Variations in Primary and Secondary Metabolites of Panicum maximum under Diverse Wastewater Pollution Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Sampling and Analysis
2.2. Plant Treatment
2.3. Determination of Minerals Accumulation in Plants
2.4. Nutritional Components of Plants
2.5. Sugar Analysis
2.6. Oxidative Stress Assessment
2.7. Overall Antioxidant Measurement
2.8. Assessment of the Content of Anthocyanins, Phenolics, and Flavonoids, and Their Metabolism
2.9. Antimicrobial Evaluation
2.10. Statistical Approach
3. Results
3.1. Soil Physicochemical Characteristics
3.2. Plant Biomass and Sugar Content
3.3. Mineral and Heavy Metal Concentration in Plants
3.4. Oxidative Marker Content
3.5. Antioxidant Enzymes and Molecules
3.6. Flavone and Phenolic Acid Content
3.7. Anthocyanin Content and Its Metabolism
3.8. Nutritive Values
3.9. Antimicrobial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Döndü Bilgin, F. Guinea Grass (Panicum maximum) Forage: A Review. MAS J. Appl. Sci. 2021, 6, 77–82. [Google Scholar] [CrossRef]
- Philp, J.N.M.; Vance, W.; Bell, R.W. Forage Options to Sustainably Intensify Smallholder Farming Systems on Tropical Sandy Soils: A Review. Agron. Sustain. Dev. 2019, 39, 30. [Google Scholar] [CrossRef]
- Jamali, M.; Bakhshandeh, E.; Yaghoubi Khanghahi, M.; Crecchio, C. Metadata analysis to evaluate environmental impacts of wheat residues burning on soil quality in developing and developed countries. Sustainability 2021, 13, 6356. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Murgese, P.; Strafella, S.; Crecchio, C. Soil biological fertility and bacterial community response to land use intensity: A case study in the Mediterranean area. Diversity 2019, 11, 211. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Cucci, G.; Lacolla, G.; Lanzellotti, L.; Crecchio, C. Soil fertility and bacterial community composition in a semiarid Mediterranean agricultural soil under long-term tillage management. Soil Use Manag. 2020, 36, 604–615. [Google Scholar] [CrossRef]
- Olatunji, O.S.; Ximba, B.J.; Fatoki, O.S.; Opeolu, B.O. Assessment of the phytoremediation potential of Panicum maximum (guinea grass) for selected heavy metal removal from contaminated soils. Afr. J. Biotechnol. 2014, 13, 1979–1984. [Google Scholar] [CrossRef]
- Hasan, H.; Shloul, T.; Alomari, B.; Alhadidi, L.; Mazahreh, N. Phytoremediation ability of Panicum maximum and Salicornia europaea irrigated with treated wastewater for salt elements in the soil. J. Saudi Soc. Agric. Sci. 2024, 23, 451–457. [Google Scholar] [CrossRef]
- Al Hamedi, F.H.; Kandhan, K.; Liu, Y.; Ren, M.; Jaleel, A.; Alyafei, M.A.M. Wastewater Irrigation: A Promising Way for Future Sustainable Agriculture and Food Security in the United Arab Emirates. Water 2023, 15, 2284. [Google Scholar] [CrossRef]
- Abegunrin, T.P.; Awe, G.O.; Idowu, D.O.; Adejumobi, M.A. Impact of Wastewater Irrigation on Soil Physico-Chemical Properties, Growth and Water Use Pattern of Two Indigenous Vegetables in Southwest Nigeria. CATENA 2016, 139, 167–178. [Google Scholar] [CrossRef]
- Ahmad, H.R.; Aziz, T.; Zia-ur-Rehman, M.; Sabir, M.; Khalid, H. Sources and Composition of Waste Water: Threats to Plants and Soil Health. In Soil Science: Agricultural and Environmental Perspectives; Hakeem, K., Akhtar, J., Sabir, M., Eds.; Springer: Cham, Switzerland, 2016; p. 16. [Google Scholar] [CrossRef]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging Pollutants in Wastewater: A Review of the Literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef]
- Wolff, D.; Krah, D.; Dötsch, A.; Ghattas, A.K.; Wick, A.; Ternes, T.A. Insights into the Variability of Microbial Community Composition and Micropollutant Degradation in Diverse Biological Wastewater Treatment Systems. Water Res. 2018, 143, 313–324. [Google Scholar] [CrossRef]
- Nayek, S.; Gupta, S.; Saha, R.N. Metal Accumulation and Its Effects in Relation to Biochemical Response of Vegetables Irrigated with Metal Contaminated Water and Wastewater. J. Hazard. Mater. 2010, 178, 588–595. [Google Scholar] [CrossRef]
- Bhatla, S.C.; Lal, M.A. Secondary Metabolites. In Plant Physiology, Development and Metabolism; Springer: Singapore, 2023; p. 33. [Google Scholar] [CrossRef]
- Mashabela, M.D.; Masamba, P.; Kappo, A.P. Applications of Metabolomics for the Elucidation of Abiotic Stress Tolerance in Plants: A Special Focus on Osmotic Stress and Heavy Metal Toxicity. Plants 2023, 12, 269. [Google Scholar] [CrossRef]
- Yoshida, Y.; Marubodee, R.; Ogiso-Tanaka, E.; Iseki, K.; Isemura, T.; Takahashi, Y.; Tomooka, N. Salt Tolerance in Wild Relatives of Adzuki Bean, Vigna angularis (Willd.) Ohwi et Ohashi. Genet. Resour. Crop Evol. 2016, 63, 627–637. [Google Scholar] [CrossRef]
- Bamrah, R.K.; Vijayan, P.; Karunakaran, C.; Muir, D.; Hallin, E.; Stobbs, J.; Goetz, B.; Nickerson, M.; Tanino, K.; Warkentin, T.D. Evaluation of X-ray Fluorescence Spectroscopy as a Tool for Nutrient Analysis of Pea Seeds. Crop Sci. 2019, 59, 2689–2700. [Google Scholar] [CrossRef]
- Jaglan, J.; Jaglan, S.; Jaglan, P.; Jaglan, A. Inductively Coupled Plasma Optical Emission Spectroscopy Based Toxicological Risk Assessment of Cadmium and Lead in Tinospora cordifolia. Pharmacol. Res. Mod. Chin. Med. 2023, 7, 100246. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- AOAC (Association of Official Analytical Chemistry). Determination of Crude Fiber. In Official Methods of Analysis; AOAC: Washington, DC, USA, 1980. [Google Scholar]
- Maxson, E.; Rooney, L. Evaluation of Methods for Tannin Analysis in Sorghum Grain. Cereal Chem. 1972, 49, 719. [Google Scholar]
- Czaja, T.; Sobota, A.; Szostak, R. Quantification of Ash and Moisture in Wheat Flour by Raman Spectroscopy. Foods 2020, 9, 280. [Google Scholar] [CrossRef] [PubMed]
- Babič, J.; Tavčar-Kalcher, G.; Celar, F.A.; Kos, K.; Červek, M.; Jakovac-Strajn, B. Ergot and Ergot Alkaloids in Cereal Grains Intended for Animal Feeding Collected in Slovenia: Occurrence, Pattern and Correlations. Toxins 2020, 12, 730. [Google Scholar] [CrossRef]
- Oganesyan, É.T. Mechanism of the Reaction of Triterpenoids with Sulfuric Acid. Chem. Nat. Compd. 1980, 16, 464–468. [Google Scholar] [CrossRef]
- Verspreet, J.; Pollet, A.; Cuyvers, S.; Vergauwen, R.; den Ende, W.; Delcour, J.A. A Simple and Accurate Method for Determining Wheat Grain Fructan Content and Average Degree of Polymerization. J. Agric. Food Chem. 2012, 60, 2102–2107. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Mohammed, A.E.; van Dijk, J.R.; Beemster, G.T.S.; Alotaibi, M.O.; Saleh, A.M. The Impact of Chromium Toxicity on the Yield and Quality of Rice Grains Produced under Ambient and Elevated Levels of CO2. Front. Plant Sci. 2023, 14, 1019859. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi Khanghahi, M.; AbdElgawad, H.; Verbruggen, E.; Korany, S.M.; Alsherif, E.A.; Beemster, G.T.S. Biofertilisation with a Consortium of Growth-Promoting Bacterial Strains Improves the Nutritional Status of Wheat Grain under Control, Drought, and Salinity Stress Conditions. Physiol. Plant. 2022, 174, e13800. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, A.; AbdElgawad, H.; Asard, H. Metalaxyl Effects on Antioxidant Defenses in Leaves and Roots of Solanum nigrum L. Front. Plant Sci. 2017, 8, 1967. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the Thiobarbituric Acid-Reactive-Substances Assay for Estimating Lipid Peroxidation in Plant Tissues Containing Anthocyanin and Other Interfering Compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Zinta, G.; Hegab, M.M.; Pandey, R.; Asard, H.; Abuelsoud, W. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs. Front. Plant Sci. 2016, 7, 276. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- Hartley-Whitaker, J.; Ainsworth, G.; Vooijs, R.; Bookum, W.T.; Schat, H.; Meharg, A.A. Phytochelatins Are Involved in Differential Arsenate Tolerance in Holcus lanatus. Plant Physiol. 2001, 126, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Potters, G.; Horemans, N.; Bellone, S.; Caubergs, R.J.; Trost, P.; Guisez, Y.; Asard, H. Dehydroascorbate Influences the Plant Cell Cycle through a Glutathione-Independent Reduction Mechanism. Plant Physiol. 2004, 134, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Shabbaj, I.I.; Abdelgawad, H.; Balkhyour, M.A.; Tammar, A.; Madany, M.M.Y. Elevated CO2 Differentially Mitigated Oxidative Stress Induced by Indium Oxide Nanoparticles in Young and Old Leaves of C3 and C4 Crops. Antioxidants 2022, 11, 308. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, P.; Reid, D.M. Leaf Senescence and Lipid Peroxidation: Effects of Some Phytohormones, and Scavengers of Free Radicals and Singlet Oxygen. Physiol. Plant. 1982, 56, 453–457. [Google Scholar] [CrossRef]
- Kumar, K.; Khan, P. Age-Related Changes in Catalase and Peroxidase Activities in the Excised Leaves of Eleusine coracana Gaertn. cv PR 202 during Senescence. Exp. Gerontol. 1983, 18, 409–417. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Murshed, R.; Lopez-Lauri, F.; Sallanon, H. Microplate Quantification of Enzymes of the Plant Ascorbate–Glutathione Cycle. Anal. Biochem. 2008, 383, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Drotar, A.; Phelps, P.; Fall, R. Evidence for Glutathione Peroxidase Activities in Cultured Plant Cells. Plant Sci. 1985, 42, 35–40. [Google Scholar] [CrossRef]
- Lundberg, M.; Johansson, C.; Chandra, J.; Enoksson, M.; Jacobsson, G.; Ljung, J.; Johansson, M.; Holmgren, A. Cloning and Expression of a Novel Human Glutaredoxin (Grx2) with Mitochondrial and Nuclear Isoforms. J. Biol. Chem. 2001, 276, 26269–26275. [Google Scholar] [CrossRef]
- Wolosiuk, R.A.; Crawford, N.A.; Yee, B.C.; Buchanan, B.B. Isolation of Three Thioredoxins from Spinach Leaves. J. Biol. Chem. 1979, 254, 1627–1632. [Google Scholar] [CrossRef]
- Wagner, G.J. Content and Vacuole/Extravacuole Distribution of Neutral Sugars, Free Amino Acids, and Anthocyanin in Protoplasts. Plant Physiol. 1979, 64, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Hamad, I.; Abdelgawad, H.; Al Jaouni, S.; Zinta, G.; Asard, H.; Hassan, S.T.S.; Hegab, M.; Hagagy, N.; Selim, S.A. Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality. Molecules 2015, 20, 13620–13641. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, P.R.; Mahatma, M.K.; Jha, S.; Mahatma, L.; Parekh, V.B.; Jha, S.K. Changes in Phenylpropanoid Pathway during Compatible and Incompatible Interaction of Ricinus communis-Fusarium oxysporum f.sp. ricini. Ind. J. Agric. Biochem. 2013, 26, 56–60. [Google Scholar]
- Allina, S.M.; Pri-Hadash, A.; Theilmann, D.A.; Ellis, B.E.; Douglas, C.J. 4-Coumarate:Coenzyme A Ligase in Hybrid Poplar. Properties of Native Enzymes, cDNA Cloning, and Analysis of Recombinant Enzymes. Plant Physiol. 1998, 116, 743–754. [Google Scholar] [CrossRef]
- Beritognolo, I.; Magel, E.; Abdel-Latif, A.; Charpentier, J.P.; Jay-Allemand, C.; Breton, C. Expression of Genes Encoding Chalcone Synthase, Flavanone 3-Hydroxylase, and Dihydroflavonol 4-Reductase Correlates with Flavanol Accumulation during Heartwood Formation in Juglans nigra. Tree Physiol. 2002, 22, 291–300. [Google Scholar] [CrossRef]
- Agusa, T.; Kunito, T.; Yasunaga, G.; Iwata, H.; Subramanian, A.; Ismail, A.; Tanabe, S. Concentrations of Trace Elements in Marine Fish and Its Risk Assessment in Malaysia. Mar. Pollut. Bull. 2005, 51, 896–911. [Google Scholar] [CrossRef]
- Hagagy, N.; AbdElgawad, H. Rapeseed Plant: Biostimulation Effects of Plant Growth-Promoting Actinobacteria on Metabolites and Antioxidant Defense System under Elevated CO2 Conditions. J. Sci. Food Agric. 2024, 104, 51–62. [Google Scholar] [CrossRef]
- Shtull-Trauring, E.; Cohen, A.; Ben-Hur, M.; Israeli, M.; Bernstein, N. NPK in treated wastewater irrigation: Regional scale indices to minimize environmental pollution and optimize crop nutritional supply. Sci. Total Environ. 2022, 806, 150387. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology; Sinauer Associates: Sunderland, MA, USA, 2010. [Google Scholar]
- Rabe, E.; Lovatt, C.J. Increased Arginine Biosynthesis during Phosphorus and Nitrogen Nutritional Stress in Tomato. J. Plant Nutr. 1986, 9, 905–916. [Google Scholar]
- Alaoui-Sossé, B.; Genet, P.; Vinit-Dunand, F.; Toussaint, M.L.; Epron, D.; Badot, P.M. Effect of Copper on Growth in Cucumber Plants (Cucumis sativus) and Its Relationships with Carbohydrate Accumulation and Changes in Ion Contents. Plant Sci. 2004, 166, 1213–1223. [Google Scholar] [CrossRef]
- Yuan, Z.; Cai, S.; Yan, C.; Rao, S.; Cheng, S.; Xu, F.; Liu, X. Research Progress on the Physiological Mechanism by Which Selenium Alleviates Heavy Metal Stress in Plants: A Review. Agronomy 2024, 14, 1787. [Google Scholar] [CrossRef]
- Sarma, H.; Dikshit, A.K.; Bandyopadhyay, M.; Mishra, S. Heavy Metals in Water: Presence, Removal and Safety. Water Air Soil Pollut. 2004, 174, 231–242. [Google Scholar]
- Vasilachi-Mitoseru, I.C.; Stoleru, V.; Gavrilescu, M. Integrated Assessment of Pb(II) and Cu(II) Metal Ion Phytotoxicity on Medicago sativa L., Triticum aestivum L., and Zea mays L. Plants: Insights into Germination Inhibition, Seedling Development, and Ecosystem Health. Plants 2023, 12, 3754. [Google Scholar] [CrossRef]
- Albqmi, M.; Selim, S.; Yaghoubi Khanghahi, M.; Crecchio, C.; Al-Sanea, M.M.; Alnusaire, T.S.; Almuhayawi, M.S.; Al-Jaouni, S.K.; Hussein, S.; Warrad, M.; et al. Chromium (VI) Toxicity and Active Tolerance Mechanisms of Wheat Plant Treated with Plant Growth-Promoting Actinobacteria and Olive Solid Waste. ACS Omega 2023, 8, 32458–32467. [Google Scholar] [CrossRef]
- Sharma, P.; Dubey, R.S. Lead Toxicity in Plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C.; Schat, H. Molecular Mechanisms of Metal Hyperaccumulation in Plants. New Phytol. 2009, 181, 759–776. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Ruan, Y.L.; Jin, Y.; Yang, Y.J.; Li, G.J.; Boyer, J.S. Sugar Input, Metabolism, and Signaling Mediated by Invertase: Roles in Development, Yield Potential, and Response to Drought and Heat. Mol. Plant 2010, 3, 942–952. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Khan, M.R. Understanding the roles of osmolytes for acclimatizing plants to changing environment: A review of potential mechanism. Plant Signal. Behav. 2021, 16, 1913306. [Google Scholar] [CrossRef]
- Dobra, J.; Motyka, V.; Dobrev, P.; Malbeck, J.; Prasil, I.T.; Haisel, D.; Gaudinova, A.; Havlova, M.; Gubis, J.; Vankova, R. Comparison of Hormonal Responses to Heat, Drought and Combined Stress in Tobacco Plants with Elevated Proline Content. J. Plant Physiol. 2010, 167, 1360–1370. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- Al Kashgry, N.A.T.; Darwish, H.; Aljomiha, N.A.; Alharthi, S.; Alayafi, A.A.M.; Fallatah, A.M.; El-Deeb, B.A.; Abd El-Gawad, H.G.; Hewidy, M.; Al-Harbi, N.A.; et al. Silver nanoparticles alleviate the impact of soil contamination and wastewater irrigation on rosemary plants: Modulating of gene expression and secondary metabolites. Mater. Res. Express 2024, 11, 065009. [Google Scholar] [CrossRef]
- Hashem, H.A.; Hassanein, R.A.; El-Deep, M.H.; Shouman, A.I. Irrigation with industrial wastewater activates antioxidant system and osmoprotectant accumulation in lettuce, turnip and tomato plants. Ecotoxicol. Environ. Saf. 2013, 95, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, B.C.; Oelmüller, R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 2012, 7, 1621–1633. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal Behav. 2011, 6, 1720–1731. [Google Scholar]
- Alsherif, E.A.; Yaghoubi Khanghahi, M.; Crecchio, C.; Korany, S.M.; Sobrinho, R.L.; AbdElgawad, H. Understanding the Active Mechanisms of Plant (Sesuvium portulacastrum L.) Against Heavy Metal Toxicity. Plants 2023, 12, 676. [Google Scholar] [CrossRef]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.-M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Hichri, I.; Barrieu, F.; Bogs, J.; Kappel, C.; Delrot, S.; Lauvergeat, V. Recent Advances in the Transcriptional Regulation of the Flavonoid Biosynthetic Pathway. J. Exp. Bot. 2011, 62, 2465–2483. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, D.; Jerbi, B.; Medhioub, M.; Bousselmi, L.; Charef, A. Impact of Treated Urban Wastewater for Reuse in Agriculture on Crop Response and Soil Ecotoxicity. Environ. Sci. Pollut. Res. 2016, 23, 15877–15887. [Google Scholar] [CrossRef] [PubMed]
- Basiglini, E.; Pintore, M.; Forni, C. Effects of Treated Industrial Wastewaters and Temperatures on Growth and Enzymatic Activities of Duckweed (Lemna minor L.). Ecotoxicol. Environ. Saf. 2018, 153, 54–59. [Google Scholar] [CrossRef]
- Nowwar, A.I.; Farghal, I.I.; Ismail, M.A.; Elewa, I.S.; El-Lithy, M.E. Impact of Irrigation with Wastewater on Accumulation of Heavy Metals in Phaseolus vulgaris L. and Its Remediation. J. Soil Sci. Plant Nutr. 2023, 23, 761–777. [Google Scholar] [CrossRef]
- Gould, K.S. Nature’s Swiss Army Knife: The Diverse Protective Roles of Anthocyanins in Leaves. J. Biomed. Biotechnol. 2004, 2004, 314–320. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Zia-Ur-Rehman, M.; Irshad, M.K.; Bharwana, S.A. The Effect of Excess Copper on Growth and Physiology of Important Food Crops: A Review. Environ. Sci. Pollut. Res. Int. 2015, 22, 8148–8162. [Google Scholar] [CrossRef]
- Ververidis, F.; Trantas, E.; Douglas, S.; Vollmer, G.; Kretzschmar, G.; Panopoulos, N. Biotechnology of Flavonoids and Other Phenylpropanoid-Derived Natural Products. Part I. Chemical Diversity, Impacts on Plant Biology and Human Health. Biotechnol. J. 2007, 2, 1214–1234. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef]
- Cushnie, T.P.; Lamb, A.J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Osbourn, A.E. Saponins in Cereals. Phytochemistry 2003, 62, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of Secondary Metabolites in Plant Defense against Pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef] [PubMed]
Parameter | Source 1 (WW1) | Source 2 (WW2) |
---|---|---|
Chemical oxygen demand (g L−1) | 42.08 | 59.21 |
Total suspended solids (mg L−1) | 2123.00 | 9306.51 |
Turbidity unit (NTU) | 7.51 | 5.70 |
Electrical conductivity (µS cm−1) | 918.33 | 842.22 |
Total coliform (MPN 10 mL−1) | 3163.67 | 1814.21 |
Fecal coliform (MPN 10 mL−1) | 1831.00 | 1444.50 |
pH | 6.57 | 6.50 |
Total Kjeldahl nitrogen (%) | 1.14 | 1.40 |
Total phosphorus (P; mg L−1) | 1.95 | 13.09 |
Nitrites (mg L−1) | 0.76 | 0.60 |
Nitrates (mg L−1) | 12.78 | 17.42 |
Ammonium (mg L−1) | 1.83 | 2.41 |
Potassium (K; mg L−1) | 17.16 | 23.10 |
Magnesium (Mg; mg L−1) | 5.37 | 3.19 |
Manganese (Mn; mg L−1) | 22.01 | 5.30 |
Calcium (Ca; mg L−1) | 6.09 | 8.52 |
Iron (Fe; mg L−1) | 0.54 | 0.82 |
Chloride (µg L−1) | 148.05 | 137.5 |
Lead (Pb; mg L−1) | 0.05 | 28.42 |
Cadmium (Cd; mg L−1) | 23.05 | 4.41 |
Zinc (Zn; mg L−1) | 0.04 | 0.00 |
Copper (Cu; mg L−1) | 0.04 | 1.73 |
Chromium (Cr; mg L−1) | 4.04 | 19.42 |
Nickel (Ni; mg L−1) | 0.05 | 0.10 |
Parameter | Control | WW1 | WW2 |
---|---|---|---|
P | 518.11 ± 45.12 a | 451.02 ± 44.38 ab | 361.08 ± 45.02 b |
S | 129.64 ± 14.43 a | 113.09 ± 21.24 ab | 80.63 ± 18.54 b |
K | 429.72 ± 32.67 a | 399.76 ± 23.47 a | 321.50 ± 25.21 b |
Pb | 1.27 ± 1.02 b | 3.55 ± 1.27 b | 58.17 ± 8.15 a |
Cd | 2.70 ± 0.54 b | 30.45 ± 6.71 a | 2.71 ± 0.77 b |
Zn | 8.77 ± 0.79 b | 7.72 ± 0.81 b | 10.93 ± 0.67 a |
Cu | 10.59 ± 2.31 b | 6.52 ± 2.01 b | 78.11 ± 11.32 a |
Cr | 0.51 ± 0.14 b | 0.84 ± 0.31 b | 67.98 ± 9.73 a |
Ni | 0.15 ± 0.03 c | 0.26 ± 0.04 b | 0.40 ± 0.05 a |
Ca | 65.73 ± 8.11 a | 53.00 ± 6.43 ab | 41.60 ± 6.64 b |
Mg | 78.73 ± 6.42 c | 177.01 ± 13.34 b | 277.25 ± 23.52 a |
Mn | 11.65 ± 3.44 c | 125.39 ± 7.78 a | 66.89 ± 8.90 b |
Fe | 16.33 ± 3.21 c | 107.28 ± 7.65 b | 130.26 ± 6.35 a |
Parameter | Control | WW1 | WW2 |
---|---|---|---|
Total antioxidant capacity | 335.57 ± 21.04 c | 757.47 ± 34.50 a | 484.98 ± 37.07 b |
Tocopherols | 148.35 ± 8.87 c | 256.88 ± 19.43 a | 183.08 ± 12.45 b |
Ascorbate | 0.85 ± 0.04 c | 2.04 ± 0.15 a | 1.32 ± 0.14 b |
Glutathione | 0.43 ± 0.03 c | 1.06 ± 0.03 a | 0.65 ± 0.05 b |
Peroxidase | 15.60 ± 1.45 b | 26.96 ± 2.34 a | 18.90 ± 2.02 b |
Catalase | 53.34 ± 0.67 b | 89.13 ± 0.54 a | 62.40 ± 0.73 b |
Superoxide dismutase | 629.42 ± 54.31 b | 1068.10 ± 76.70 a | 708.71 ± 80.14 b |
Ascorbate peroxidase | 5.29 ± 0.43 c | 9.24 ± 0.45 a | 6.45 ± 0.32 b |
Dehydroascorbate reductase | 1.97 ± 0.21 b | 3.58 ± 0.25 a | 2.31 ± 0.19 b |
Monodehydroascorbate reductase | 1.79 ± 0.16 b | 3.39 ± 0.24 a | 2.20 ± 0.34 b |
Glutathione reductase | 30.72 ± 3.79 b | 57.98 ± 3.42 a | 32.71 ± 3.42 b |
Glutathione peroxidase | 9.89 ± 1.45 b | 14.58 ± 0.98 a | 11.97 ± 1.01 b |
Glutaredoxin | 4.39 ± 0.23 c | 8.77 ± 0.44 a | 6.18 ± 0.25 b |
Thioredoxin | 0.54 ± 0.17 b | 1.23 ± 0.07 a | 0.77 ± 0.14 b |
Peroxiredoxins | 13.42 ± 2.00 b | 22.77 ± 1.56 a | 15.89 ± 1.78 b |
Parameter | Control | WW1 | WW2 |
---|---|---|---|
Anthocyanin | 61.55 ± 5.23 b | 59.30 ± 2.23 b | 86.39 ± 5.56 a |
Phenylalanine | 45.81 ± 3.36 c | 90.23 ± 4.30 a | 66.57 ± 3.32 b |
p-Coumaric acid | 4.37 ± 0.34 b | 4.13 ± 0.25 b | 5.95 ± 0.32 a |
Cinnamic acid | 4.90 ± 0.32 b | 4.45 ± 0.40 b | 6.30 ± 0.34 a |
Naringenin | 5.39 ± 0.26 c | 13.77 ± 1.01 a | 9.58 ± 0.76 b |
Phenylalanine ammonia-lyase | 8.42 ± 0.89 ab | 7.30 ± 0.82 b | 10.29 ± 1.11 a |
Chalcone synthase (CHS) | 5.51 ± 0.25 b | 5.56 ± 0.40 b | 7.97 ± 0.65 a |
Cinnamate-4-hydroxylase (C4H) | 5.52 ± 0.43 c | 11.28 ± 1.01 a | 7.90 ± 0.35 b |
4-coumarate: coenzyme A ligase (4CL) | 3.68 ± 0.24 b | 3.94 ± 0.41 b | 5.67 ± 0.44 a |
Parameter | Control | WW1 | WW2 |
---|---|---|---|
Total protein (mg g−1) | 368.21 ± 25.11 a | 229.75 ± 21.34 c | 288.19 ± 24.54 b |
Ash (mg g−1) | 137.70 ± 11.23 c | 176.61 ± 12.56 b | 202.12 ± 16.43 a |
Crude fiber (mg g−1) | 7.81 ± 0.78 b | 15.93 ± 1.23 a | 14.65 ± 1.16 a |
Total phenols (µg GAE g−1 FW) | 1062.20 ± 60.54 b | 1027.95 ± 50.14 b | 1497.79 ± 89.25 a |
Total flavonoids (µg Quercetin g−1 FW) | 108.31 ± 8.71 c | 222.99 ± 9.39 a | 158.56 ± 12.55 b |
Saponin (ng g−1) | 21.75 ± 2.33 b | 25.98 ± 3.31 ab | 28.74 ± 2.21 a |
Steroids (ng g−1) | 187.80 ± 23.91 a | 155.31 ± 20.19 ab | 124.76 ± 22.41 b |
Alkaloids (ng g−1) | 63.90 ± 5.11 a | 55.33 ± 5.65 a | 63.68 ± 6.00 a |
Tannins (ng g−1) | 85.40 ± 4.59 c | 130.61 ± 8.93 b | 169.16 ± 11.40 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaghaleh, H.; AlGarawi, A.M.; Okla, M.K.; Sheteiwy, M.S.; Elsadek, E.A.; Alhaj Hamoud, Y. Variations in Primary and Secondary Metabolites of Panicum maximum under Diverse Wastewater Pollution Conditions. Water 2024, 16, 2795. https://doi.org/10.3390/w16192795
Shaghaleh H, AlGarawi AM, Okla MK, Sheteiwy MS, Elsadek EA, Alhaj Hamoud Y. Variations in Primary and Secondary Metabolites of Panicum maximum under Diverse Wastewater Pollution Conditions. Water. 2024; 16(19):2795. https://doi.org/10.3390/w16192795
Chicago/Turabian StyleShaghaleh, Hiba, Amal Mohamed AlGarawi, Mohammad K. Okla, Mohamed S. Sheteiwy, Elsayed Ahmed Elsadek, and Yousef Alhaj Hamoud. 2024. "Variations in Primary and Secondary Metabolites of Panicum maximum under Diverse Wastewater Pollution Conditions" Water 16, no. 19: 2795. https://doi.org/10.3390/w16192795
APA StyleShaghaleh, H., AlGarawi, A. M., Okla, M. K., Sheteiwy, M. S., Elsadek, E. A., & Alhaj Hamoud, Y. (2024). Variations in Primary and Secondary Metabolites of Panicum maximum under Diverse Wastewater Pollution Conditions. Water, 16(19), 2795. https://doi.org/10.3390/w16192795