Use of an Ecological Compensation Model in Water Resource Development: A Case Study from Shaanxi Province, China
Abstract
:1. Introduction
2. Application of Ecological Compensation
2.1. Basic Principles of Ecosystem Compensation
2.1.1. Destroyer Pays Principle
2.1.2. User Pays Principle
2.1.3. Protectors Gains Principle
2.1.4. Beneficiary Pays Principle
2.2. The Relationship between Water Resources and Ecological Environment Destruction
2.3. Shaanxi Province Ecological Compensation Programme
3. Water Resources Management in Shaanxi Province
3.1. Water Resources Analysis
3.1.1. Rainfall
3.1.2. Surface Water
3.1.3. Groundwater
3.1.4. Total Water Resources
3.2. Impacts of Water Projects on the Ecological Environment
4. Sustainable Development and Water Resources Management
4.1. Principles of Algorithm-Based Ecological Compensation
4.2. Application of Modeling to Sustainable Water Resources Management
5. Modeling of Water Resources and Water Management
5.1. Data Collection
5.2. Data Preprocessing and Cleaning
5.3. Model Selection and Construction
6. Model Applications
6.1. Regional Overview
6.2. Simulation Results
6.3. Model-Based Ecosystem Compensation Program Development
7. Ecological Situation under the New Program
7.1. Changes in Environmental Parameters
7.2. Results and Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Wang, G.; Xiao, Y. How environmental policies affect personal willingness to pay for environmental protection: An investigation of interpretative and resource effects. Environ. Dev. Sustain. 2024, 26, 1591–1613. [Google Scholar] [CrossRef]
- Yang, H.; He, J.; Li, Z.; Su, Y.; Xu, J. Ethnic diversity and divergent perceptions of climate change: A case study in Southwest China. Humanit. Soc. Sci. Commun. 2024, 11, 690. [Google Scholar] [CrossRef]
- Wang, J.J.; He, S.K.; Liang, G.W. Research on ecological vulnerability and collaborative management strategy of transboundary watersheds. People's Yangtze River 2023, 54, 22–31. [Google Scholar] [CrossRef]
- Liu, J.Y.; Guo, Q.; Wang, Y.S.; Wang, W.T. Macroeconomic effects of marine ecological compensation based on the CGE model. Resour. Sci. 2022, 44, 2501–2510. [Google Scholar]
- Adhikari, R.K.; Grala, R.K.; Petrolia, D.R.; Grado, S.C.; Grebner, D.L.; Shrestha, A. Landowner Willingness to Accept Monetary Compensation for Managing Forests for Ecosystem Services in the Southern United States. For. Sci. 2022, 68, 128–144. [Google Scholar] [CrossRef]
- Akbari, F.; Shourian, M.; Moridi, A. Assessment of the climate change impacts on the watershed-scale optimal crop pattern using a surface-groundwater interaction hydro-agronomic model. Agric. Water Manag. 2022, 265, 107508. [Google Scholar] [CrossRef]
- Shikha, V.; Kumar, Y.; Shivani, M.; Kanika, D.; Lakshman, S. Assessment of Spring Water Quality in Upper Himalayan Villages Using Water Quality Index. Indian Ecol. Soc. 2023, 50, 1924–1931. [Google Scholar]
- Chopra, A.; Ramachandran, P. Understanding water institutions and their impact on the performance of the water sector in India. Water Policy 2021, 23, 466–486. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; He, X. Interactions between surface water and groundwater in selected tributaries of the Wei River (China) revealed by hydrochemistry and stable isotopes. Hum. Ecol. Risk Assess. Int. J. 2022, 28, 79–99. [Google Scholar] [CrossRef]
- Ma, W.-J.; Zhang, W.-S.; Li, C.-Y.; Kou, J.-W.; Wang, M.-M.; Xue, B. Spatiotemporal characteristics and driving factors of allotropic growth of economic scale and marginal benefits of water resources in the Yellow River Basin. J. Nat. Resour. 2023, 38, 3116–3134. [Google Scholar] [CrossRef]
- Croghan, D.; Ala-Aho, P.; Lohila, A.; Welker, J.; Vuorenmaa, J.; Klve, B.; Mustonen, K.-R.; Aurela, M.; Marttila, H. Coupling of Water-Carbon Interactions during Snowmelt in an Arctic Finland Catchment. Water Resour. Res. 2023, 59, e2022WR032892. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.; Tu, C.; Hou, X.; Lyu, C.; Fan, X.; Xia, L. Spatiotemporal evolution and future of carbon storage in resource-based chinese province: A case study from shanxi using PLUS–InVEST model prediction. Sustainability 2024, 16, 4461. [Google Scholar] [CrossRef]
- Jin, T.; Zhang, X.; Wang, T.; Liang, J.; Ma, W.; Xie, J. Spatiotemporal impacts of climate change and human activities on blue and green water resources in northwest river basins of China. Ecol. Indic. 2024, 160, 111823. [Google Scholar] [CrossRef]
- Lihe, Y.; Jun, Z.; Zhe, W.; Jiaqiu, D.; Liang, C.; Chunyan, L.; Pengwei, Z.; Xiaofan, G.; Zhenlong, N. Groundwater circulation patterns and its resources assessment of inland river catchments in northwestern China. Geol. China 2021, 48, 1094–1111. [Google Scholar]
- Daisuke, S. Methodology to compare alternative design options for radioactive waste disposal facilities under the principle of ALARA based on a probabilistic approach with Bayesian inference. Radiat. Prot. Dosim. 2023, 199, 1223–1231. [Google Scholar]
- Du, R.F.; Zhang, Y.J.; Liu, Y.G.; Liu, S.H.; Wang, F.; Zhang, X.; Xie, J.C. Application of water resource multi-objective allocation service based on digital water network. Water Supply 2022, 22, 2683–2694. [Google Scholar] [CrossRef]
- Upma, G.; Vivek, T.; Vinod, K.T. Evaluation of groundwater quality of Prayagraj city using entropy water quality index (EWQI) and new integrated water quality index (IWQI). Sustain. Water Resour. Manag. 2022, 8, 57. [Google Scholar]
- Miller, D.H.; Etterson, M.; Oliver, L.; Paulukonis, E.; Pollesch, N.; Purucker, S.T.; Rogers, D.C.; Sinnathamby, S.; Raimondo, S. Investigating Vernal Pool Fairy Shrimp Exposure to Organophosphate Pesticides: Implications for Population-Level Risk Assessment. Ecologies 2022, 3, 308–322. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cai, Y.; Fu, Q.; Wang, X.; Li, C.; Liu, Q.; Xu, R. A stochastic modeling approach for analyzing water resources systems. J. Contam. Hydrol. 2021, 242, 103865. [Google Scholar] [CrossRef]
- Mohamed, B.D.; Badr, E.M.; Adina, M.G.; Ismail, E.; Aniss, M.; Lhoussaine, E.M.; Mohamed, E.; Ali, E.; Samir, E. Stakeholders’ Interaction in Water Management System: Insights from a MACTOR Analysis in the R’Dom Sub-basin, Morocco. Environ. Manag. 2023, 34, 121–147. [Google Scholar]
- Potrawa, T.; Tetereva, A.; Woodside, A.G. How much is the view from the window worth? Machine learning-driven hedonic pricing model of the real estate market. J. Bus. Res. 2022, 144, 50–65. [Google Scholar] [CrossRef]
- Reichert, J.M.; Junior, J.C.d.D.; Junior, N.B.; Cavalcante, R.B.L. Experimental catchments in the Pampa biome: Database on hydrology in grasslands and eucalyptus plantations in subtropical Brazil. Hydrol. Process. 2021, 35, e14285. [Google Scholar] [CrossRef]
- Zhai, T.; Zhang, D.; Zhao, C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow Sustainable Cities and Society. Sustain. Cities Soc. 2021, 75, 103341. [Google Scholar] [CrossRef]
- Rufino, M.; Filho, A.L.L.; Guedes, S. A reappraisal of the principle of equivalent time based on physicochemical methods. Chem. Geol. 2023, 65, 1–52. [Google Scholar] [CrossRef]
- Than, N.H.; Ly, C.D.; Van Tat, P. The performance of classification and forecasting Dong Nai River water quality for sustainable water resources management using neural network techniques. J. Hydrol. 2021, 596, 126099. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, P. Irrigation water resources optimization with consideration of the regional agro-hydrological process of crop growth and multiple uncertainties. Agric. Water Manag. 2021, 245, 106630. [Google Scholar] [CrossRef]
- Yang, H.-J.; Gou, X.-H.; Yin, D.-C.; Du, M.-M.; Liu, L.-Y.; Wang, K. Research on the coordinated development of ecosystem services and well-being in agricultural and pastoral areas. J. Environ. Manag. 2022, 304, 114300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, W.; Xu, C.; Yang, J. Research on Uniform Magnetic Field Compensation Structure of Array Circular Coils for Wireless Power Transfer. IEEE Trans. Magn. 2021, 57, 1–46. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, S. The coordinated development of the environment and economy is based on the change in ecosystem service value in Shaanxi Province. Acta Ecol. Sin. 2021, 41, 3331–3352. [Google Scholar]
Year | Reservoir Storage (million m3) |
---|---|
2015 | 600 |
2020 | 550 |
2025 | 550 |
2030 | 520 |
2035 | 530 |
2040 | 500 |
Year | Precipitation (mm) | Evapotranspiration Rate (mm/d) |
---|---|---|
2025 | 600 | 4.5 |
2030 | 580 | 4.8 |
2035 | 620 | 4.3 |
2040 | 550 | 5.0 |
Year | Wetland Area (km2) | Water Ecosystem Health Index |
---|---|---|
2025 | 100 | 0.8 |
2030 | 95 | 0.7 |
2035 | 110 | 0.9 |
2040 | 98 | 0.75 |
Year | Wetlands before Programme (km2) | Wetlands after Programme (km2) |
---|---|---|
2025 | 100 | 95 |
2030 | 95 | 100 |
2035 | 110 | 105 |
2040 | 98 | 92 |
Year | Health Index of Water Ecosystems before New Program | Health Index of Water Ecosystems after New Programme |
---|---|---|
2025 | 0.8 | 0.85 |
2030 | 0.7 | 0.88 |
2035 | 0.9 | 0.82 |
2040 | 0.75 | 0.79 |
Year | Water Quality Indicators before the New Program | Water Quality Indicators after New Program |
---|---|---|
2025 | favorable | talented |
2030 | medium | talented |
2035 | favorable | favorable |
2040 | medium | favorable |
Year | Aquatic Biodiversity Indices before the New Program | Aquatic Biodiversity Indices after New Program |
---|---|---|
2025 | 0.85 | 0.90 |
2030 | 0.80 | 0.92 |
2035 | 0.88 | 0.87 |
2040 | 0.75 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Han, P.; Zhang, G. Use of an Ecological Compensation Model in Water Resource Development: A Case Study from Shaanxi Province, China. Water 2024, 16, 2851. https://doi.org/10.3390/w16192851
Chen L, Han P, Zhang G. Use of an Ecological Compensation Model in Water Resource Development: A Case Study from Shaanxi Province, China. Water. 2024; 16(19):2851. https://doi.org/10.3390/w16192851
Chicago/Turabian StyleChen, Longxing, Ping Han, and Gaopan Zhang. 2024. "Use of an Ecological Compensation Model in Water Resource Development: A Case Study from Shaanxi Province, China" Water 16, no. 19: 2851. https://doi.org/10.3390/w16192851
APA StyleChen, L., Han, P., & Zhang, G. (2024). Use of an Ecological Compensation Model in Water Resource Development: A Case Study from Shaanxi Province, China. Water, 16(19), 2851. https://doi.org/10.3390/w16192851