Evidential Neural Network Model for Groundwater Salinization Simulation: A First Application in Hydro-Environmental Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Proposed Methodology
2.3. Artificial Neural Network (ANN)
2.4. Generalized Regression Neural Network (GRNN)
2.5. EVNN Model
2.6. Robust Linear Regression (RLR)
2.7. Model Validation and Evaluation Metrics
2.8. Sensitivity Test
3. Results and Discussion
Exploratory and Dependency
4. Conclusions
- i.
- The correlation matrix analysis demonstrates that there is strong positive correlation between the target (EC) and Cl, Na, T.H and Mg. Also, NO3, SO4, Ca and SAR illustrate a moderate positive correlation with EC. RSC demonstrates a moderate negative connection with the target. Furthermore, F and K showed a weak positive relation with the target variable, while a weak negative correlation was demonstrated by gwl, pH and CO3 with the target variable.
- ii.
- Three different modeling schema groups in the form of G1 (gwl, pH, CO3, HCO3, Cl, F, NO3, SO4, Na, K, Ca, Mg, T.H, SAR and RSC), G2 (Cl, T.H, SO4, Na, Ca, Mg and RSC) and G3 (gwl, pH, CO3, HCO3, F, NO3, K and SAR) were arrived at based on the sensitivity analysis results.
- iii.
- The obtained quantitative results illustrate that the G2 input grouping depicts a substantial performance compared to G1 and G3 for groundwater salinization estimation using neurocomputing techniques (EVNN, ANN and GRNN).
- iv.
- Nevertheless, for the RLR classical model G1 depicts the highest performance accuracy in both the calibration and validation phases.
- v.
- Both EVNN-G1 and EVNN-G2 present excellent performance metrics (RMSE ≈ 0, MAPE = 0, PCC = 1, R2 = 1), indicating a perfect prediction accuracy, while EVNN-G3 demonstrates a slightly lower performance than EVNN-G1 and EVNN-G2, but is still highly accurate (RMSE = 10.5351, MAPE = 0.1129, PCC = 0.9999, R2 = 0.9999).
- vi.
- Overall, EVNN as a cutting-edge neurocomputing technique demonstrates the highest performance accuracy in both the calibration and validation phases, respectively, and has the capability of boosting the performance as against the RLR classical method up to 46% and 46.4% in both the calibration and validation stages, respectively.
- vii.
- Lastly, the quantitative predictive performance of the neurocomputing techniques together with the classical RLR were demonstrated using various state-of-the-art visualizations, including a contour plot embedded with a response plot, a bump plot and a Taylor diagram.
- viii.
- Finally, the current study equally indicated that the performance obtained from the neurocomputing techniques can be enhanced using various state-of-the-art metaheuristic algorithms such as BBO, HHO, etc.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirzavand, M.; Ghasemieh, H.; Sadatinejad, S.J.; Bagheri, R. An overview on source, mechanism and investigation approaches in groundwater salinization studies. Int. J. Environ. Sci. Technol. 2020, 17, 2463–2476. [Google Scholar] [CrossRef]
- Salama, R.B.; Otto, C.J.; Fitzpatrick, R.W. Contributions of groundwater conditions to soil and water salinization. Hydrogeol. J. 1999, 7, 46–64. [Google Scholar] [CrossRef]
- Faye, S.; Maloszewski, P.; Stichler, W.; Trimborn, P.; Faye, S.C.; Gaye, C.B. Groundwater salinization in the Saloum (Senegal) delta aquifer: Minor elements and isotopic indicators. Sci. Total Environ. 2005, 343, 243–259. [Google Scholar] [CrossRef]
- Yassin, M.A.; Usman, A.G.; Abba, S.I.; Uzun, D.; Aljundi, I.H. Intelligent learning algorithms integrated with feature engineering for sustainable groundwater salinization modelling: Eastern Province of Saudi Arabia. Results Eng. 2023, 20, 101434. [Google Scholar] [CrossRef]
- Essink, G.H.P.O. Improving fresh groundwater supply F problems and solutions. Ocean Coast. Manag. 2018, 44, 429–449. [Google Scholar] [CrossRef]
- Bennetts, D.A.; Webb, J.A.; Stone, D.J.M.; Hill, D.M. Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J. Hydrol. 2006, 323, 178–192. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Barreteau, O.; Hunt, R.J.; Rinaudo, J.-D.; Ross, A. Integrated Groundwater Management; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Bouksila, F.; Bahri, A.; Berndtsson, R.; Persson, M.; Rozema, J.; Van Der Zee, S.E.A.T.M. Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. Environ. Exp. Bot. 2010, 92, 176–185. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Qian, H. Assessment of soil salinization based on a low-cost method and its influencing factors in a semi-arid agricultural area, northwest China. Environ. Earth Sci. 2014, 71, 3465–3475. [Google Scholar] [CrossRef]
- Besser, H.; Mokadem, N.; Redhouania, B.; Rhimi, N. GIS-based evaluation of groundwater quality and estimation of soil salinization and land degradation risks in an arid Mediterranean site (SW Tunisia). Arab. J. Geosci. 2017, 10, 350. [Google Scholar] [CrossRef]
- Gkiougkis, I.; Kallioras, A.; Pliakas, F.; Pechtelidis, A.; Diamantis, V.; Diamantis, I.; Ziogas, A.; Dafnis, I. Assessment of soil salinization at the eastern Nestos River Delta, N.E. Greece Catena Assessment of soil salinization at the eastern Nestos River Delta. CATENA 2015, 128, 238–251. [Google Scholar] [CrossRef]
- Schoups, G.; Hopmans, J.W.; Young, C.A.; Vrugt, J.A.; Wallender, W.W.; Tanji, K.K.; Panday, S. Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proc. Natl. Acad. Sci. USA 2005, 102, 15352–15356. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.; Kinzelbach, W.; Li, W.P.; Dong, X.G. Sustainable irrigation in the Yanqi basin, China. WIT Trans. Ecol. Environ. 2006, 96, 115–125. [Google Scholar] [CrossRef]
- Yakirevich, A.; Weisbrod, N.; Kuznetsov, M.; Villarreyes, C.A.R.; Benavent, I.; Chavez, A.M.; Ferrando, D. Modeling the impact of solute recycling on groundwater salinization under irrigated lands: A study of the Alto Piura aquifer, Peru. J. Hydrol. 2013, 482, 25–39. [Google Scholar] [CrossRef]
- Han, D. Hydrochemical and isotopic evidences for deciphering conceptual model of groundwater salinization processes in a coastal plain, north China. Hydrol. Earth Syst. Sci. Discuss. 2017. [Google Scholar] [CrossRef]
- Motevalli, A.; Pourghasemi, H.R.; Hashemi, H.; Gholami, V. 25—Assessing the Vulnerability of Groundwater to Salinization Using GIS-Based Data-Mining Techniques in a Coastal Aquifer. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier, Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Nair, I.S.; Brindha, K.; Elango, L. Assessing the origin and processes controlling groundwater salinization in coastal aquifers through integrated hydrochemical, isotopic and hydrogeochemical modelling techniques. Hydrol. Sci. J. 2021, 66, 152–164. [Google Scholar] [CrossRef]
- Le Vo, P.; Tran, D.A.; Pham, T.L.; Le Thi Thu, H.; Viet, N.N. Advances in Research on Water Resources and Environmental Systems; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Zaresefat, M. Revolutionizing Groundwater Management with Hybrid AI Models: A Practical Review. Water 2023, 15, 1750. [Google Scholar] [CrossRef]
- Bayatzadeh Fard, Z.; Ghadimi, F.; Fattahi, H. Use of artificial intelligence techniques to predict distribution of heavy metals in groundwater of Lakan lead-zinc mine in Iran. J. Min. Environ. 2017, 8, 35–48. [Google Scholar] [CrossRef]
- Zare, M.; Koch, M. Title: Department of Geohydraulics and Engineering Hydrology, University of Kassel. J. Hydro-Environment Res. 2017, 18, 63–76. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Tsangaratos, P.; Shahabi, H.; Ilia, I. Applied sciences Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models. Appl. Sci. 2020, 10, 425. [Google Scholar] [CrossRef]
- Band, S.S.; Janizadeh, S.; Pal, S.C.; Chowdhuri, I.; Siabi, Z.; Norouzi, A.; Melesse, A.M.; Shokri, M.; Mosavi, A. Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater. Sensors 2020, 20, 5763. [Google Scholar] [CrossRef]
- Nosair, A.M.; Shams, M.Y.; AbouElmagd, L.M.; Hassanein, A.E.; Fryar, A.E.; Abu Salem, H.S. Predictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: A case study of the Nile Delta aquifer, Egypt. Environ. Sci. Pollut. Res. 2022, 29, 9318–9340. [Google Scholar] [CrossRef] [PubMed]
- Barmpalexis, P.; Karagianni, A.; Karasavvaides, G.; Kachrimanis, K. Comparison of multi-linear regression, particle swarm optimization artificial neural networks and genetic programming in the development of mini-tablets. Int. J. Pharm. 2018, 551, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, I.A.; Muhammad, U.J.; Kawu, S.J.; Magaji, M.M.; Jibril, M.M. Machine Learning-Based Wind Speed Estimation for Renewable Energy Optimization in Urban Environments: A Case Study in Kano State, Nigeria. Adv. J. Sci. Technol. Eng. 2024, 4, 35–51. [Google Scholar] [CrossRef]
- Jibril, M.M.; Malami, S.I.; Muhammad, U.J.; Bashir, A.; Usman, A.G.; Salami, B.A.; Rotimi, A.; Ibrahim, A.G.; Abba, S.I. High strength concrete compressive strength prediction using an evolutionary computational intelligence algorithm. Asian J. Civ. Eng. 2023, 24, 3727–3741. [Google Scholar] [CrossRef]
- Jibril, M.M.; Zayyan, M.A.; Malami, S.I.; Usman, A.G.; Salami, B.A.; Rotimi, A.; Abba, S.I. Applications in Engineering Science Implementation of nonlinear computing models and classical regression for predicting compressive strength of high-performance concrete. Appl. Eng. Sci. 2023, 15, 100133. [Google Scholar] [CrossRef]
- Haruna, S.I.; Malami, S.I.; Adamu, M.; Usman, A.G.; Farouk, A.I.; Ali, S.I.A.; Abba, S.I. Compressive Strength of Self-Compacting Concrete Modified with Rice Husk Ash and Calcium Carbide Waste Modeling: A Feasibility of Emerging Emotional Intelligent Model (EANN) Versus Traditional FFNN. Arab. J. Sci. Eng. 2021, 46, 11207–11222. [Google Scholar] [CrossRef]
- Usman, J.; Salami, B.A.; Gbadamosi, A.; Adamu, H.; Usman, A.G.; Benaafi, M.; Abba, S.I.; Othman, M.H.D.; Aljundi, I.H. Intelligent optimization for modelling superhydrophobic ceramic membrane oil flux and oil-water separation efficiency: Evidence from wastewater treatment and experimental laboratory. Chemosphere 2023, 331, 138726. [Google Scholar] [CrossRef]
- Malami, S.I.; Musa, A.A.; Haruna, S.I.; Aliyu, U.U.; Usman, A.G.; Abdurrahman, M.I.; Bashir, A.; Abba, S.I. Implementation of soft-computing models for prediction of flexural strength of pervious concrete hybridized with rice husk ash and calcium carbide waste. Model. Earth Syst. Environ. 2021, 8, 1933–1947. [Google Scholar] [CrossRef]
- Usman, A.G.; Ahmad, M.H.; Danraka, N.; Abba, S.I. The effect of ethanolic leaves extract of Hymenodictyon floribundun on inflammatory biomarkers: A data-driven approach. Bull. Natl. Res. Cent. 2021, 45, 128. [Google Scholar] [CrossRef]
- Uzun Ozsahin, D.U.; Precious Onakpojeruo, E.P.; Bartholomew Duwa, B.; Usman, A.G.; Isah Abba, S.I.; Uzun, B. COVID-19 Prediction Using Black-Box Based Pearson Correlation Approach. Diagnostics 2023, 13, 1264. [Google Scholar] [CrossRef]
- Panda, B.N.; Bahubalendruni, M.V.A.R.; Biswal, B.B. A general regression neural network approach for the evaluation of compressive strength of FDM prototypes. Neural Comput. Appl. 2015, 26, 1129–1136. [Google Scholar] [CrossRef]
- Wang, S.F.; Tang, Y.; Li, X.B.; Du, K. Analyses and predictions of rock cuttabilities under different confining stresses and rock properties based on rock indentation tests by conical pick. Trans. Nonferrous Met. Soc. China 2021, 31, 1766–1783. [Google Scholar] [CrossRef]
- Yang, A.M.; Zhuansun, Y.X. Prediction of compressive strength based on visualization of pellet microstructure data. J. Iron Steel Res. Int. 2021, 28, 651–660. [Google Scholar] [CrossRef]
- Alam, M.S.; Gazder, U. Shear strength prediction of FRP reinforced concrete members using generalized regression neural network. Neural Comput. Appl. 2020, 32, 6151–6158. [Google Scholar] [CrossRef]
- Den, T. An Evidential Neural Network Model for regression based on random fuzzy numbers. In International Conference on Belief Functions; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Denœux, T. Quantifying Prediction Uncertainty in Regression Using Random Fuzzy Sets: The ENNreg Model. IEEE Trans. Fuzzy Syst. 2023, 31, 3690–3699. [Google Scholar] [CrossRef]
- Denœux, T. Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: General framework and practical models. Fuzzy Sets Syst. 2023, 453, 1–36. [Google Scholar] [CrossRef]
- Mati, S.; Radulescu, M.; Saqib, N.; Samour, A.; Ismael, G.Y.; Aliyu, N. Incorporating Russo-Ukrainian war in Brent crude oil price forecasting: A comparative analysis of ARIMA, TARMA and ENNReg models. Heliyon 2023, 9, e21439. [Google Scholar] [CrossRef]
- Varin, S. Comparing the Predictive Performance of Ols and 7 Robust Linear Regression Estimators on a Real and Simulated Datasets. Int. J. Eng. Appl. Sci. Technol. 2021, 5, 9–23. [Google Scholar] [CrossRef]
- Jibril, M.M.; Malami, S.I.; Jibrin, H.B.; Muhammad, U.J.; Duhu, M.A.; Usman, A.G.; Ibrahim, A.G.; Ozsahin, D.U.; Lawal, Z.K.; Abba, S.I. New random intelligent chemometric techniques for sustainable geopolymer concrete: Low-energy and carbon-footprint initiatives. Asian J. Civ. Eng. 2023, 25, 2287–2305. [Google Scholar] [CrossRef]
- Yu, C.; Yao, W. Robust Linear Regression: A Review and Comparison. Commun. Stat.-Simul. Comput. 2017, 46, 6261–6282. [Google Scholar] [CrossRef]
- Kiiza, C.; Pan, S.Q.; Bockelmann-Evans, B.; Babatunde, A. Predicting pollutant removal in constructed wetlands using artificial neural networks (ANNs). Water Sci. Eng. 2020, 13, 14–23. [Google Scholar] [CrossRef]
- Abba, S.I.; Benaafi, M.; Usman, A.G.; Aljundi, I.H. Sandstone groundwater salinization modelling using physicochemical variables in Southern Saudi Arabia: Application of novel data intelligent algorithms. Ain Shams Eng. J. 2023, 14, 101894. [Google Scholar] [CrossRef]
- Abba, S.I.; Benaafi, M.; Usman, A.G.; Aljundi, I.H. Inverse groundwater salinization modeling in a sandstone’s aquifer using stand-alone models with an improved non-linear ensemble machine learning technique. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 8162–8175. [Google Scholar] [CrossRef]
- Sahour, H.; Gholami, V.; Vazifedan, M. A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer. J. Hydrol. 2020, 591, 125–321. [Google Scholar] [CrossRef]
Name | Formula | Range |
---|---|---|
PCC | PCC= | (−1 < PCC < 1) |
R2 | (0 < R2 < 1) | |
MSE | (0 < MSE < ∞) | |
RMSE | (0 < RMSE < ∞) |
Parameters | RMSE | Ranking |
---|---|---|
gwl | 989.04 | 13 |
pH | 953.06 | 11 |
CO3 | 1010.48 | 14 |
HCO3 | 822.83 | 10 |
Cl | 336.36 | 1 |
F | 978.91 | 12 |
NO3 | 763.08 | 8 |
SO4 | 622.97 | 6 |
Na | 514.33 | 3 |
K | 6933.00 | 15 |
Ca | 730.85 | 7 |
Mg | 614.09 | 5 |
T.H | 483.94 | 2 |
SAR | 814.66 | 9 |
RSC | 571.45 | 4 |
Calibration | ||||
---|---|---|---|---|
R2 | PC | MSE | RMSE | |
EVNN-G1 | 1.000 | 1.000 | 5.851 × 10−8 | 0.000242 |
EVNN-G2 | 1.000 | 1.000 | 7.463 × 10−11 | 8.64 × 10−6 |
EVNN-G3 | 1.000 | 1.000 | 152.401 | 12.345 |
ANN-G1 | 0.981 | 0.990 | 26,666.788 | 163.300 |
ANN-G2 | 0.999 | 1.000 | 109.209 | 10.450 |
ANN-G3 | 0.605 | 0.778 | 541,552.264 | 735.902 |
GRNN-G1 | 0.989 | 0.994 | 15,572.542 | 124.790 |
GRNN-G2 | 0.994 | 0.997 | 7713.221 | 87.825 |
GRNN-G3 | 0.804 | 0.896 | 269,301.500 | 518.943 |
RLR-G1 | 0.996 | 0.998 | 4853.931 | 69.670 |
RLR-G2 | 0.991 | 0.996 | 12,300.639 | 110.908 |
RLR-G3 | 0.538 | 0.733 | 634,149.997 | 796.335 |
Validation | ||||
EVNN-G1 | 1.000 | 1.000 | 6.811 × 10−8 | 0.000419 |
EVNN-G2 | 1.000 | 1.000 | 8.469 × 10−11 | 8.64 × 10−6 |
EVNN-G3 | 1.000 | 1.000 | 178.401 | 15.080 |
ANN-G1 | 0.979 | 0.988 | 27,766.788 | 189.300 |
ANN-G2 | 0.997 | 0.998 | 119.209 | 13.450 |
ANN-G3 | 0.603 | 0.776 | 546,115.264 | 798.902 |
GRNN-G1 | 0.987 | 0.992 | 20,135.542 | 187.790 |
GRNN-G2 | 0.992 | 0.995 | 12,276.221 | 150.825 |
GRNN-G3 | 0.802 | 0.894 | 273,864.500 | 581.943 |
RLR-G1 | 0.994 | 0.996 | 9416.931 | 132.670 |
RLR-G2 | 0.989 | 0.994 | 16,863.639 | 173.908 |
RLR-G3 | 0.536 | 0.731 | 638,712.997 | 859.335 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, A.G.; Mati, S.; Jibril, M.M.; Usman, J.; Shah, S.M.H.; Abba, S.I.; Naganna, S.R. Evidential Neural Network Model for Groundwater Salinization Simulation: A First Application in Hydro-Environmental Engineering. Water 2024, 16, 2873. https://doi.org/10.3390/w16202873
Usman AG, Mati S, Jibril MM, Usman J, Shah SMH, Abba SI, Naganna SR. Evidential Neural Network Model for Groundwater Salinization Simulation: A First Application in Hydro-Environmental Engineering. Water. 2024; 16(20):2873. https://doi.org/10.3390/w16202873
Chicago/Turabian StyleUsman, Abdullahi G., Sagiru Mati, Mahmud M. Jibril, Jamilu Usman, Syed Muzzamil Hussain Shah, Sani I. Abba, and Sujay Raghavendra Naganna. 2024. "Evidential Neural Network Model for Groundwater Salinization Simulation: A First Application in Hydro-Environmental Engineering" Water 16, no. 20: 2873. https://doi.org/10.3390/w16202873
APA StyleUsman, A. G., Mati, S., Jibril, M. M., Usman, J., Shah, S. M. H., Abba, S. I., & Naganna, S. R. (2024). Evidential Neural Network Model for Groundwater Salinization Simulation: A First Application in Hydro-Environmental Engineering. Water, 16(20), 2873. https://doi.org/10.3390/w16202873