Prediction of Internal Erosion Parameters of Clay Soils Using Initial Physical Properties
Abstract
:1. Introduction
2. Background and Literature Review
3. Experimental Program and Methodology
3.1. Materials
3.2. Hole Erosion Test and Sample Preparation
3.3. Calculation of the Erosion Rate Index and Critical Shear
4. Results and Discussion
4.1. Prediction Analysis
4.1.1. Prediction of Internal Erosion
4.1.2. Prediction of Critical Shear
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baxter, R.M. Environmental effects of dams and impoundments. Annu. Rev. Ecol. Syst. 1977, 8, 255–283. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, T.J.; Chen, J. Microscopic mechanism study of the creep properties of soil based on the energy scale method. Front. Mater. 2023, 10, 1137728. [Google Scholar] [CrossRef]
- Foster, M.; Fell, R.; Spannagle, M. The statistics of embankment dam failures and accidents. Can. Geotech. J. 2000, 37, 1000–1024. [Google Scholar] [CrossRef]
- Wei, X.; Bai, X.; Wen, X.; Liu, L.; Xiong, J.; Yang, C. A large and overlooked Cd source in karst areas: The migration and origin of Cd during soil formation and erosion. Sci. Total Environ. 2023, 895, 165126. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-M.; Moon, J.-H.; Cho, G.-C.; Kim, Y.-U.; Chang, I. Xanthan gum biopolymer-based soil treatment as a construction material to mitigate internal erosion of earthen embankment: A field-scale study. Constr. Build. Mater. 2023, 389, 131716. [Google Scholar] [CrossRef]
- Ke, L.; Takahashi, A. Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow. Soils Found. 2012, 52, 698–711. [Google Scholar] [CrossRef]
- Han, Z.; Li, J.; Gao, P.; Huang, B.; Ni, J.; Wei, C. Determining the shear strength and permeability of soils for engineering of new paddy field construction in a hilly mountainous region of Southwestern China. Int. J. Environ. Res. Public Health 2020, 17, 1555. [Google Scholar] [CrossRef]
- Banu, S.A.; Attom, M.F. Effect of Curing Time on Lime-Stabilized Sandy Soil against Internal Erosion. Geosciences 2023, 13, 102. [Google Scholar] [CrossRef]
- Banu, S.; Attom, M. Internal Erosion Stabilization of Cohesionless Soil Using Lime. Water 2023, 15, 1992. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam safety problems related to seepage. J. Earth Sci. Geotech. Eng. 2020, 10, 191–239. [Google Scholar]
- Prasomsri, J.; Takahashi, A. The role of fines on internal instability and its impact on undrained mechanical response of gap-graded soils. Soils Found. 2020, 60, 1468–1488. [Google Scholar] [CrossRef]
- Fell, R.; Wan, C.F.; Cyganiewicz, J.; Foster, M. Time for development of internal erosion and piping in embankment dams. J. Geotech. Geoenviron. Eng. 2003, 129, 307–314. [Google Scholar] [CrossRef]
- Carraro, J.A.H.; Bortolotto, M.S. Stiffness degradation and damping of carbonate and silica sands. Front. Offshore Geotech. III 2015, 2015, 1179–1183. [Google Scholar]
- Liu, X.; Li, S.; Sun, L. The study of dynamic properties of carbonate sand through a laboratory database. Bull. Eng. Geol. Environ. 2020, 79, 3843–3855. [Google Scholar] [CrossRef]
- Morsy, A.M.; Salem, M.A.; Elmamlouk, H.H. Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges. Soil Dyn. Earthq. Eng. 2019, 116, 692–708. [Google Scholar] [CrossRef]
- Abdelfattah, M.A.; Shahid, S.A. Characterization and Classification of Soils in the Coastline of Abu Dhabi Emirate. In Proceedings of the 5th International Agroenviron Symposium Titled Agricultural Constraints in the Soil-Plant-Atmosphere Continuum, Ghent, Belgium, 4–7 September 2006; pp. 4–7. [Google Scholar]
- Abdelfattah, M.A.; Shahid, S.A. A comparative characterization and classification of soils in Abu Dhabi coastal area in relation to arid and semi-arid conditions using USDA and FAO soil classification systems. Arid. Land Res. Manag. 2007, 21, 245–271. [Google Scholar] [CrossRef]
- Giretti, D.; Fioravante, V.; Been, K.; Dickenson, S. Mechanical properties of a carbonate sand from a dredged hydraulic fill. Géotechnique 2018, 68, 410–420. [Google Scholar] [CrossRef]
- Giang, P.H.H.; Van Impe, P.O.; Van Impe, W.F.; Menge, P.; Haegeman, W. Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation. Soil Dyn. Earthq. Eng. 2017, 100, 371–379. [Google Scholar] [CrossRef]
- Khalil, A.; Khan, Z.; Attom, M.; Fattah, K.; Ali, T.; Mortula, M. Continuous Evaluation of Shear Wave Velocity from Bender Elements during Monotonic Triaxial Loading. Materials 2023, 16, 766. [Google Scholar] [CrossRef]
- Khalil, A.; Khan, Z.H.; Attom, M.; El Emam, M.; Fattah, K. Dynamic properties of calcareous sands from urban areas of Abu Dhabi. Appl. Sci. 2022, 12, 3325. [Google Scholar] [CrossRef]
- Jafarian, Y.; Javdanian, H.; Haddad, A. Strain-dependent dynamic properties of Bushehr siliceous-carbonate sand: Experimental and comparative study. Soil Dyn. Earthq. Eng. 2018, 107, 339–349. [Google Scholar] [CrossRef]
- Nearing, M.A.; Bradford, J.M.; Parker, S.C. Soil Detachment by Shallow Flow at Low Slopes. Soil Sci. Soc. Am. J. 1991, 55, 339. [Google Scholar] [CrossRef]
- Grissinger, E.H. Resistance of selected clay systems to erosion by water. Water Resour. Res. 1966, 2, 131–138. [Google Scholar] [CrossRef]
- Römkens, M.J.M.; Roth, C.B.; Nelson, D.W. Erodibility of selected clay subsoils in relation to physical and chemical properties. Soil Sci. Soc. Am. J. 1977, 41, 954–960. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Kumar, L.; Shabani, F. Soil erodibility and its prediction in semi-arid regions. Arch. Agron. Soil Sci. 2019, 65, 1688–1703. [Google Scholar] [CrossRef]
- Mallick, J.; Al-Wadi, H.; Rahman, A.; Ahmed, M.; Khan, R.A. Spatial variability of soil erodibility and its correlation with soil properties in semi-arid mountainous watershed, Saudi Arabia. Geocarto Int. 2016, 31, 661–681. [Google Scholar] [CrossRef]
- Tsanis, I.K.; Seiradakis, K.D.; Sarchani, S.; Panagea, I.S.; Alexakis, D.D.; Koutroulis, A.G. The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment. Land 2021, 10, 964. [Google Scholar] [CrossRef]
- Ollobarren Del Barrio, P.H.H.; Giménez, R.; Campo-Bescós, M.Á. Assessing soil properties controlling interrill erosion: An empirical approach under Mediterranean conditions. Land Degrad. Dev. 2017, 28, 1729–1741. [Google Scholar] [CrossRef]
- Yamin, M.; Attom, M.F.; Atabay, S.; Vandanapu, R. The Effect of Compaction Effort on Shear Strength Parameters of Low/High Plasticity Clay Soils. Geotech. Eng. (00465828) 2021, 52, 2. [Google Scholar]
- Hanson, G.J.; Hunt, S.L. Lessons Learned using Laboratory JET Method to Measure Soil Erodibility of Compacted Soils. Appl. Eng. Agric. 2007, 23, 305–312. [Google Scholar] [CrossRef]
- Briaud, J.-L. Case histories in soil and rock erosion: Woodrow wilson bridge, brazos river meander, normandy cliffs, and new orleans levees. J. Geotech. Geoenviron. Eng. 2008, 134, 1425–1447. [Google Scholar] [CrossRef]
- Wan, C.F.; Fell, R. Investigation of rate of erosion of soils in embankment dams. J. Geotech. Geoenviron. Eng. 2004, 130, 373–380. [Google Scholar] [CrossRef]
- Chen, C.; Mei, S.; Chen, S.; Tang, Y.; Wan, C. Laboratory investigation of erosion behavior at the soil–structure interface affected by various structural factors. Nat. Hazards 2022, 111, 1065–1084. [Google Scholar] [CrossRef]
- Liu, R.; Han, G.; Jiang, Y.; Yu, L.; He, M. Shear behaviour of multi-joint specimens: Role of surface roughness and spacing of joints. Géotechnique Lett. 2020, 10, 113–118. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.-M. Constitutive rules of cyclic behavior of interface between structure and gravelly soil. Mech. Mater. 2009, 41, 48–59. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, J.; Han, B.; Li, H.; Li, Y.; Li, X. Critical hydraulic gradient of internal erosion at the soil–structure interface. Processes 2018, 6, 92. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Yang, Z. Suffusion-induced deformation and microstructural change of granular soils: A coupled CFD–DEM study. Acta Geotech. 2019, 14, 795–814. [Google Scholar] [CrossRef]
- Chang, D.S.; Zhang, L.M. Critical hydraulic gradients of internal erosion under complex stress states. J. Geotech. Geoenviron. Eng. 2013, 139, 1454–1467. [Google Scholar] [CrossRef]
- Sibille, L.; Marot, D.; Sail, Y. A description of internal erosion by suffusion and induced settlements on cohesionless granular matter. Acta Geotech. 2015, 10, 735–748. [Google Scholar] [CrossRef]
- Hu, W.; Scaringi, G.; Xu, Q.; Huang, R. Internal erosion controls failure and runout of loose granular deposits: Evidence from flume tests and implications for postseismic slope healing. Geophys. Res. Lett. 2018, 45, 5518–5527. [Google Scholar] [CrossRef]
- Fox, G.A.; Felice, R.G.; Midgley, T.L.; Wilson, G.V.; Al-Madhhachi, A.T. Laboratory soil piping and internal erosion experiments: Evaluation of a soil piping model for low-compacted soils. Earth Surf. Process. Landf. 2014, 39, 1137–1145. [Google Scholar] [CrossRef]
- Al-Madhhachi, A.-S.T.; Hanson, G.J.; Fox, G.A.; Tyagi, A.K.; Bulut, R. Measuring soil erodibility using a laboratory ‘mini’ JET. Trans. ASABE 2013, 56, 901–910. [Google Scholar]
- Daly, E.R.; Fox, G.A.; Miller, R.B.; Al-Madhhachi, A.-S.T. A scour depth approach for deriving erodibility parameters from jet erosion tests. Trans. ASABE 2013, 56, 1343–1351. [Google Scholar]
- Hanson, G.J.; Cook, K.R. Development of excess shear stress parameters for circular jet testing. ASAE Pap. 1997, 972227. [Google Scholar]
- Pachideh, V.; Hosseini, S.M. A new physical model for studying flow direction and other influencing parameters on the internal erosion of soils. Geotech. Test. J. 2019, 42, 1431–1456. [Google Scholar] [CrossRef]
- Kwon, Y.-M.; Ham, S.-M.; Kwon, T.-H.; Cho, G.-C.; Chang, I. Surface-erosion behaviour of biopolymer-treated soils assessed by EFA. Géotechnique Lett. 2020, 10, 106–112. [Google Scholar] [CrossRef]
- Ham, S.-M.; Kwon, T.-H.; Chang, I.; Chung, M.-K. Ultrasonic P-wave reflection monitoring of soil erosion for erosion function apparatus. Geotech. Test. J. 2016, 39, 301–314. [Google Scholar] [CrossRef]
- Briaud, J.-L.; Ting, F.C.K.; Chen, H.C.; Cao, Y.; Han, S.W.; Kwak, K.W. Erosion function apparatus for scour rate predictions. J. Geotech. Geoenviron. Eng. 2001, 127, 105–113. [Google Scholar] [CrossRef]
- ASTM International. D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. Available online: https://www.astm.org/d4318-17e01.html (accessed on 10 December 2023).
Soil | PI (%) | LL (%) | Wopt (%) | ɣdmax (kN/m3) |
---|---|---|---|---|
1 | 24 | 39 | 21 | 13.6 |
2 | 27 | 45 | 29 | 13.9 |
3 | 20 | 47 | 35 | 14.8 |
4 | 32 | 47 | 36 | 14.5 |
5 | 17 | 48 | 37 | 13.5 |
6 | 27 | 51 | 39 | 12.4 |
7 | 30 | 55 | 41 | 12.6 |
8 | 25 | 56 | 42 | 12.5 |
9 | 30 | 69 | 45 | 12.1 |
10 | 19 | 37 | 21 | 15.1 |
11 | 22 | 38 | 28 | 15 |
12 | 25 | 41 | 25 | 13.1 |
13 | 23 | 44 | 25 | 13.2 |
14 | 27 | 48 | 27 | 13.9 |
15 | 27 | 51 | 40 | 12.7 |
16 | 30 | 51 | 41 | 12.6 |
Group Number | Erosion Rate | Description |
---|---|---|
1 | <2 | Extremely rapid |
2 | 2–3 | Very rapid |
3 | 3–4 | Moderately rapid |
4 | 4–5 | Moderately slow |
5 | 5–6 | Very slow |
6 | >6 | Extremely slow |
Soil | LL (%) | PI (%) | wi (%) | γ (kN/m3) | ϕ | C (kN/m3) | I(HET) | τc (N/m2) |
---|---|---|---|---|---|---|---|---|
1 | 39 | 24 | 30 | 14 | 25 | 88 | 4.1 | 120 |
39 | 24 | 25 | 12 | 22 | 61 | 3.2 | 105 | |
2 | 45 | 27 | 15 | 13 | 23 | 91 | 4.3 | 182 |
45 | 27 | 20 | 13 | 24 | 83 | 4.5 | 171 | |
45 | 27 | 25 | 13 | 21 | 79 | 3.7 | 122 | |
45 | 27 | 10 | 13 | 27 | 98 | 5.1 | 193 | |
3 | 47 | 20 | 20 | 16 | 29 | 101 | 5.2 | 250 |
47 | 20 | 40 | 16 | 26 | 69 | 4 | 100 | |
47 | 20 | 15 | 16 | 34 | 68 | 5.3 | 92 | |
47 | 20 | 30 | 16 | 27 | 84 | 4.7 | 201 | |
4 | 47 | 32 | 10 | 13 | 28 | 102 | 5.3 | 180 |
47 | 32 | 30 | 13 | 22 | 71 | 4.2 | 97 | |
47 | 32 | 35 | 13 | 20 | 67 | 3.9 | 91 | |
5 | 48 | 17 | 25 | 13 | 25 | 89 | 3.5 | 110 |
48 | 17 | 25 | 14 | 26 | 97 | 4.2 | 122 | |
48 | 17 | 25 | 15 | 29 | 105 | 4.7 | 141 | |
6 | 51 | 27 | 15 | 12 | 21 | 73 | 3.2 | 149 |
51 | 27 | 20 | 12 | 20 | 61 | 3.1 | 105 | |
7 | 55 | 30 | 10 | 12 | 27 | 88 | 3.9 | 142 |
55 | 30 | 15 | 12 | 24 | 82 | 3.7 | 131 | |
7 | 55 | 30 | 20 | 12 | 23 | 73 | 3.3 | 120 |
55 | 30 | 25 | 12 | 21 | 65 | 3.1 | 88 | |
55 | 30 | 30 | 12 | 20 | 59 | 2.7 | 61 | |
55 | 30 | 35 | 12 | 18 | 51 | 2.3 | 55 | |
8 | 56 | 25 | 40 | 11 | 21 | 85 | 2.5 | 72 |
56 | 25 | 40 | 12 | 25 | 97 | 3.2 | 100 | |
56 | 25 | 40 | 13 | 28 | 112 | 3.8 | 120 | |
56 | 25 | 40 | 14 | 30 | 152 | 4.7 | 149 | |
9 | 69 | 30 | 45 | 11.5 | 16 | 167 | 4 | 177 |
69 | 30 | 25 | 12 | 18 | 193 | 4.5 | 199 | |
69 | 30 | 35 | 12 | 17 | 174 | 4.5 | 192 | |
69 | 30 | 40 | 12 | 23 | 169 | 4.7 | 215 | |
69 | 30 | 30 | 12 | 20 | 182 | 4.6 | 203 | |
10 | 37 | 19 | 18 | 15 | 33 | 62 | 4.3 | 109 |
11 | 38 | 22 | 32 | 13.2 | 18 | 97 | 4.1 | 151 |
12 | 41 | 25 | 30 | 13 | 25 | 73 | 3.4 | 106 |
13 | 44 | 23 | 15 | 12 | 21 | 51 | 3.1 | 115 |
14 | 48 | 27 | 22 | 14 | 31 | 68 | 4.4 | 101 |
15 | 51 | 27 | 10 | 12 | 28 | 83 | 3.8 | 115 |
16 | 51 | 30 | 33 | 13.5 | 26 | 91 | 4.3 | 129 |
Equation No. | LL | PI | Wi | γ | ϕ | c | R2 |
---|---|---|---|---|---|---|---|
(7) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 0.92 |
(8) | ✓ | ✓ | ✕ | ✓ | ✓ | ✓ | 0.85 |
(9) | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | 0.83 |
Equation No. | LL | PI | WOPT | γmax | R2 |
---|---|---|---|---|---|
(10) | ✓ | ✓ | ✓ | ✓ | 0.90 |
(11) | ✓ | ✕ | ✓ | ✓ | 0.89 |
(12) | ✓ | ✓ | ✕ | ✓ | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attom, M.F.; Vandanapu, R.; Khan, Z.; Yamin, M.; Astillo, P.V.; Eltayeb, A.; Khalil, A. Prediction of Internal Erosion Parameters of Clay Soils Using Initial Physical Properties. Water 2024, 16, 232. https://doi.org/10.3390/w16020232
Attom MF, Vandanapu R, Khan Z, Yamin M, Astillo PV, Eltayeb A, Khalil A. Prediction of Internal Erosion Parameters of Clay Soils Using Initial Physical Properties. Water. 2024; 16(2):232. https://doi.org/10.3390/w16020232
Chicago/Turabian StyleAttom, Mousa F., Ramesh Vandanapu, Zahid Khan, Mohammad Yamin, Philip Virgil Astillo, Ahmed Eltayeb, and Ahmed Khalil. 2024. "Prediction of Internal Erosion Parameters of Clay Soils Using Initial Physical Properties" Water 16, no. 2: 232. https://doi.org/10.3390/w16020232
APA StyleAttom, M. F., Vandanapu, R., Khan, Z., Yamin, M., Astillo, P. V., Eltayeb, A., & Khalil, A. (2024). Prediction of Internal Erosion Parameters of Clay Soils Using Initial Physical Properties. Water, 16(2), 232. https://doi.org/10.3390/w16020232