Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Description of the Study Area
2.2. Collection of Data, Analysis, and Calculation
2.3. Suitability Indices for Irrigation
2.4. Irrigation Water Quality Index (IWQI)
2.5. Extreme Gradient Boosting (XGBoost) Algorithm
- Gradient Boosting: XGBoost is a gradient boosting algorithm, which means it combines multiple decision trees to create a stronger predictive model.
- Decision Trees as Base Learners: Decision trees are used as the base or “weak” learners in XGBoost. These trees are trained to minimize a specified loss function (e.g., mean squared error for regression or log-loss for classification).
- Iterative Training: XGBoost iteratively adds trees to the model. It starts with an initial prediction (e.g., the mean of the target variable) and then fits a tree to the residuals (the differences between predictions and actual values).
- Regularization: XGBoost includes regularization techniques (L1 and L2 regularization) to control overfitting and enhance model generalization.
- Ensemble Learning: The predictions from multiple trees are combined to create the final model. Each new tree is weighted and added to the previous predictions.
- Parallel and Distributed Computing: XGBoost is designed for efficiency and can leverage parallel and distributed computing to handle large datasets and complex models.
- Feature Importance: XGBoost provides feature importance scores, helping identify the most influential features in the model’s decisions.
- Hyperparameter Tuning: To optimize model performance, users can fine-tune hyperparameters like learning rate, tree depth, and subsampling.
2.6. Support Vector Regression (SVR) Algorithm
2.7. K-Nearest Neighbours (KNN) Algorithm
2.8. Performance Criteria
3. Results
3.1. Descriptive Statistics of Physico-Chemical Parameters of Irrigation Water
3.2. Irrigation Water Quality Index Assessments
3.3. Machine Learning Analysis and Modelling
- -
- Model 1: Ca2+;
- -
- Model 2: Ca2+, and Mg2+;
- -
- Model 3: Ca2+, Mg2+, and Na+;
- -
- Model 4: Ca2+, Mg2+, Na+, and K+;
- -
- Model 5: Ca2+, Mg2+, Na+, K+, and Cl−;
- -
- Model 6: Ca2+, Mg2+, Na+, K+, Cl−, and SO42−;
- -
- Model 7: Ca2+, Mg2+, Na+, K+, Cl−, SO42−, and HCO3−;
- -
- Model 8: Ca2+, Mg2+, Na+, K+, Cl−, SO42−, HCO3−, and NO3−;
- -
- Model 9: Ca2+, Mg2+, Na+, K+, Cl−, SO42−, HCO3−, NO3−, and EC;
- -
- Model 10: Ca2+, Mg2+, Na+, K+, Cl−, SO42−, HCO3−, NO3−, EC, and Mineralisation;
- -
- Model 11: Ca2+, Mg2+, Na+, K+, Cl−, SO4−−, HCO3−, NO3−, EC, Mineralisation, and PH.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleeson, T.; Alley, W.M.; Allen, D.M.; Sophocleous, M.A.; Zhou, Y.; Taniguchi, M.; VanderSteen, J. Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively. Groundwater 2012, 50, 19–26. [Google Scholar] [CrossRef]
- Laube, W.; Schraven, B.; Awo, M. Smallholder adaptation to climate change: Dynamics and limits in Northern Ghana. Clim. Chang. 2012, 111, 753–774. [Google Scholar] [CrossRef]
- Maja, M.M.; Ayano, S.F. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Syst. Environ. 2021, 5, 271–283. [Google Scholar] [CrossRef]
- Xanke, J.; Liesch, T. Quantification and possible causes of declining groundwater resources in the Euro-Mediterranean region from 2003 to 2020. Hydrogeol. J. 2022, 30, 379–400. [Google Scholar] [CrossRef]
- Li, Q.; Lu, L.; Zhao, Q.; Hu, S. Impact of Inorganic Solutes’ Release in Groundwater during Oil Shale In Situ Exploitation. Water 2023, 15, 172. [Google Scholar] [CrossRef]
- Molajou, A.; Afshar, A.; Khosravi, M.; Soleimanian, E.; Vahabzadeh, M.; Variani, H.A. A new paradigm of water, food, and energy nexus. Environ. Sci. Pollut. Res. 2023, 30, 107487–107497. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The water footprint of global food production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- Tian, H.; Huang, N.; Niu, Z.; Qin, Y.; Pei, J.; Wang, J. Mapping Winter Crops in China with Multi-Source Satellite Imagery and Phenology-Based Algorithm. Remote Sens. 2019, 11, 820. [Google Scholar] [CrossRef]
- Abobatta, W. Impact of hydrogel polymer in agricultural sector. Adv. Agric. Environ. Sci. Open Access 2018, 1, 59–64. [Google Scholar] [CrossRef]
- Gerten, D.; Heck, V.; Jägermeyr, J.; Bodirsky, B.L.; Fetzer, I.; Jalava, M.; Kummu, M.; Lucht, W.; Rockström, J.; Schaphoff, S. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 2020, 3, 200–208. [Google Scholar] [CrossRef]
- Wang, X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- Abdessamed, D.; Jodar-Abellan, A.; Ghoneim, S.S.M.; Almaliki, A.; Hussein, E.E.; Pardo, M.Á. Groundwater quality assessment for sustainable human consumption in arid areas based on GIS and water quality index in the watershed of Ain Sefra (SW of Algeria). Environ. Earth Sci. 2023, 82, 510. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). AQUASTAT—FAO’s Global Information System on Water and Agriculture. Available online: https://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/irrigation-by-country/country/DZA (accessed on 16 October 2023).
- Amichi, H.; Bouarfa, S.; Kuper, M.; Ducourtieux, O.; Imache, A.; Fusillier, J.L.; Bazin, G.; Hartani, T.; Chehat, F. How does unequal access to groundwater contribute to marginalization of small farmers? The case of public lands in Algeria. Irrig. Drain. 2012, 61, 34–44. [Google Scholar] [CrossRef]
- Hounslow, A.W. Water Quality Data: Analysis and Interpretation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Zaman, M.; Shahid, S.A.; Heng, L. Irrigation water quality. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Berlin/Heidelberg, Germany, 2018; pp. 113–131. [Google Scholar]
- Turdaliev, A.; Darmonov, D.Y.; Teshaboyev, N.; Saminov, A.; Abdurakhmonova, M. Influence of irrigation with salty water on the composition of absorbed bases of hydromorphic structure of soil. IOP Conf. Ser. Earth Environ. Sci. 2022, 1068, 012047. [Google Scholar] [CrossRef]
- Tlili-Zrelli, B.; Hamzaoui-Azaza, F.; Gueddari, M.; Bouhlila, R. Geochemistry and quality assessment of groundwater using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (Northeastern Tunisia). Arab. J. Geosci. 2013, 6, 3545–3561. [Google Scholar] [CrossRef]
- Nishanthiny, S.C.; Thushyanthy, M.; Barathithasan, T.; Saravanan, S. Irrigation water quality based on hydro chemical analysis, Jaffna, Sri Lanka. Am.-Eurasian J. Agric. Environ. Sci. 2010, 7, 100–102. [Google Scholar]
- Cymes, I.; Glińska-Lewczuk, K. The use of water quality indices (WQI and SAR) for multipurpose assessment of water in dam reservoirs. J. Elem. 2016, 21, 1211–1224. [Google Scholar]
- Chaganti, V.N.; Crohn, D.M.; Šimůnek, J. Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water. Agric. Water Manag. 2015, 158, 255–265. [Google Scholar] [CrossRef]
- Rengasamy, P. Irrigation water quality and soil structural stability: A perspective with some new insights. Agronomy 2018, 8, 72. [Google Scholar] [CrossRef]
- Misaghi, F.; Delgosha, F.; Razzaghmanesh, M.; Myers, B. Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River. Sci. Total Environ. 2017, 589, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Koklu, R.; Sengorur, B.; Topal, B. Water quality assessment using multivariate statistical methods—A case study: Melen River System (Turkey). Water Resour. Manag. 2010, 24, 959–978. [Google Scholar] [CrossRef]
- Zhang, B.; Song, X.; Zhang, Y.; Han, D.; Tang, C.; Yu, Y.; Ma, Y. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, M.; Praveena, S.; Chidambaram, S.; Nagarajan, R.; Elayaraja, A. Evaluation of water quality pollution indices for heavy metal contamination monitoring: A case study from Curtin Lake, Miri City, East Malaysia. Environ. Earth Sci. 2012, 67, 1987–2001. [Google Scholar] [CrossRef]
- Barakat, A.; El Baghdadi, M.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2016, 4, 284–292. [Google Scholar] [CrossRef]
- Eaton, F.M. Significance of carbonates in irrigation waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Doneen, L. Notes on Water Quality in Agriculture; Published as a Water Sciences and Engineering; Department of Water Sciences and Engineering, University of California: Davis, CA, USA, 1964; Volume 4001. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; O’Connor, M.F. A water quality index—Crashing the psychological barrier. In Indicators of Environmental Quality; Springer: Berlin/Heidelberg, Germany, 1972; pp. 173–182. [Google Scholar]
- Horton, R.K. An index number system for rating water quality. J. Water Pollut. Control. Fed. 1965, 37, 300–306. [Google Scholar]
- Meireles, A.C.M.; Andrade, E.M.d.; Chaves, L.C.G.; Frischkorn, H.; Crisostomo, L.A. A new proposal of the classification of irrigation water. Rev. Ciência Agronômica 2010, 41, 349–357. [Google Scholar] [CrossRef]
- Şener, Ş.; Varol, S.; Şener, E. Evaluation of sustainable groundwater utilization using index methods (WQI and IWQI), multivariate analysis, and GIS: The case of Akşehir District (Konya/Turkey). Environ. Sci. Pollut. Res. 2021, 28, 47991–48010. [Google Scholar] [CrossRef]
- Batarseh, M.; Imreizeeq, E.; Tilev, S.; Al Alaween, M.; Suleiman, W.; Al Remeithi, A.M.; Al Tamimi, M.K.; Al Alawneh, M. Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) and GIS-Zoning maps: Case study from Abu Dhabi Emirate, UAE. Groundw. Sustain. Dev. 2021, 14, 100611. [Google Scholar] [CrossRef]
- El Bilali, A.; Taleb, A. Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment. J. Saudi Soc. Agric. Sci. 2020, 19, 439–451. [Google Scholar] [CrossRef]
- Moussaoui, T.; Derdour, A.; Hosni, A.; Ballesta-de los Santos, M.; Legua, P.; Pardo-Picazo, M.Á. Assessing the Quality of Treated Wastewater for Irrigation: A Case Study of Ain Sefra Wastewater Treatment Plant. Sustainability 2023, 15, 11133. [Google Scholar] [CrossRef]
- Abdessamed, D.; Abderrazak, B. Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: Case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environ. Earth Sci. 2019, 78, 586. [Google Scholar] [CrossRef]
- Derdour, A.; Abdo, H.G.; Almohamad, H.; Alodah, A.; Al Dughairi, A.A.; Ghoneim, S.S.; Ali, E. Prediction of Groundwater Water Quality Index Using Classification Techniques in Arid Environments. Sustainability 2023, 15, 9687. [Google Scholar] [CrossRef]
- Derdour, A.; Bouarfa, S.; Kaid, N.; Baili, J.; Al-Bahrani, M.; Menni, Y.; Ahmad, H. Assessment of the impacts of climate change on drought in an arid area using drought indices and Landsat remote sensing data. Int. J. Low-Carbon Technol. 2022, 17, 1459–1469. [Google Scholar] [CrossRef]
- Bouarfa, S.; Derdour, A.; Okkacha, Y.; Almaliki, A.H.; Jodar-Abellan, A.; Hussein, E.E. Sedimentological investigation of the potential origin and provenance of sand deposits in an arid area: A case study of the Ksour Mountains Region in Algeria. Arab. J. Geosci. 2022, 15, 1460. [Google Scholar] [CrossRef]
- Derdour, A.; Bouanani, A.; Babahamed, K. Modelling rainfall runoff relations using HEC-HMS in a semi-arid region: Case study in Ain Sefra watershed, Ksour Mountains (SW Algeria). J. Water Land Dev. 2018, 36, 45–55. [Google Scholar] [CrossRef]
- Derdour, A.; Benkaddour, Y.; Bendahou, B. Application of remote sensing and GIS to assess groundwater potential in the transboundary watershed of the Chott-El-Gharbi (Algerian–Moroccan border). Appl. Water Sci. 2022, 12, 136. [Google Scholar] [CrossRef]
- Lachache, S.; Derdour, A.; Maazouzi, I.; Amroune, A.; Guastaldi, E.; Merzougui, T. Statistical Approach Of Groundwater Quality Assessment At Naama Region, South-West Algeria. LARHYSS J. 2023, 55, 125–145. [Google Scholar]
- Khodapanah, L.; Sulaiman, W.; Khodapanah, N. Groundwater quality assessment for different purposes in Eshtehard District, Tehran, Iran. Eur. J. Sci. Res. 2009, 36, 543–553. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; LWW: Washington, DC, USA, 1954; Volume 78. [Google Scholar]
- Kelly, W. Permissible composition and concentration of irrigated waters. Proc. ASCF 1940, 66, 607–613. [Google Scholar]
- Wong, Y.J.; Shimizu, Y.; He, K.; Nik Sulaiman, N.M. Comparison among different ASEAN water quality indices for the assessment of the spatial variation of surface water quality in the Selangor river basin, Malaysia. Environ. Monit. Assess 2020, 192, 644. [Google Scholar] [CrossRef] [PubMed]
- Doneen, L.D. Salination of soil by salts in the irrigation water. Eos Trans. Am. Geophys. Union 1954, 35, 943–950. [Google Scholar]
- Lu, H.; Ma, X. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 2020, 249, 126169. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, J.; Lee, M.; Lee, M.; Kim, Y.; Hyung, J.; Kim, K.; Cha, Y.; Koo, J. Development of a short-term water quality prediction model for urban rivers using real-time water quality data. Water Supply 2022, 22, 4082–4097. [Google Scholar] [CrossRef]
- Wong, Y.J.; Nakayama, R.; Shimizu, Y.; Kamiya, A.; Shen, S.; Muhammad Rashid, I.Z.; Nik Sulaiman, N.M. Toward industrial revolution 4.0: Development, validation, and application of 3D-printed IoT-based water quality monitoring system. J. Clean. Prod. 2021, 324, 129230. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Wong, Y.J.; Shimizu, Y.; Kamiya, A.; Maneechot, L.; Bharambe, K.P.; Fong, C.S.; Nik Sulaiman, N.M. Application of artificial intelligence methods for monsoonal river classification in Selangor river basin, Malaysia. Environ. Monit. Assess 2021, 193, 438. [Google Scholar] [CrossRef] [PubMed]
- Najafzadeh, M.; Niazmardi, S. A novel multiple-kernel support vector regression algorithm for estimation of water quality parameters. Nat. Resour. Res. 2021, 30, 3761–3775. [Google Scholar] [CrossRef]
- Su, X.; He, X.; Zhang, G.; Chen, Y.; Li, K. Research on SVR water quality prediction model based on improved sparrow search algorithm. Comput. Intell. Neurosci. 2022, 2022, 7327072. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Sakaa, B.; Elbeltagi, A.; Boudibi, S.; Chaffaï, H.; Islam, A.R.M.T.; Kulimushi, L.C.; Choudhari, P.; Hani, A.; Brouziyne, Y.; Wong, Y.J. Water quality index modeling using random forest and improved SMO algorithm for support vector machine in Saf-Saf river basin. Environ. Sci. Pollut. Res. 2022, 29, 48491–48508. [Google Scholar] [CrossRef]
- Li, J.; Abdulmohsin, H.A.; Hasan, S.S.; Kaiming, L.; Al-Khateeb, B.; Ghareb, M.I.; Mohammed, M.N. Hybrid soft computing approach for determining water quality indicator: Euphrates River. Neural Comput. Appl. 2019, 31, 827–837. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ding, J. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China. Sci. Rep. 2017, 7, 12858. [Google Scholar] [CrossRef] [PubMed]
- Tahraoui, H.; Toumi, S.; Hassein-Bey, A.H.; Bousselma, A.; Sid, A.N.E.H.; Belhadj, A.-E.; Triki, Z.; Kebir, M.; Amrane, A.; Zhang, J. Advancing Water Quality Research: K-Nearest Neighbor Coupled with the Improved Grey Wolf Optimizer Algorithm Model Unveils New Possibilities for Dry Residue Prediction. Water 2023, 15, 2631. [Google Scholar] [CrossRef]
- Juna, A.; Umer, M.; Sadiq, S.; Karamti, H.; Eshmawi, A.A.; Mohamed, A.; Ashraf, I. Water quality prediction using KNN imputer and multilayer perceptron. Water 2022, 14, 2592. [Google Scholar] [CrossRef]
- Kim, M.; Kim, Y.; Kim, H.; Piao, W.; Kim, C. Evaluation of the k-nearest neighbor method for forecasting the influent characteristics of wastewater treatment plant. Front. Environ. Sci. Eng. 2016, 10, 299–310. [Google Scholar] [CrossRef]
- Budiarti, R.P.N.; Sukaridhoto, S.; Hariadi, M.; Purnomo, M.H. Big data technologies using SVM (case study: Surface water classification on regional water utility company in Surabaya). In Proceedings of the 2019 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), Jember, Indonesia, 16–17 October 2019; pp. 94–101. [Google Scholar]
- Wong, Y.J.; Arumugasamy, S.K.; Chung, C.H.; Selvarajoo, A.; Sethu, V. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel. Environ. Monit. Assess 2020, 192, 439. [Google Scholar] [CrossRef] [PubMed]
- Abda, Z.; Zerouali, B.; Alqurashi, M.; Chettih, M.; Santos, C.A.G.; Hussein, E.E. Suspended sediment load simulation during flood events using intelligent systems: A case study on semiarid regions of Mediterranean Basin. Water 2021, 13, 3539. [Google Scholar] [CrossRef]
- Zerouali, B.; Santos, C.A.G.; de Farias, C.A.S.; Muniz, R.S.; Difi, S.; Abda, Z.; Chettih, M.; Heddam, S.; Anwar, S.A.; Elbeltagi, A. Artificial intelligent systems optimized by metaheuristic algorithms and teleconnection indices for rainfall modeling: The case of a humid region in the mediterranean basin. Heliyon 2023, 9, e15355. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 1985; Volume 29. [Google Scholar]
- Aravinthasamy, P.; Karunanidhi, D.; Subramani, T.; Roy, P.D. Demarcation of groundwater quality domains using GIS for best agricultural practices in the drought-prone Shanmuganadhi River basin of South India. Environ. Sci. Pollut. Res. 2021, 28, 18423–18435. [Google Scholar] [CrossRef]
- M’nassri, S.; El Amri, A.; Nasri, N.; Majdoub, R. Estimation of irrigation water quality index in a semi-arid environment using data-driven approach. Water Supply 2022, 22, 5161–5175. [Google Scholar] [CrossRef]
- Mokhtar, A.; Elbeltagi, A.; Gyasi-Agyei, Y.; Al-Ansari, N.; Abdel-Fattah, M.K. Prediction of irrigation water quality indices based on machine learning and regression models. Appl. Water Sci. 2022, 12, 76. [Google Scholar] [CrossRef]
- Omeka, M.E. Evaluation and prediction of irrigation water quality of an agricultural district, SE Nigeria: An integrated heuristic GIS-based and machine learning approach. Environ. Sci. Pollut. Res. 2023, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Lap, B.Q.; Du Nguyen, H.; Hang, P.T.; Phi, N.Q.; Hoang, V.T.; Linh, P.G.; Hang, B.T.T. Predicting water quality index (WQI) by feature selection and machine learning: A case study of An Kim Hai irrigation system. Ecol. Inform. 2023, 74, 101991. [Google Scholar] [CrossRef]
- Ibrahim, H.; Yaseen, Z.; Scholz, M.; Ali, M.; Gad, M.; Elsayed, S.; Khadr, M.; Hussein, H.; Ibrahim, H.; Eid, M. Evaluation and prediction of groundwater quality for irrigation using an integrated water quality indices, machine learning models and GIS approaches: A representative case study. Water 2023, 15, 694. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Ha, H.D.; Trinh, N.T.; Nguyen, M.T. Application of artificial intelligence for forecasting surface quality index of irrigation systems in the Red River Delta, Vietnam. Environ. Syst. Res. 2023, 12, 24. [Google Scholar] [CrossRef]
- Trabelsi, F.; Bel Hadj Ali, S. Exploring machine learning models in predicting irrigation groundwater quality indices for effective decision making in Medjerda River Basin, Tunisia. Sustainability 2022, 14, 2341. [Google Scholar] [CrossRef]
Parameter | Formula Adopted | References | |
---|---|---|---|
Sodium adsorption ratio | (1) | [45] | |
Sodium percentage | (2) | [28] | |
Permeability Index | (3) | [29] | |
Magnesium hazard | (4) | [45] | |
Kelly’s ratio | (5) | [46] | |
Potential salinity | (6) | [47] |
) | |||||
---|---|---|---|---|---|
0–35 | |||||
35–60 | |||||
60–85 | |||||
85–100 |
Parameters | Wi |
---|---|
SAR | 0.189 |
EC | 0.211 |
Cl | 0.194 |
Na | 0.204 |
HCO3 | 0.202 |
Total | 1 |
IWQI Type | IWQI |
---|---|
Unsuitable | 0–40 |
Satisfying | 40–55 |
Good | 55–70 |
Very Good | 70–85 |
Excellent | 85–100 |
Min Value | Max Value | Mean Value | Standard Deviation | |
---|---|---|---|---|
EC (µδ/cm) | 290.00 | 6200.00 | 1464.42 | 1100.87 |
pH | 6.58 | 10.60 | 7.71 | 0.51 |
(meq/L) | 0.60 | 56.10 | 7.01 | 7.05 |
(meq/L) | 0.25 | 46.67 | 6.29 | 5.76 |
(meq/L) | 0.22 | 48.48 | 6.81 | 8.65 |
(meq/L) | 0.03 | 6.69 | 0.25 | 0.54 |
(meq/L) | 0.28 | 79.41 | 7.87 | 12.39 |
(meq/L) | 0.79 | 49.38 | 7.64 | 8.99 |
(meq/L) | 0.33 | 8.67 | 3.90 | 1.04 |
(meq/L) | 0.02 | 6.29 | 0.44 | 0.60 |
SAR | 0.12 | 14.56 | 2.46 | 2.48 |
Na% | 6.78 | 83.35 | 29.49 | 14.93 |
MH | 2.86 | 91.74 | 48.60 | 13.00 |
KR | 0.03 | 4.94 | 0.50 | 0.55 |
PS | 1.35 | 83.47 | 10.34 | 13.09 |
PI | 13.41 | 99.07 | 43.47 | 13.31 |
Irrigation Indices | Classification | Type | N° of Samples | Percentage (%) |
---|---|---|---|---|
SAR | SAR > 26 | Unsuitable | 0 | 0 |
18 < SAR < 26 | Doubtful | 0 | 0 | |
10 < SAR < 18 | Good | 2 | 1.2 | |
SAR < 10 | Excellent | 164 | 98.8 | |
Na% | 80–100 | Unsuitable | 1 | 0.60 |
60–80 | Doubtful | 8 | 4.82 | |
40–60 | Permissible | 26 | 15.66 | |
20–40 | Good | 77 | 46.39 | |
<20 | Excellent | 54 | 32.53 | |
PI | <25% | Unsuitable | 6 | 3.61 |
>75% | Good | 4 | 2.41 | |
25–75% | Suitable | 156 | 93.98 | |
MH | >50% | Unsuitable | 78 | 46.99 |
<50% | Suitable | 88 | 53.01 | |
KR | <1 | Unsuitable | 18 | 10.84 |
>1 | Suitable | 148 | 89.16 | |
PS | >10 | Injurious to Unsatisfactory | 53 | 31.93 |
5–10 | Good to Injurious | 40 | 24.10 | |
<5 | Excellent to good | 73 | 43.98 |
N° | IWQI | Type | N° | IWQI | Type | N° | IWQI | Type | N° | IWQI | Type |
---|---|---|---|---|---|---|---|---|---|---|---|
GW150 | 97.64 | Excellent | GW117 | 88.79 | Excellent | GW80 | 82.38 | V. Good | GW82 | 72.50 | V. Good |
GW44 | 96.89 | Excellent | GW1 | 88.71 | Excellent | GW48 | 82.32 | V. Good | GW64 | 72.44 | V. Good |
GW43 | 96.52 | Excellent | GW111 | 88.51 | Excellent | GW163 | 82.20 | V. Good | GW158 | 72.38 | V. Good |
GW34 | 95.71 | Excellent | GW66 | 88.41 | Excellent | GW141 | 82.19 | V. Good | GW160 | 72.25 | V. Good |
GW112 | 95.17 | Excellent | GW115 | 88.37 | Excellent | GW79 | 81.71 | V. Good | GW30 | 71.82 | V. Good |
GW68 | 95.17 | Excellent | GW69 | 88.27 | Excellent | GW94 | 81.64 | V. Good | GW15 | 70.34 | V. Good |
GW45 | 94.91 | Excellent | GW56 | 88.26 | Excellent | GW20 | 81.36 | V. Good | GW92 | 69.88 | Good |
GW107 | 94.47 | Excellent | GW166 | 88.17 | Excellent | GW124 | 81.17 | V. Good | GW125 | 68.79 | Good |
GW106 | 93.91 | Excellent | GW8 | 88.14 | Excellent | GW104 | 80.74 | V. Good | GW138 | 68.65 | Good |
GW120 | 93.65 | Excellent | GW129 | 87.92 | Excellent | GW72 | 80.67 | V. Good | GW122 | 68.44 | Good |
GW137 | 93.25 | Excellent | GW140 | 87.91 | Excellent | GW131 | 80.24 | V. Good | GW123 | 67.92 | Good |
GW75 | 93.20 | Excellent | GW7 | 87.79 | Excellent | GW78 | 80.07 | V. Good | GW110 | 67.43 | Good |
GW76 | 92.84 | Excellent | GW4 | 87.55 | Excellent | GW97 | 79.86 | V. Good | GW148 | 67.17 | Good |
GW113 | 92.83 | Excellent | GW32 | 87.19 | Excellent | GW86 | 79.72 | V. Good | GW109 | 66.62 | Good |
GW2 | 92.78 | Excellent | GW144 | 87.09 | Excellent | GW128 | 79.67 | V. Good | GW52 | 66.34 | Good |
GW105 | 92.70 | Excellent | GW132 | 87.06 | Excellent | GW70 | 79.58 | V. Good | GW83 | 65.87 | Good |
GW74 | 92.52 | Excellent | GW19 | 86.83 | Excellent | GW17 | 79.42 | V. Good | GW126 | 65.54 | Good |
GW90 | 91.78 | Excellent | GW10 | 86.65 | Excellent | GW5 | 79.16 | V. Good | GW159 | 64.22 | Satisfactory |
GW73 | 91.78 | Excellent | GW33 | 86.53 | Excellent | GW84 | 78.48 | V. Good | GW46 | 62.59 | Satisfactory |
GW11 | 91.65 | Excellent | GW157 | 86.48 | Excellent | GW53 | 78.03 | V. Good | GW55 | 61.02 | Satisfactory |
GW114 | 91.41 | Excellent | GW127 | 86.47 | Excellent | GW162 | 78.03 | V. Good | GW61 | 60.10 | Satisfactory |
GW67 | 91.18 | Excellent | GW65 | 86.35 | Excellent | GW28 | 77.57 | V. Good | GW77 | 59.94 | Satisfactory |
GW154 | 90.47 | Excellent | GW142 | 86.21 | Excellent | GW24 | 77.42 | V. Good | GW47 | 58.52 | Satisfactory |
GW152 | 90.47 | Excellent | GW121 | 86.06 | Excellent | GW27 | 77.31 | V. Good | GW146 | 58.42 | Satisfactory |
GW89 | 90.26 | Excellent | GW63 | 85.70 | Excellent | GW59 | 76.84 | V. Good | GW41 | 57.40 | Satisfactory |
GW151 | 90.19 | Excellent | GW139 | 85.69 | Excellent | GW81 | 76.40 | V. Good | GW57 | 55.52 | Satisfactory |
GW134 | 90.07 | Excellent | GW155 | 85.55 | Excellent | GW161 | 76.11 | V. Good | GW98 | 55.31 | Satisfactory |
GW119 | 90.07 | Excellent | GW143 | 85.30 | Excellent | GW23 | 75.82 | V. Good | GW40 | 52.76 | Satisfactory |
GW87 | 89.84 | Excellent | GW156 | 85.18 | Excellent | GW12 | 75.62 | V. Good | GW26 | 51.54 | Satisfactory |
GW133 | 89.76 | Excellent | GW38 | 85.16 | Excellent | GW85 | 75.52 | V. Good | GW29 | 45.46 | Satisfactory |
GW165 | 89.69 | Excellent | GW96 | 85.15 | Excellent | GW14 | 75.34 | V. Good | GW145 | 43.94 | Satisfactory |
GW130 | 89.45 | Excellent | GW102 | 85.14 | Excellent | GW21 | 75.23 | V. Good | GW62 | 43.70 | Satisfactory |
GW93 | 89.30 | Excellent | GW136 | 85.03 | Excellent | GW35 | 75.05 | V. Good | GW99 | 42.36 | Satisfactory |
GW149 | 89.20 | Excellent | GW60 | 84.80 | V. Good | GW36 | 74.66 | V. Good | GW91 | 36.76 | Unsuitable |
GW164 | 89.20 | Excellent | GW16 | 84.43 | V. Good | GW118 | 74.29 | V. Good | GW3 | 33.83 | Unsuitable |
GW54 | 89.14 | Excellent | GW71 | 84.25 | V. Good | GW6 | 73.79 | V. Good | GW42 | 29.98 | Unsuitable |
GW116 | 88.98 | Excellent | GW147 | 84.23 | V. Good | GW22 | 73.76 | V. Good | GW25 | 28.23 | Unsuitable |
GW37 | 88.96 | Excellent | GW103 | 84.03 | V. Good | GW101 | 73.56 | V. Good | GW39 | 27.78 | Unsuitable |
GW108 | 88.96 | Excellent | GW58 | 83.67 | V. Good | GW100 | 73.37 | V. Good | GW18 | 26.76 | Unsuitable |
GW13 | 88.95 | Excellent | GW50 | 83.61 | V. Good | GW31 | 73.30 | V. Good | GW135 | 1.81 | Unsuitable |
GW51 | 88.87 | Excellent | GW49 | 82.97 | V. Good | GW9 | 73.29 | V. Good | |||
GW153 | 88.80 | Excellent | GW95 | 82.89 | V. Good | GW88 | 72.74 | V. Good |
Excellent | Very Good | Good | Satisfactory | Unsuitable | Total | |
---|---|---|---|---|---|---|
No. of data samples | 75 | 57 | 11 | 16 | 7 | 166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, E.E.; Derdour, A.; Zerouali, B.; Almaliki, A.; Wong, Y.J.; Ballesta-de los Santos, M.; Minh Ngoc, P.; Hashim, M.A.; Elbeltagi, A. Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms. Water 2024, 16, 264. https://doi.org/10.3390/w16020264
Hussein EE, Derdour A, Zerouali B, Almaliki A, Wong YJ, Ballesta-de los Santos M, Minh Ngoc P, Hashim MA, Elbeltagi A. Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms. Water. 2024; 16(2):264. https://doi.org/10.3390/w16020264
Chicago/Turabian StyleHussein, Enas E., Abdessamed Derdour, Bilel Zerouali, Abdulrazak Almaliki, Yong Jie Wong, Manuel Ballesta-de los Santos, Pham Minh Ngoc, Mofreh A. Hashim, and Ahmed Elbeltagi. 2024. "Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms" Water 16, no. 2: 264. https://doi.org/10.3390/w16020264
APA StyleHussein, E. E., Derdour, A., Zerouali, B., Almaliki, A., Wong, Y. J., Ballesta-de los Santos, M., Minh Ngoc, P., Hashim, M. A., & Elbeltagi, A. (2024). Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms. Water, 16(2), 264. https://doi.org/10.3390/w16020264