Landscape Pattern Evolution and Driving Forces in the Downstream River of a Reservoir: A Case Study of the Lower Beijiang River in China
Abstract
:1. Introduction
2. Study Region
3. Methods and Data Sources
4. Results
4.1. Topographic Evolution
4.1.1. Spatial Distribution of Topography and Changes in Erosion and Deposition
4.1.2. Changes in the Thalweg Line
4.2. Area Variation in Different Land-Cover Types
4.3. Spatial Distribution Changes in Different Land-Cover Types
4.4. Landscape Pattern Changes in Different Land-Cover Types
5. Discussion
5.1. Landscape Changes Caused by Natural Factors
5.2. Landscape Changes Caused by Human Activities
5.3. Relationship between River Evolution and Landscape Changes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grams, P.; Schmidt, J.; Topping, D. The rate and pattern of bed incision and bank adjustment on the Colorado River in Glen Canyon downstream from Glen Canyon Dam, 1956–2000. Geol. Soc. Am. Bull. 2007, 119, 556–575. [Google Scholar] [CrossRef]
- Yang, S.; Milliman, J.; Li, P.; Xu, K. 50,000 dams later: Erosion of the Yangtze River and its delta. Glob. Planet. Change 2011, 75, 14–20. [Google Scholar] [CrossRef]
- Smith, N.; Morozova, G.; Pérez-Arlucea, M.; Gibling, M. Dam-induced and natural channel changes in the Saskatchewan River below the E.B. Campbell Dam, Canada. Geomorphology 2016, 269, 186–202. [Google Scholar] [CrossRef]
- Tian, Q.; Xu, K.; Dong, C.; Yang, S.; He, Y.; Shi, B. Declining sediment discharge in the Yangtze River from 1956 to 2017: Spatial and temporal changes and their causes. Water Resour. Res. 2021, 57, e2020WR028645. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, L.; Zhu, L.; Liu, W.; Wang, J. Impact of upstream reservoirs on geomorphic evolution in the middle and lower reaches of the Yangtze River. Earth Surf. Proc. Land. 2023, 48, 582–595. [Google Scholar] [CrossRef]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef]
- Cheliz, P.; Ladeira, F.; Rodrigues, J.; Giannini, P.; Pupim, F.; Mineli, T.; Rodrigues, R. Landscape evolution and unusual geomorphological-pedological-chronological relations in an alluvial plain associated with early Amerindian settlement in southeastern Brazil. Quat. Int. 2021, 601, 1–14. [Google Scholar] [CrossRef]
- Yang, M.; Gong, J.; Zhao, Y.; Wang, H.; Zhao, C.; Yang, Q.; Yin, Y.; Wang, Y.; Tian, B. Landscape pattern evolution processes of wetlands and their driving factors in the Xiong’an New Area of China. Int. J. Environ. Res. Public Health 2021, 18, 4403. [Google Scholar] [CrossRef]
- You, M.; Zou, Z.; Zhao, W.; Zhang, W.; Fu, C. Study on land use and landscape pattern change in the Huaihe River Ecological and economic zone from 2000 to 2020. Heliyon 2023, 9, e13430. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Zeng, J.; Ran, R.; Yang, B. Spatial heterogeneity and formation mechanism of eco-environmental effect of land use change in China. Geogr. Resaust. 2019, 38, 2173–2187. (In Chinese) [Google Scholar] [CrossRef]
- Quigley, T.; Haynes, R.; Hann, W. Estimating ecological integrity in the interior Columbia River basin. For. Ecol. Manag. 2001, 153, 161–178. [Google Scholar] [CrossRef]
- Dong, L.; Yang, W.; Zhang, K.; Zhen, S.; Cheng, X.; Wu, L. Study of marsh wetland landscape pattern evolution on the Zoige Plateau due to natural/human dual-effects. PeerJ 2020, 8, e9904. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zha, P.; Yu, M.; Jiang, G.; Zhang, J.; You, Q.; Xie, X. Landscape pattern evolution and its response to human disturbance in a newly metropolitan area: A case study in Jin-Yi Metropolitan Area. Land 2021, 10, 767. [Google Scholar] [CrossRef]
- Chang, G.; Zhang, W. Ecological civilization-based rethinking of large-scale immigration and land development along Shule River. J. Lanzhou Univ. Nat. Sci. 2014, 50, 405–409. (In Chinese) [Google Scholar]
- Fang, C.; Li, G.; Wang, S. Changing and differentiated urban landscape in China: Spatiotemporal patterns and driving forces. Environ. Sci. Technol. 2016, 50, 2217–2227. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, J. Evolution of landscape dynamics in the Yangtze River Delta from 2000 to 2020. J. Water Clim. Change 2022, 13, 1241–1256. [Google Scholar] [CrossRef]
- Hou, B.; Wei, C.; Liu, X.; Meng, Y.; Li, X. Assessing forest landscape stability through automatic identification of landscape pattern evolution in Shanxi Province of China. Remote Sens. 2023, 15, 545. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, H.; Yang, Z.; Huai, W.; Huang, D.; Chen, X. Landscape pattern changes of aquatic vegetation communities and their response to hydrological processes in Poyang Lake, China. Water 2024, 16, 1482. [Google Scholar] [CrossRef]
- Hill, R.; Smith, G. Land cover heterogeneity in Great Britain as identified in Land Cover Map 2000. Int. J. Remote Sens. 2005, 26, 5467–5473. [Google Scholar] [CrossRef]
- Niu, H.; Zhao, X.; Xiao, D.; Liu, M.; An, R.; Fan, L. Evolution and influencing factors of landscape pattern in the Yellow River Basin (Henan Section) due to land use changes. Water 2022, 14, 3872. [Google Scholar] [CrossRef]
- Fan, W.; Yang, X.; Cai, S.; Ou, H.; Zhou, T.; Wang, D. Land-use/cover change and driving forces in the Pan-Pearl River Basin during the period 1985–2020. Land 2024, 13, 822. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, H.; Liu, K.; Wu, Q. Research on the influence of site factors on the expansion of construction land in the Pearl River Delta, China: By using GIS and remote sensing. Int. J. Appl. Earth Obs. 2013, 21, 366–373. [Google Scholar] [CrossRef]
- Liang, J.; Li, X. Landscape patterns in Nansi Lake for 3 periods and their changes. Wetland Sci. 2017, 15, 834–843. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Huang, Q. Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas: A case study of the middle reaches of the Heihe River, China. Ecol. Indic. 2014, 46, 240–252. [Google Scholar] [CrossRef]
- Guo, M.; Zhou, N.; Cai, Y.; Zhao, W.; Lu, S.; Liu, K. Monitoring the landscape pattern dynamics and driving forces in Dongting Lake Wetland in China based on Landsat images. Water 2024, 16, 1273. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Liu, S.; Lyu, X.; Dang, D.; Dou, H.; Wang, K. Analysis of the spatiotemporal variation of landscape patterns and their driving factors in Inner Mongolia from 2000 to 2015. Land 2022, 11, 1410. [Google Scholar] [CrossRef]
- Aguiar, F.; Martins, M.; Silva, P.; Fernandes, M. Riverscapes downstream of hydropower dams: Effects of altered flows and historical land-use change. Landsc. Urban Plan. 2016, 153, 83–98. [Google Scholar] [CrossRef]
- Lupinacci, C.; da Conceiçao, F.; Simon, A.; Perez, A. Land use changes due to energy policy as a determining factor for morphological processes in fluvial systems in SAo Paulo State, Brazil. Earth Surf. Proc. Land. 2017, 42, 2402–2413. [Google Scholar] [CrossRef]
- Lu, D.; Zheng, Y.; Liu, X.; Chang, J. Changes in wetland landscape and inundation patterns in the middle and lower reaches of the Yangtze River Basin from 1990 to 2020. Ecol. Indic. 2024, 161, 111992. [Google Scholar] [CrossRef]
- Ding, C.; Huang, D.; Li, H.; Chen, X. River adjustments in response to human activities: A case study of the lower Beijiang River, China. Earth Surf. Proc. Land. 2024, 49, 887–900. [Google Scholar] [CrossRef]
- Zhong, K.; Liu, W.; Huang, J. A riverway evolution analysis based on remote sensing technique: A case study of the lower reaches of the Beijiang River. Remote Sens. Land Resour. 2006, 3, 69–73. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, Z.; Ding, C.; Huang, D.; Liu, H.; Chen, X. Analysis of the Topographic Evolution of the Lower Beijiang River and its Impact on Material Transport. China Rural Water Hydropower 2024, 7, 85–94. (In Chinese) [Google Scholar] [CrossRef]
- Hernandez-Stefanoni, J.; Ponce-Hernandez, R. Mapping the spatial variability of plant diversity in a tropical forest: Comparison of spatial interpolation methods. Environ. Monit. Assess. 2006, 117, 307–334. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, J.; Bu, Y. Quantitative analysis of spatial heterogeneity and driving forces of the thermal environment in urban built-up areas: A case study in Xi’an, China. Sustainability 2021, 13, 1870. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H. Annual assessment on the relationship between land surface temperature and six remote sensing indices using landsat data from 1988 to 2019. Geocarto Int. 2022, 37, 4292–4311. [Google Scholar] [CrossRef]
- Han, X.; Chen, X.; Feng, L. Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sens. Environ. 2015, 156, 426–437. [Google Scholar] [CrossRef]
- Sung, C. Simulation of crane habitat fragmentation in the North and South Korean border region after Korean reunification. Landsc. Urban Plan. 2015, 134, 10–18. [Google Scholar] [CrossRef]
- Wang, J.; Ran, Y.; Zhang, Y.; Cao, X.; Yang, F. Land cover and landscape pattern changes in Poyang Lake region of China in 1998–2010. Chin. J. Appl. Ecol. 2013, 24, 1085–1093. (In Chinese) [Google Scholar]
- Cui, Y.; Dong, B.; Chen, L.; Gao, X.; Cui, Y. Study on habitat suitability of overwintering cranes based on landscape pattern change—A case study of typical lake wetlands in the middle and lower reaches of the Yangtze River. Environ. Sci. Pollut. Res. 2019, 26, 14962–14975. [Google Scholar] [CrossRef]
- Zhu, Z.; Huai, W.; Yang, Z.; Li, D.; Wang, Y. Assessing habitat suitability and habitat fragmentation for endangered Siberian cranes in Poyang Lake region, China. Ecol. Indic. 2021, 125, 107594. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Wu, C.; Zhang, R.; Zhou, Y. Ecological and navigational impact of the construction and operation of the Qingyuan dam. Ecol. Indic. 2023, 154, 110563. [Google Scholar] [CrossRef]
- Tan, C.; Huang, B.; Qiu, J. Analysis of recent riverbed evolution characteristics and causes in the Shijiao section of the lower reaches of the Beijiang River. Guangdong Water Resour. Hydropower 2013, 9, 13–17. (In Chinese) [Google Scholar]
- van Maren, D.; Yang, S.; He, Q. The impact of silt trapping in large reservoirs on downstream morphology: The Yangtze River. Ocean Dynam. 2013, 63, 691–707. [Google Scholar] [CrossRef]
- Mei, X.; Dai, Z.; Du, J.; Darby, S. Mega dam-induced riverbed erosion exacerbates drought effects on river water surface elevation. Hydrol. Process. 2023, 37, e14917. [Google Scholar] [CrossRef]
- Kondziolka, J.; Nepf, H. Vegetation wakes and wake interaction shaping aquatic landscape evolution. Limnol. Oceanogr. Fluids Environ. 2014, 4, 106–119. [Google Scholar] [CrossRef]
- Yamasaki, T.; de Lima, P.; Silva, D.; Preza, C.; Janzen, J.; Nepf, H. From patch to channel scale: The evolution of emergent vegetation in a channel. Adv. Water Resour. 2019, 129, 131–145. [Google Scholar] [CrossRef]
- Syvitski, J.; Vörösmarty, C.; Kettner, A.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Ishii, Y.; Hori, K. Formation and infilling of oxbow lakes in the Ishikari lowland, northern Japan. Quat. Int. 2016, 397, 134–146. [Google Scholar] [CrossRef]
- Benjankar, R.; Egger, G.; Jorde, K.; Goodwin, P.; Glenn, N. Dynamic floodplain vegetation model development for the Kootenai River, USA. J. Environ. Manag. 2011, 92, 3058–3070. [Google Scholar] [CrossRef]
- Lan, X.; Zhou, T.; Zeng, T.; Chen, Z.; Duo, J.; Sun, J. Reservoirs alter terrestrial mammal habitat over the Indochina Peninsula. Ecol. Indic. 2024, 166, 112366. [Google Scholar] [CrossRef]
- Diodato, N.; Filizola, N.; Borrelli, P.; Panagos, P.; Bellocchi, G. The rise of climate-driven sediment discharge in the Amazonian River Basin. Atmosphere 2020, 11, 208. [Google Scholar] [CrossRef]
- Tapia-Palacios, M.; García-Suárez, O.; Sotomayor-Bonilla, J.; Silva-Magaña, M.; Pérez-Ortíz, G.; Espinosa-García, A.; Ortega-Huerta, M.; Díaz-Avalos, C.; Suzán, G.; Mazari-Hiriart, M. Abiotic and biotic changes at the basin scale in a tropical dry forest landscape after Hurricanes Jova and Patricia in Jalisco, Mexico. For. Ecol. Manag. 2018, 426, 18–26. [Google Scholar] [CrossRef]
Year | Date | Sensor Type 1 | Year | Date | Sensor Type | Year | Date | Sensor Type |
---|---|---|---|---|---|---|---|---|
1991 | 17 November | L5 | 2002 | 7 November | L7 | 2014 | 16 November | L8 |
1992 | 5 December | L5 | 2003 | 4 December | L5 | 2016 | 7 December | L8 |
1993 | 24 December | L5 | 2004 | 6 December | L5 | 2017 | 18 December | L7 |
1994 | 25 November | L5 | 2005 | 23 November | L5 | 2018 | 5 December | L7 |
1995 | 30 December | L5 | 2006 | 12 December | L5 | 2019 | 14 November | L8 |
1997 | 17 November | L5 | 2007 | 7 December | L7 | 2020 | 2 December | L8 |
1998 | 22 December | L5 | 2008 | 1 December | L5 | 2021 | 5 December | L8 |
1999 | 9 December | L5 | 2009 | 4 December | L5 | 2022 | 24 December | L8 |
2000 | 1 November | L7 | 2010 | 31 December | L7 | 2023 | 27 December | L8 |
2001 | 22 December | L7 | 2013 | 29 November | L8 |
Year | 1998 | ||||
---|---|---|---|---|---|
Vegetation | Sand | Water | Total | ||
2009 | Vegetation | 19.87 | 3.61 | 0.89 | 24.37 |
Sand | 5.04 | 6.27 | 4.53 | 15.84 | |
Water | 2.26 | 5.94 | 27.09 | 35.29 | |
Total | 27.17 | 15.82 | 32.51 | 75.50 | |
Changes from 1998 to 2009 | −2.80 | 0.02 | 2.78 |
Year | 2009 | ||||
---|---|---|---|---|---|
Vegetation | Sand | Water | Total | ||
2020 | Vegetation | 20.00 | 6.01 | 0.87 | 26.88 |
Sand | 2.23 | 5.12 | 0.95 | 8.30 | |
Water | 2.14 | 4.72 | 33.46 | 40.32 | |
Total | 24.37 | 15.85 | 35.28 | 75.50 | |
Changes from 2009 to 2020 | 2.51 | −7.55 | 5.04 |
Index | Introduction | Ecological Relevance |
---|---|---|
NP | Total number of patches of a certain land type (NP ≥ 1). | NP describes the heterogeneity of the overall landscape. |
PD | Number of patches per unit area (PD > 0, number/km2). | PD generally has a good correlation with landscape fragmentation. |
LPI | Proportion of the largest patch of a certain land type in the whole landscape (0 < LPI ≤ 100, %). | LPI reflects the dominance of patches. |
MPS | Area of a certain land type divided by the number of the patches (MPS > 0, hm2). | MPS reflects the fragmentation degree of different landscapes and indicates the differences among different types of landscapes. |
PAFRAC | PAFRAC equals 2 divided by the slope of the regression line, which is obtained by regressing the logarithm of patch area (m2) against the logarithm of patch perimeter (m) (1 ≤ PAFRAC ≤ 2). | PAFRAC reflects the complexity of landscape shape, and higher values usually indicate more convoluted shapes. |
AI | Number of like adjacencies involving the corresponding class, divided by the maximum possible number of like adjacencies involving the corresponding class (0 < AI ≤ 100, %). | AI reflects the connectivity and aggregation degree between landscape patches. A larger AI value indicates a higher aggregation degree. |
Land-Cover Type | Landscape Index | X1 1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Vegetation | AREA | 0.64 | 0.65 | 0.71 | 0.69 | 0.73 | 0.66 | 0.72 | 0.65 | 0.67 | 0.71 |
PD | 0.63 | 0.64 | 0.65 | 0.67 | 0.68 | 0.68 | 0.63 | 0.69 | 0.77 | 0.78 | |
LPI | 0.74 | 0.75 | 0.64 | 0.66 | 0.68 | 0.70 | 0.66 | 0.66 | 0.57 | 0.73 | |
MPS | 0.59 | 0.62 | 0.58 | 0.59 | 0.59 | 0.77 | 0.67 | 0.70 | 0.65 | 0.62 | |
PAFRAC | 0.56 | 0.58 | 0.62 | 0.60 | 0.62 | 0.72 | 0.70 | 0.66 | 0.69 | 0.62 | |
AI | 0.64 | 0.66 | 0.65 | 0.64 | 0.65 | 0.62 | 0.79 | 0.55 | 0.55 | 0.66 | |
Sand | AREA | 0.70 | 0.69 | 0.64 | 0.63 | 0.63 | 0.67 | 0.69 | 0.69 | 0.60 | 0.76 |
PD | 0.47 | 0.47 | 0.57 | 0.57 | 0.61 | 0.65 | 0.57 | 0.67 | 0.66 | 0.54 | |
LPI | 0.54 | 0.54 | 0.55 | 0.58 | 0.59 | 0.66 | 0.56 | 0.70 | 0.65 | 0.66 | |
MPS | 0.77 | 0.78 | 0.66 | 0.65 | 0.63 | 0.63 | 0.67 | 0.63 | 0.66 | 0.81 | |
PAFRAC | 0.54 | 0.53 | 0.66 | 0.64 | 0.67 | 0.71 | 0.69 | 0.67 | 0.69 | 0.68 | |
AI | 0.74 | 0.72 | 0.62 | 0.65 | 0.63 | 0.56 | 0.65 | 0.57 | 0.55 | 0.70 | |
Water | AREA | 0.52 | 0.51 | 0.68 | 0.60 | 0.64 | 0.67 | 0.67 | 0.67 | 0.68 | 0.65 |
PD | 0.64 | 0.65 | 0.66 | 0.60 | 0.60 | 0.64 | 0.76 | 0.59 | 0.61 | 0.64 | |
LPI | 0.50 | 0.49 | 0.65 | 0.60 | 0.63 | 0.68 | 0.64 | 0.66 | 0.65 | 0.63 | |
MPS | 0.49 | 0.49 | 0.59 | 0.62 | 0.63 | 0.61 | 0.53 | 0.65 | 0.65 | 0.59 | |
PAFRAC | 0.63 | 0.62 | 0.61 | 0.68 | 0.65 | 0.61 | 0.58 | 0.63 | 0.63 | 0.68 | |
AI | 0.47 | 0.47 | 0.60 | 0.55 | 0.57 | 0.64 | 0.59 | 0.66 | 0.62 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Xiao, Y.; Wang, H.; Huang, D.; Liu, H.; Chen, X.; Ding, C. Landscape Pattern Evolution and Driving Forces in the Downstream River of a Reservoir: A Case Study of the Lower Beijiang River in China. Water 2024, 16, 2875. https://doi.org/10.3390/w16202875
Zhu Z, Xiao Y, Wang H, Huang D, Liu H, Chen X, Ding C. Landscape Pattern Evolution and Driving Forces in the Downstream River of a Reservoir: A Case Study of the Lower Beijiang River in China. Water. 2024; 16(20):2875. https://doi.org/10.3390/w16202875
Chicago/Turabian StyleZhu, Zhengtao, Yizhou Xiao, Huilin Wang, Dong Huang, Huamei Liu, Xinchi Chen, and Can Ding. 2024. "Landscape Pattern Evolution and Driving Forces in the Downstream River of a Reservoir: A Case Study of the Lower Beijiang River in China" Water 16, no. 20: 2875. https://doi.org/10.3390/w16202875
APA StyleZhu, Z., Xiao, Y., Wang, H., Huang, D., Liu, H., Chen, X., & Ding, C. (2024). Landscape Pattern Evolution and Driving Forces in the Downstream River of a Reservoir: A Case Study of the Lower Beijiang River in China. Water, 16(20), 2875. https://doi.org/10.3390/w16202875