Batch-Mode Denitrifying Woodchip Bioreactors for Expanded Treatment Flexibility
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Setup
2.2. Experimental Design and Sampling
2.3. Analyses and Statistics
3. Results and Discussion
3.1. Nitrate Removal
3.2. Dissolved Organic Carbon
3.3. Water Temperature
3.4. Daily NO3−-N Concentration
3.5. Possibilities for Multi-Batch Operation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Ayllón, S. Predictive Diagnosis of Agricultural Periurban Areas Based on Territorial Indicators: Comparative Landscape Trends of the so-Called “Orchard Of Europe”. Sustainability 2018, 10, 1820. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; González-Ortega, M.J.; Martin-Gorriz, B.; Soto-García, M.; Maestre-Valero, J.F. The Use of Desalinated Seawater for Crop Irrigation in the Segura River Basin (South-Eastern Spain). Desalination 2017, 422, 153–164. [Google Scholar] [CrossRef]
- Álvarez-Rogel, J.; Barberá, G.; Maxwell, B.; Guerrero-Brotons, M.; Díaz-García, C.; Martínez-Sánchez, J.J.; Sallent, A.; Martínez-Ródenas, J.; González-Alcaraz, M.N.; Jiménez-Cárceles, F.J.; et al. The Case of Mar Menor Eutrophication: State of the Art and Description of Tested Nature-Based Solutions. Ecol. Eng. 2020, 158, 10. [Google Scholar] [CrossRef]
- Ramsar Convention Secretary. Ramsar Sites Information Service. Available online: https://rsis.ramsar.org/ris/706 (accessed on 24 October 2023).
- BOE. Ley 1/2018, de 6 de Marzo, Por La Que Se Adoptan Medidas Urgentes Para Paliar Los Efectos Producidos Por La Sequia En Determinadas Cuencas Hidrograficas y Se Modifica El Texto Refundido de La Ley de Aguas, Aprobado Por El Real Decreto Legislativo 1/2001, de 20 de Julio; BOE: Madrid, Spain, 2018; pp. 27139–27154. [Google Scholar]
- Castejón-Porcel, G.; Espín-Sánchez, D.; Ruiz-Álvarez, V.; García-Marín, R.; Moreno-Muñoz, D. Runoff Water as a Resource in the Campo de Cartagena (Region of Murcia): Current Possibilities for Use and Benefits. Water 2018, 10, 456. [Google Scholar] [CrossRef]
- Boletín Oficial de la Región de Murcia. Ley 1/2018, de 7 de Febrero, de Medidas Urgentes Para Garantizar La Sostenibilidad Ambiental En El Entorno Del Mar Menor; Gobierno de la Region de Murcia: Murcia, Spain, 2018; pp. 3201–3260. [Google Scholar]
- Díaz-García, C.; Martínez-Sánchez, J.J.; Álvarez-Rogel, J. Bioreactors for Brine Denitrification Produced during Polluted Groundwater Desalination in Fertigation Areas of SE Spain: Batch Assays for Substrate Selection. Environ. Sci. Pollut. Res. 2020, 27, 34388–34397. [Google Scholar] [CrossRef] [PubMed]
- Díaz-García, C.; Martínez-Sánchez, J.J.; Maxwell, B.M.; Franco, J.A.; Álvarez-Rogel, J. Woodchip Bioreactors Provide Sustained Denitrification of Brine from Groundwater Desalination Plants. J. Environ. Manag. 2021, 289, 112521. [Google Scholar] [CrossRef]
- Christianson, L.; Cooke, R.; Hay, C.; Helmers, M.; Feyereisen, G.; Ranaivoson, A.; McMaine, J.; McDaniel, R.; Rosen, T.; Puer, W.; et al. Effectiveness of Denitrifying Bioreactors on Water Pollutant Reduction from Agricultural Areas. Am. Soc. Agric. Biol. Eng. 2021, 64, 641–658. [Google Scholar] [CrossRef]
- Schipper, L.A.; Robertson, W.D.; Gold, A.J.; Jaynes, D.B.; Cameron, S.C. Denitrifying Bioreactors-An Approach for Reducing Nitrate Loads to Receiving Waters. Ecol. Eng. 2010, 36, 1532–1543. [Google Scholar] [CrossRef]
- Díaz, R.; García, J.; Mujeriego, R.; Lucas, M. A Quick, Low-Cost Treatment Method for Secondary Effluent Nitrate Removal through Denitrification. Environ. Eng. Sci. 2003, 20, 693–702. [Google Scholar] [CrossRef]
- Wrightwood, O.M.; Hattaway, M.E.; Young, T.M.; Bischel, H.N. Assessment of Woodchip Bioreactor Characteristics and Their Influences on Joint Nitrate and Pesticide Removal. ACS ES&T Water 2022, 2, 106–116. [Google Scholar] [CrossRef]
- Weigelhofer, G.; Hein, T. Efficiency and Detrimental Side Effects of Denitrifying Bioreactors for Nitrate Reduction in Drainage Water. Environ. Sci. Pollut. Res. 2015, 22, 13534–13545. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, B.M.; Birgand, F.; Schipper, L.A.; Christianson, L.E.; Tian, S.; Helmers, M.J.; Williams, D.J.; Chescheir, G.M.; Youssef, M.A. Drying–Rewetting Cycles Affect Nitrate Removal Rates in Woodchip Bioreactors. J. Environ. Qual. 2018, 48, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Abusallout, I.; Hua, G. Characterization of Dissolved Organic Carbon Leached from a Woodchip Bioreactor. Chemosphere 2017, 183, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mardani, S.; McDaniel, R.; Bleakley, B.H.; Hamilton, T.L.; Salam, S.; Amegbletor, L. The Effect of Woodchip Bioreactors on Microbial Concentration in Subsurface Drainage Water and the Associated Risk of Antibiotic Resistance Dissemination. Ecol. Eng. 2020, 143, 100017. [Google Scholar] [CrossRef]
- Consejeria de Agua, A.y.M.A.-R.d.M. 2021-Tabla Valores Limite Emision al Mar Desde Tierra—Region de Murcia. Available online: https://calidadambiental.carm.es/wp-content/uploads/2021/11/143122-TablaValoresLimite.pdf (accessed on 24 September 2023).
- BOE. Real Decreto 47/2022, de 18 de Enero, Sobre Proteccion de Las Aguas Contra La Contaminacion Difusa Producida Por Los Nitratos Procedentes de Fuentes Agrarias; BOE: Madrid, Spain, 2022; pp. 5664–5684. [Google Scholar]
- European Council of the European Union. European Green Deal. Available online: https://www.consilium.europa.eu/en/policies/green-deal/ (accessed on 14 September 2023).
- Damaraju, S.; Singh, U.K.; Sreekanth, D.; Bhandari, A. Denitrification in Biofilm Configured Horizontal Flow Woodchip Bioreactor: Effect of Hydraulic Retention Time and Biomass Growth. Ecohydrol. Hydrobiol. 2015, 15, 39–48. [Google Scholar] [CrossRef]
- Hoover, N.L.; Bhandari, A.; Soupir, M.L.; Moorman, T.B. Woodchip Denitrification Bioreactors: Impact of Temperature and Hydraulic Retention Time on Nitrate Removal. J. Environ. Qual. 2016, 45, 803. [Google Scholar] [CrossRef]
- Halaburka, B.J.; Lefevre, G.H.; Luthy, R.G. Quantifying the Temperature Dependence of Nitrate Reduction in Woodchip Bioreactors: Experimental and Modeled Results with Applied Case-Study. Environ. Sci. 2019, 5, 782–797. [Google Scholar] [CrossRef]
- David, M.B.; Gentry, L.E.; Cooke, R.A.; Herbstritt, S.M. Temperature and Substrate Control Woodchip Bioreactor Performance in Reducing Tile Nitrate Loads in East-Central Illinois. J. Environ. Qual. 2016, 45, 822. [Google Scholar] [CrossRef]
- Aisami, A.; Yasid, N.A.; Lutfi, W.; Johari, W.; Shukor, M.Y.; Yunus, M.; Shukor, A. Estimation of the Q10 Value; the Temperature Coefficient for the Growth of Pseudomonas Sp. AQ5-04 on Phenol. Bioremediation Sci. Technol. Res. 2017, 5, 24–26. [Google Scholar] [CrossRef]
- Reyes, B.A.; Pendergast, J.S.; Yamazaki, S. Mammalian Peripheral Circadian Oscillators Are Temperature Compensated. J. Biol. Rhythm. 2008, 23, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Yurkovich, J.T.; Zielinski, D.C.; Yang, L.; Paglia, G.; Rolfsson, O.; Sigurjónsson, Ó.E.; Broddrick, J.T.; Bordbar, A.; Wichuk, X.K.; Brynjólfsson, S.; et al. Quantitative Time-Course Metabolomics in Human Red Blood Cells Reveal the Temperature Dependence of Human Metabolic Networks. J. Biol. Chem. 2017, 292, 19556–19564. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Essington, M.; Jagadamma, S.; Zhuang, J.; Schwartz, J.; Lee, J. The Global Significance of Abiotic Factors Affecting Nitrate Removal in Woodchip Bioreactors. Sci. Total Environ. 2022, 848, 157739. [Google Scholar] [CrossRef] [PubMed]
- White, S.A.; Morris, S.A.; Wadnerkar, P.D.; Woodrow, R.L.; Tucker, J.P.; Holloway, C.J.; Conrad, S.R.; Sanders, C.J.; Hessey, S.; Santos, I.R. Anthropogenic Nitrate Attenuation versus Nitrous Oxide Release from a Woodchip Bioreactor. Environ. Pollut. 2022, 300, 118814. [Google Scholar] [CrossRef] [PubMed]
- Cameron, S.G.; Schipper, L.A. Nitrate Removal and Hydraulic Performance of Organic Carbon for Use in Denitrification Beds. Ecol. Eng. 2010, 36, 1588–1595. [Google Scholar] [CrossRef]
- Robertson, W.D. Nitrate Removal Rates in Woodchip Media of Varying Age. Ecol. Eng. 2010, 36, 1581–1587. [Google Scholar] [CrossRef]
- Jaynes, D.B.; Moorman, T.B.; Parkin, T.B.; Kaspar, T.C. Simulating Woodchip Bioreactor Performance Using a Dual-Porosity Model. J. Environ. Qual. 2016, 45, 830. [Google Scholar] [CrossRef]
- Maxwell, B.M.; Birgand, F.; Schipper, L.A.; Christianson, L.E.; Tian, S.; Helmers, M.J.; Williams, D.J.; Chescheir, G.M.; Youssef, M.A. Increased Duration of Drying–Rewetting Cycles Increases Nitrate Removal in Woodchip Bioreactors. Agric. Environ. Lett. 2019, 4, 190028. [Google Scholar] [CrossRef]
- Soupir, M.L.; Hoover, N.L.; Moorman, T.B.; Law, J.Y.; Bearson, B.L. Impact of Temperature and Hydraulic Retention Time on Pathogen and Nutrient Removal in Woodchip Bioreactors. Ecol. Eng. 2018, 112, 153–157. [Google Scholar] [CrossRef]
Pre-Test | Test 1 | Test 2 | |
---|---|---|---|
Length period (days) | 32 | 38 | 38 |
Woodchips age at test start (days) | 0 | 36 | 99 |
Treatments | none | 8-h and 24-h fill | 8-h and 12-h fill |
Water temperature (°C) | 20.2 ± 3.0 | 16.6 ± 2.3 | 14.8 ± 1.6 |
Average inflow of NO3−-N (mg/L) | 48.3 ± 1.6 | 47.4 ± 2.0 | 46.4 ± 2.7 |
Test | Test 1 (from Day 36 to 73) | Test 2 (from Day 99 to 136) | ||||
---|---|---|---|---|---|---|
Treatment | 8 h | 24 h | 8 h | 12 h | ||
Influent load | Cumulative g NO3−-N | 260.7 ± 0.5 | 261.8 ± 3.0 | 259.6 ± 5.5 | 260 ± 12.7 | |
Effluent load | 98.9 ± 1.0 | 31.7 ± 2.6 | 151.1 ± 7.8 | 134.3 ± 12.1 | ||
N removal | % | 62 ± 0.3 bB | 88 ± 1.0 aA | 42 ± 1.8 bD | 49 ± 2.3 aC | |
NRR | Operational cycle (24 h) | g N removed/h | 0.37 ± 0.05 Bb | 0.53 ± 0.05 Aa | 0.25 ± 0.04 Db | 0.30 ± 0.05 Ca |
Fill cycle (8, 12 or 24 h) | 1.12 ± 0.10 Aa | 0.53 ± 0.05 Cb | 0.75 ± 0.10 Ba | 0.60 ± 0.10 BCb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-García, C.; Christianson, L.E. Batch-Mode Denitrifying Woodchip Bioreactors for Expanded Treatment Flexibility. Water 2024, 16, 206. https://doi.org/10.3390/w16020206
Díaz-García C, Christianson LE. Batch-Mode Denitrifying Woodchip Bioreactors for Expanded Treatment Flexibility. Water. 2024; 16(2):206. https://doi.org/10.3390/w16020206
Chicago/Turabian StyleDíaz-García, Carolina, and Laura E. Christianson. 2024. "Batch-Mode Denitrifying Woodchip Bioreactors for Expanded Treatment Flexibility" Water 16, no. 2: 206. https://doi.org/10.3390/w16020206
APA StyleDíaz-García, C., & Christianson, L. E. (2024). Batch-Mode Denitrifying Woodchip Bioreactors for Expanded Treatment Flexibility. Water, 16(2), 206. https://doi.org/10.3390/w16020206