0.1380 | |
12 | 0.87 | 0.735 | 3.500 | 2.0 | 0.8200 | 0.210 | Yes | 10.33 | 0.430 | 0.1490 | |
13 | 0.66 | 1.470 | 3.500 | 2.0 | 0.6100 | 0.210 | Yes | 6.08 | 0.430 | 0.0540 | |
14 | 0.30 | 0.100 | 1.750 | 1.5 | 0.2872 | 0.075 | Yes | 11.03 | 0.516 | 0.0655 | Al-Riffai (2014) [16] |
15 | 0.30 | 0.100 | 1.750 | 1.5 | 0.2838 | 0.075 | Yes | 10.86 | 0.606 | 0.0680 | |
16 | 0.30 | 0.100 | 1.750 | 1.5 | 0.2819 | 0.075 | Yes | 10.85 | 0.606 | 0.0704 | |
17 | 0.30 | 0.100 | 1.750 | 1.5 | 0.2866 | 0.075 | Yes | 11.00 | 0.740 | 0.0760 | |
18 | 0.30 | 0.100 | 1.750 | 1.5 | 0.2822 | 0.075 | Yes | 10.84 | 0.606 | 0.0673 | |
19 | 0.30 | 0.050 | 0.875 | 1.5 | 0.2788 | 0.075 | Yes | 5.34 | 0.606 | 0.0655 | |
20 | 0.30 | 0.033 | 0.583 | 1.5 | 0.2820 | 0.075 | Yes | 3.59 | 0.606 | 0.0680 | |
21 | 0.15 | 0.050 | 0.875 | 1.5 | 0.1455 | 0.075 | Yes | 2.75 | 0.606 | 0.0205 | |
22 | 0.15 | 0.050 | 0.875 | 1.5 | 0.1428 | 0.075 | Yes | 2.74 | 0.606 | 0.0187 | |
23 | 0.10 | 0.011 | 0.194 | 1.5 | 0.0974 | 0.075 | Yes | 1.23 | 0.606 | 0.0840 | |
24 | 0.10 | 0.011 | 0.194 | 1.5 | 0.0954 | 0.075 | Yes | 1.22 | 0.606 | 0.0790 | |
25 | 0.50 | 0.500 | 2.500 | 4.0 | 0.4700 | 0.880 | Yes | 44.65 | 0.435 | 0.2300 | Liu et al. (2019) [17] |
26 | 0.50 | 0.500 | 2.500 | 4.0 | 0.4700 | 0.880 | Yes | 44.65 | 0.435 | 0.2600 |
Metrics | BP | GA-BP | ||
---|---|---|---|---|
Training Set | Test Set | Training Set | Test Set | |
R2 | 0.961978 | 0.889642 | 0.966260 | 0.970374 |
MAE | 0.008006 | 0.012741 | 0.005553 | 0.005432 |
RMSE | 0.012831 | 0.017047 | 0.008944 | 0.007240 |
Datasets | Invariant Parameter | Invariant Parameter Value |
---|---|---|
Data-all | - | - |
Data-nh | Hd | 0.46 m |
Data-ns | Sc | 7.38 m3 |
Data-np | P | 0.50 |
Metric | Data-All | Data-nh | Data-ns | Data-np | ||||
---|---|---|---|---|---|---|---|---|
Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | |
RMSE | 0.008944 | 0.007240 | 0.016631 | 0.0221408 | 0.01580034 | 0.0162872 | 0.0163802 | 0.01136988 |
H (m) | Q (m3/s) from Experiment | Q (m3/s) from GA-BP | Q (m3/s) from Equation (8) (with Corresponding h) | Q (m3/s) from Equation (9) (with Corresponding h) |
---|---|---|---|---|
0.3000 | 0.0022 | 0.0083 | 0.0063 | 0.0067 |
0.2788 | 0.0655 | 0.0670 | 0.0053 | 0.0054 |
0.9500 | 0.134 | 0.1427 | 0.1127 | 0.2124 |
0.3000 | 0.0058 | 0.0108 | 0.0063 | 0.0067 |
0.3000 | 0.0042 | 0.0061 | 0.0063 | 0.0067 |
0.2820 | 0.068 | 0.0720 | 0.0054 | 0.0056 |
0.3000 | 0.0043 | 0.0061 | 0.0063 | 0.0067 |
0.3000 | 0.004 | 0.0093 | 0.0063 | 0.0067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, L.; Tao, Y.; Liu, J.; Jin, X.; Fan, C.; Dong, X.; Wu, H. Predictions of Peak Discharge of Dam Failures Based on the Combined GA and BP Neural Networks. Water 2024, 16, 2946. https://doi.org/10.3390/w16202946
Ren L, Tao Y, Liu J, Jin X, Fan C, Dong X, Wu H. Predictions of Peak Discharge of Dam Failures Based on the Combined GA and BP Neural Networks. Water. 2024; 16(20):2946. https://doi.org/10.3390/w16202946
Chicago/Turabian StyleRen, Lv, Yuan Tao, Jie Liu, Xin Jin, Changyuan Fan, Xiaohua Dong, and Haiyan Wu. 2024. "Predictions of Peak Discharge of Dam Failures Based on the Combined GA and BP Neural Networks" Water 16, no. 20: 2946. https://doi.org/10.3390/w16202946
APA StyleRen, L., Tao, Y., Liu, J., Jin, X., Fan, C., Dong, X., & Wu, H. (2024). Predictions of Peak Discharge of Dam Failures Based on the Combined GA and BP Neural Networks. Water, 16(20), 2946. https://doi.org/10.3390/w16202946