Future Projection of Water Resources of Ruzizi River Basin: What Are the Challenges for Management Strategy?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. SWAT Model Setup
2.3.1. SWAT Model Sensitivity Analysis, Calibration and Validation
2.3.2. SWAT Model Performance
2.4. Model Application and Scenario Analysis
2.5. Mann–Kendall (MK) Test
3. Results
3.1. Downscaling and Climate Projection
3.2. Hydrological Model Performance Evaluation
3.3. Climate Change Impacts on the Water Budget
3.3.1. Impact of Climate Change on Monthly Water Budget
3.3.2. Impact of Climate Change on Annual Water Budget
3.3.3. Impact of Climate Change on Streamflow
3.3.4. Impact of Climate Change on Runoff
4. Discussion
4.1. Model Performance and Impact Analysis
4.2. Proposed Management Strategy for Sustainable Development
4.2.1. Hydraulic Infrastructure and Water Management Objectives
4.2.2. Dynamic Reservoir Operation System
4.2.3. Governance and Collaborative Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, W.; Qiao, F.; Zhou, L. Identification of ecological risk zoning on qinghai-tibet plateau from the perspective of ecosystem service supply and demand. Sustainability 2021, 13, 5366. [Google Scholar] [CrossRef]
- Bodian, A.; Dezetter, A.; Diop, L.; Deme, A.; Djaman, K.; Diop, A. Future climate change impacts on streamflows of Two Main West Africa River Basins: Senegal and Gambia. Hydrology 2018, 5, 21. [Google Scholar] [CrossRef]
- Gori Maia, A.; Cesano, D.; Cesar Brito Miyamoto, B.; Santos Eusebio, G.; Andrade de Oliveira Silva, P. Climate change and farm-level adaptation: The Brazilian Sertão. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 1756–8692. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Volume 2, p. 2391. [Google Scholar] [CrossRef]
- Roberts, D.C. Climate Change 2022: Impacts, Adaptation and Vulnerability; Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Cirimwami, J.-P.K.; Ramananarivo, S.; Mutabazi, A.N.; Bisimwa, E.B.; Ramananarivo, R.; Razafiarijaona, J. Changement climatique et production agricole dans la région du Sud-Kivu montagneux à l’Est de la RD Congo. Int. J. Innov. Appl. Stud. 2019, 26, 526–544. Available online: http://www.ijias.issr-journals.org/ (accessed on 14 January 2024).
- Pandey, B.K.; Poonia, V.; Khare, D.; Goyal, M.K. Understanding of Future Water Challenges in a River Basin Under Ensemble of CORDEX Simulated Projections. In Hydro-Meteorological Extremes and Disasters; Springer Nature: Singapore, 2022; pp. 225–242. [Google Scholar] [CrossRef]
- Mahato, A.; Upadhyay, S.; Sharma, D. Global water scarcity due to climate change and its conservation strategies with special reference to India: A review. Plant Arch. 2022, 22, 64–69. [Google Scholar] [CrossRef]
- Hosseini Baghanam, A.; Seifi, A.J.; Sheikhbabaei, A.; Hassanzadeh, Y.; Besharat, M.; Asadi, E. Policy-making toward integrated water resources management of Zarrine River Basin via system dynamics approach under climate change impact. Sustainability 2022, 14, 3376. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, G.; Chen, C.; Shen, L.; Xiao, B. Population exposure to compound droughts and heatwaves in the observations and era5 reanalysis data in the gan river basin, china. Land 2021, 10, 1021. [Google Scholar] [CrossRef]
- Sempewo, J.I.; Kyeyune, J.; Nyenje, P.M.; Nkwasa, A.; Mugume, S.N.; Tsegaye, S.; Eckart, J. Distinct and combined impacts of future climate and land use change on the flow of river Rwizi in Uganda, East Africa. J. Water Clim. Chang. 2024, 15, 1667–1692. [Google Scholar] [CrossRef]
- Banerjee, A.; Chen, R.E.; Meadows, M.; Singh, R.B.; Mal, S.; Sengupta, D. An analysis of long-term rainfall trends and variability in the uttarakhand himalaya using google earth engine. Remote Sens. 2020, 12, 709. [Google Scholar] [CrossRef]
- Kumar, M.D.; Bassi, N. The climate challenge in managing water: Evidence based on projections in the Mahanadi River basin, India. Front. Water 2021, 3, 662560. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Sci. Rep. 2019, 9, 11376. [Google Scholar] [CrossRef] [PubMed]
- Getachew, B.; Manjunatha, B.R. Potential climate change impact assessment on the hydrology of the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Phys. Chem. Earth Parts A B C 2022, 127, 103162. [Google Scholar] [CrossRef]
- Isinkaralar, O. Bioclimatic comfort in urban planning and modeling spatial change during 2020–2100 according to climate change scenarios in Kocaeli, Türkiye. Int. J. Environ. Sci. Technol. 2023, 20, 7775–7786. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Rana, A.; Moradkhani, H.; Sharma, A. Multicriteria evaluation of CMIP5 GCMs for climate change impact analysis. Theor. Appl. Clim. 2017, 128, 71–87. [Google Scholar] [CrossRef]
- Alaminie, A.A.; Tilahun, S.A.; Legesse, S.A.; Zimale, F.A.; Tarkegn, G.B.; Jury, M.R. Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay), Ethiopia. Water 2021, 13, 2110. [Google Scholar] [CrossRef]
- Hofer, S.; Lang, C.; Amory, C.; Kittel, C.; Delhasse, A.; Tedstone, A.; Fettweis, X. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nat. Commun. 2020, 11, 6289. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Shahid, S.; Islam, T.; Hwang, S.; Cho, J.; Zaman, A.U.; Ahmed, M.; Rahman, M.; Hossain, B. Comparison of CMIP6 and CMIP5 model performance in simulating historical precipitation and temperature in Bangladesh: A preliminary study. Theor. Appl. Climatol. 2021, 145, 1385–1406. [Google Scholar] [CrossRef]
- Wyser, K.; Kjellström, E.; Koenigk, T.; Martins, H.; Döscher, R. Warmer climate projections in EC-Earth3-Veg: The role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environ. Res. Lett. 2020, 15, 054020. [Google Scholar] [CrossRef]
- Song, Y.H.; Chung, E.S.; Shahid, S. Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from CMIP6 and CMIP5 general circulation models. Int. J. Climatol. 2021, 41, 5899–5919. [Google Scholar] [CrossRef]
- Pu, Y.; Liu, H.; Yan, R.; Yang, H.; Xia, K.; Li, Y.; Dong, L.; Li, L.; Wang, H.; Nie, Y.; et al. CAS FGOALS-g3 model datasets for the CMIP6 scenario model intercomparison project (ScenarioMIP). Adv. Atmos. Sci. 2020, 37, 1081–1092. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Togawa, T.; Hijioka, Y. Projected land-use changes in the Shared Socioeconomic Pathways: Insights and implications. Ambio 2020, 49, 1972–1981. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, R.; Watari, T.; Motoshita, M. Future greenhouse gas emissions from metal production: Gaps and opportunities towards climate goals. Energy Environ. Sci. 2022, 15, 146–157. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.J.; Barbosa, H.A.; Kumar, T.L. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
- Nkunzimana, A.; Bi, S.; Alriah, M.A.A.; Zhi, T.; Kur, N.A.D. Comparative analysis of the performance of satellite-based rainfall products over various topographical unities in Central East Africa: Case of Burundi. Earth Space Sci. 2020, 7, e2019EA000834. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef]
- Macharia, J.M.; Ngetich, F.K.; Shisanya, C.A. Comparison of satellite remote sensing derived precipitation estimates and observed. Agric. For. Meteorol. 2019, 284, 107875. [Google Scholar] [CrossRef]
- Mulungu, D.M.; Mukama, E. Evaluation and modelling of accuracy of satellite-based CHIRPS rainfall data in Ruvu subbasin, Tanzania. Model. Earth Syst. Environ. 2023, 9, 1287–1300. [Google Scholar] [CrossRef]
- Ngoma, H.; Wen, W.; Ojara, M.; Ayugi, B. Assessing current and future spatiotemporal precipitation variability and trends over Uganda, East Africa, based on CHIRPS and regional climate model datasets. Meteorol. Atmos. Phys. 2021, 133, 823–843. [Google Scholar] [CrossRef]
- Muvundja, F.A.; Riziki, W.J.; Marie-Claire, D.; Lufungula, A.G.; Busanga, K.A.; Christian, A.; Joachim, E.; Alfred, W. The land–water–energy nexus of Ruzizi River Dams (Lake Kivu outflow, African Great Lakes Region): Status, challenges, and perspectives. Front. Environ. Sci. 2022, 10, 892591. [Google Scholar] [CrossRef]
- Shiru, M.S.; Kim, J.H.; Chung, E.S. Variations in projections of precipitations of CMIP6 global climate models under SSP 2–45 and SSP 5–85. KSCE J. Civ. Eng. 2022, 26, 5404–5416. [Google Scholar] [CrossRef]
- Agyekum, J.; Annor, T.; Quansah, E.; Lamptey, B.; Amekudzi, L.K.; Nyarko, B.K. Extreme temperature indices over the Volta Basin: CMIP6 model evaluation. Clim. Dyn. 2023, 61, 203–228. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Shahid, S.; Roy, D.K.; Islam, A.R.M.T.; Hwang, S.; Cho, J.; Zaman, A.U.; Sultana, T.; Rashid, T.; Akter, F. Assessment of CMIP6 global climate models in reconstructing rainfall climatology of Bangladesh. Int. J. Climatol. 2022, 42, 3928–3953. [Google Scholar] [CrossRef]
- Hordofa, A.T.; Leta, O.T.; Alamirew, T.; Chukalla, A.D. Spatiotemporal trend analysis of temperature and rainfall over Ziway Lake Basin, Ethiopia. Hydrology 2022, 9, 2. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Novella, N.S.; Thiaw, W.M. African rainfall climatology version 2 for famine early warning systems. J. Appl. Meteorol. Climatol 2013, 52, 588–606. [Google Scholar] [CrossRef]
- Jodar-Abellan, A.; Pardo, M.Á.; Asadollah, S.B.H.S.; Bailey, R.T. Assessing current and future available resources to supply urban water demands using a high-resolution SWAT model coupled with recurrent neural networks and validated through the SIMPA model in karstic Mediterranean environments. Environ. Sci. Pollut. Res. 2024, 31, 49116–49140. [Google Scholar] [CrossRef]
- Waheed, A.; Jamal, M.H.; Javed, M.F.; Muhammad, K.I. A CMIP6 multi-model-based analysis of potential climate change effects on watershed runoff using SWAT model: A case study of kunhar river basin, Pakistan. Heliyon 2024, 10, e28951. [Google Scholar] [CrossRef]
- Akoko, G.; Le, T.H.; Gomi, T.; Kato, T. A review of SWAT model application in Africa. Water 2021, 13, 1313. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Yang, X.; Haywood, J. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Nasiri, S.; Ansari, H.; Ziaei, A.N. Simulation of water balance equation components using SWAT model in Samalqan Watershed (Iran). Arab. J. Geosci. 2020, 13, 421. [Google Scholar] [CrossRef]
- Taia, S.; Erraioui, L.; Arjdal, Y.; Chao, J.; El Mansouri, B.; Scozzari, A. The application of SWAT model and remotely sensed products to characterize the dynamic of streamflow and snow in a mountainous watershed in the High Atlas. Sensors 2023, 23, 1246. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Budhathoki, A.; Babel, M.S.; Shrestha, S.; Meon, G.; Kamalamma, A.G. Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River basin, Nepal. Ecohydrol. Hydrobiol. 2021, 21, 79–95. [Google Scholar] [CrossRef]
- Brighenti, T.M.; Bonumá, N.B.; Grison, F.; de Almeida Mota, A.; Kobiyama, M.; Chaffe, P.L.B. Two calibration methods for modeling streamflow and suspended sediment with the swat model. Ecol. Eng. 2019, 127, 103–113. [Google Scholar] [CrossRef]
- Abesh, B.F.; Jin, L.; Hubbart, J.A. Predicting climate change impacts on water balance components of a mountainous watershed in the northeastern USA. Water 2022, 14, 3349. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Jamali, M.; Eslamian, S. Parametric and Nonparametric Methods for Analyzing the Trend of Extreme Events. In Handbook of Hydroinformatics; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Almazroui, M.; Şen, Z. Trend analyses methodologies in hydro-meteorological records. Earth Syst. Environ. 2020, 4, 713–738. [Google Scholar] [CrossRef]
- Wang, W.; Li, W. Research on trend analysis method of multi-series economic data based on correlation enhancement of deep learning. Neural Comput. Appl. 2021, 33, 4815–4831. [Google Scholar] [CrossRef]
- Daba, M.H.; Ayele, G.T.; You, S. Long-Term Homogeneity and Trends of Hydroclimatic Variables in Upper Awash River Basin, Ethiopia. Adv. Meteorol. 2020, 2020, 8861959. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Hao, F.; Li, C.; Wang, X. Hydrological components variability under the impact of climate change in a semi-arid river basin. Water 2019, 11, 1122. [Google Scholar] [CrossRef]
- Posite, V.R.; Saber, M.; Ahana, B.S.; Abdelbaki, C.; Bessah, E.; Appiagyei, B.D.; Maouly, D.K.; Danquah, J.A. Modeling Spatio-Temporal Rainfall Distribution in Beni–Irumu, Democratic Republic of Congo: Insights from CHIRPS and CMIP6 under the SSP5-8.5 Scenario. Remote Sens. 2024, 16, 2819. [Google Scholar] [CrossRef]
- Alashan, S. Non-monotonic trend analysis using Mann–Kendall with self-quantiles. Theor. Appl. Climatol. 2023, 155, 901–910. [Google Scholar] [CrossRef]
- Shi, F.; Wang, Z.; Qi, L.; Chen, R. An Assessment of GCM Performance at a Regional Scale Using a Score-Based Method. Adv. Meteorol. 2018, 2018, 7641019. [Google Scholar] [CrossRef]
- Woyessa, Y. Assessment of Climate Change Impact and Comparison of Downscaling Approaches: A Case Study in a Semi-arid River Basin (No. IAHS2022-253). Proc. Int. Assoc. Hydrol. Sci. 2024, 385, 97–102. [Google Scholar] [CrossRef]
- Samuel, S.; Dosio, A.; Mphale, K.; Faka, D.N.; Wiston, M. Comparison of multimodel ensembles of global and regional climate models projections for extreme precipitation over four major river basins in southern Africa—assessment of the historical simulations. Clim. Chang. 2023, 176, 57. [Google Scholar] [CrossRef]
- Do, S.K.; Nguyen, B.Q.; Tran, V.N.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. Investigating the Future Flood and Drought Shifts in the Transboundary Srepok River basin Using CMIP6 Projections. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7516–7529. [Google Scholar] [CrossRef]
- Lehner, F.; Klisho, T.; Formayer, H. Downscaling of climate indicators to 10 × 10 m resolution 2023, (No. EMS2023-132). In Proceedings of the EMS Annual Meeting 2023, Bratislava, Slovakia, 4–8 September 2023; pp. EMS2023–EMS2132. [Google Scholar] [CrossRef]
- Secor, M.; Sun, J.; Yang, F.; Zou, X.; Wu, Z. Global Warming and Topography Impact the Amplitude of the Synoptic-Scale Surface Temperature Variability across the US. Atmosphere 2023, 14, 979. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Shigute, M.; Alamirew, T.; Abebe, A.; Ndehedehe, C.E.; Kassahun, H.T. Understanding Hydrological Processes under Land Use Land Cover Change in the Upper Genale River Basin, Ethiopia. Water 2022, 14, 3881. [Google Scholar] [CrossRef]
- Negewo, T.F.; Sarma, A.K. Estimation of water yield under baseline and future climate change scenarios in Genale Watershed, Genale Dawa River Basin, Ethiopia, using SWAT model. J. Hydrol. Eng. 2021, 26, 05020051. [Google Scholar] [CrossRef]
- Heyi, E.A.; Dinka, M.O.; Mamo, G. Assessing the impact of climate change on water resources of upper Awash River sub-basin, Ethiopia. J. Water Land Dev. 2022, 50, 232–244. [Google Scholar] [CrossRef]
- Rahvareh, M.; Motamedvaziri, B.; Moghaddamnia, A.; Moridi, A. Modeling runoff management strategies under climate change scenarios using hydrological simulation in the Zarrineh River Basin, Iran. J. Water Clim. Chang. 2023, 14, 2205–2226. [Google Scholar] [CrossRef]
- Chen, T.; Ye, Y.; Yang, K.; Zhang, X.; Ao, T. Study on the impact of future climate change on extreme meteorological and hydrological elements in the upper reaches of the Minjiang river. Adv. Meteorol. 2023, 2023, 9458678. [Google Scholar] [CrossRef]
- Tran, T.-N.-D.; Nguyen, B.Q.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. The role of reservoirs under the impacts of climate change on the Srepok River Basin, Central Highlands Vietnam. Front. Environ. Sci. 2023, 11, 1304845. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Van Binh, D.; Tran TN, D.; Kantoush, S.A.; Sumi, T. Response of streamflow and sediment variability to cascade dam development and climate change in the Sai Gon Dong Nai River basin. Clim. Dyn. 2024, 62, 778–780. [Google Scholar] [CrossRef]
- Milly, P.C.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Luetzenburg, G.; Bittner, M.J.; Calsamiglia, A.; Renschler, C.S.; Estrany, J.; Poeppl, R. Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz–Austria, Can Revull–Spain. Sci. Total Environ. 2020, 704, 135389. [Google Scholar] [CrossRef]
- Dombrowsky, I.; Bastian, J.; Däschle, D.; Heisig, S.; Peters, J.; Vosseler, C. International and local benefit sharing in hydropower projects on shared rivers: The Ruzizi III and Rusumo Falls cases. Water Policy 2014, 16, 1087–1103. [Google Scholar] [CrossRef]
- Eisenberg, J.; Muvundja, F.A. Quantification of erosion in selected catchment areas of the Ruzizi River (DRC) using the (R) USLE model. Land 2020, 9, 125. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Kantoush, S.; Binh DVan Saber, M.; Vo, D.N.; Sumi, T. Quantifying the impacts of hydraulic infrastructure on tropical streamflows. Hydrol. Process. 2023, 37, e14834. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Kantoush, S.; Binh DVan Saber, M.; Vo, D.N.; Sumi, T. Understanding the anthropogenic development impacts on long-term flow regimes in a tropical river basin, Central Vietnam. Hydrol. Sci. J. 2023, 68, 341–354. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Kantoush, S.A.; Sumi, T. Quantifying the consequences of unsustainable sand mining and cascade dams on aspects in a tropical river basin. Sci. Rep. 2024, 14, 1178. [Google Scholar] [CrossRef] [PubMed]
- Bagula, E.M.; Majaliwa, J.-G.M.; Basamba, T.A.; Mondo, J.-G.M.; Vanlauwe, B.; Gabiri, G.; Tumuhairwe, J.-B.; Mushagalusa, G.N.; Musinguzi, P.; Akello, S.; et al. Water use efficiency of maize (Zea mays L.) crop under selected soil and water conservation practices along the slope gradient in Ruzizi watershed, eastern DR Congo. Land 2022, 11, 1833. [Google Scholar] [CrossRef]
- Lakshmi, V. Enhancing human resilience against climate change: Assessment of hydroclimatic extremes and sea level rise impacts on the Eastern Shore of Virginia, United States. Sci. Total Environ. 2024, 947, 174289. [Google Scholar] [CrossRef]
- Tapas, M.R.; Do, S.K.; Etheridge, R.; Lakshmi, V. Investigating the impacts of climate change on hydroclimatic extremes in the Tar-Pamlico River basin, North Carolina. J. Environ. Manag. 2024, 363, 121375. [Google Scholar] [CrossRef]
Parameter Name | Initial Suggested Range | Fitted Parameter | Parameter Name | Initial Suggested Range | Fitted Parameter | ||
---|---|---|---|---|---|---|---|
Min | Max | Min | Max | ||||
r__CN2.mgt | −0.2 | 0.2 | −0.19 | r__CANMX.hru | 0 | 100 | 39.43 |
v__ALPHA_BF.gw | 0 | 1 | 0.78 | r__SLSUBBSN.hru | 10 | 150 | 143.70 |
v__GW_DELAY.gw | 0 | 500 | 495.55 | r__CH_K2.rte | −0.01 | 500 | 202.74 |
v__GWQMN.gw | 0 | 5000 | 481.59 | r__OV_N.hru | 0.01 | 1 | 0.78 |
r__GW_REVAP.gw | 0.02 | 0.2 | 0.10 | r__EPCO.hru | 0 | 1 | 0.18 |
r__REVAPMN.gw | 0 | 500 | 294.70 | r__CH_N2.rte | −0.01 | 0.3 | 0.25 |
r__HRU_SLP.hru | 0 | 1 | 0.25 | r__SURLAG.bsn | 0.05 | 24 | 6.61 |
r__ESCO.hru | 0 | 1 | 0.10 | r__SOL_Z.sol | −0.4 | 0.4 | 0.33 |
r__SOL_BD.sol | 0.9 | 2.5 | 1.29 | r__ALPHA_BNK.rte | 0 | 1 | 0.15 |
r__SOL_AWC.sol | 0 | 1 | 0.12 | r__TLAPS.sub | −10 | 10 | 8.98 |
r__SOL_K.sol | 0 | 2000 | 10 | r__PLAPS.sub | −1000 | 1000 | 507.14 |
Metrics | Equations | Interval | Best Fit |
---|---|---|---|
Percent Bias (PBIAS) | 0 | ||
Nash–Sutcliffe Efficiency coefficient (NSE) | 1 | ||
Coefficient of Determination (R2) | 1 | ||
Kling–Gupta Efficiency (KGE) | ] [ | 1 |
Concept | ZMK |
---|---|
No trend | 0 |
Statistically significant increasing trend | >+1.96 |
Statistically significant decrease in trend | <−1.96 |
Statistically, no significant increasing trend | 0 < ZMK < 1.96 |
Statistically, no significant decreasing trend | −1.96 < ZMK < 0 |
Names | Description | t-Stat | p-Value |
---|---|---|---|
GW_REVAPM.gw | Groundwater “Revap” coefficient | 0.09778 | 0.922117 |
PLAPS.sub | Plant Uptake Compensation Factor | 0.146751 | 0.883348 |
ESCO.hru | Soil Evaporation Compensation Factor | 0.185151 | 0.85313 |
TLAPS.hru | Temperature Lapse Rate | −0.21343 | 0.831015 |
ALPHA_BNK.te | Baseflow Alpha Factor for Bank Storage | 0.258974 | 0.796135 |
CH_K2.rte | Effective Hydraulic Conductivity in Main Channel Alluvium | −0.29543 | 0.767693 |
HRU_SLP.hru | Average Slope Length | −0.30149 | 0.763706 |
CANMX.hru | Maximum Canopy Storage | −0.40223 | 0.687532 |
ALPHA_BF.gw | Baseflow Alpha Factor | 0.419657 | 0.674768 |
SOL_BD(.).sol | Soil Bulk Density | 0.449573 | 0.653027 |
GW_DELAY.gw | Groundwater Delay | 0.568829 | 0.569537 |
OV_N.hru | Manning’s “n” Value for Overland Flow | −0.68209 | 0.495299 |
SURLAG.bsn | Surface Runoff Lag Time | −0.69955 | 0.484266 |
SLSUBBSN.hru | Average Slope Length | −1.04614 | 0.295623 |
CH_N2.rte | Manning’s “n” Value for Main Channel | −1.17855 | 0.238719 |
SOL_Z(.).sol | Depth of Soil Layer | 1.329801 | 0.183734 |
EPCO.hru | Plant Water Uptake Compensation Factor | 1.76827 | 0.07717 |
SOL_K(.).sol | Saturated Hydraulic Conductivity) | −2.77607 | 0.005554 |
SOL_AWC(.).sol | Available Water Capacity of the Soil Layer | 2.846332 | 0.004468 |
GWQMN.gw | Threshold Depth of Water in the Shallow Aquifer Required for Return Flow to Occur | 12.87147 | 0.000000 |
GW_DELAY.gw | Groundwater Delay | 16.57679 | 0.000000 |
CN2.mgt | Initial SCS Runoff Curve Number for Moisture Condition II | −75.8484 | 0.000000 |
Climate Scenarios | Time Frame | Rainfall (mm) | ET (mm) | Percolation (mm) | SUR_Q (mm) | GW_Q (mm) | LAT_Q (mm) | WYLD (mm) |
---|---|---|---|---|---|---|---|---|
Baseline | 1983–2020 | 1326.30 | 355.80 | 965.50 | 0.31 | 917.22 | 0.02 | 917.55 |
SSP2-4.5 | 2040–2069 | 830.90 | 351.40 | 465.53 | 0 | 442.23 | 0.01 | 442.24 |
−37.35% | −1.24% | −51.78 | −100% | −51.79 | −50% | −51.8% | ||
2070–2100 | 845.00 | 356.80 | 476.55 | 0 | 452.7 | 0.01 | 452.7 | |
−36.29% | +0.28% | −50.64% | −100% | −50.64% | −50% | −50.66 | ||
SSP5-8.5 | 2040–2069 | 824.1 | 352.4 | 462.24 | 0 | 439.5 | 0.01 | 439.51 |
−37.86% | −0.96 | −52.11% | −100% | −52.08 | −50% | −52.10 | ||
2070–2100 | 869.6 | 359.5 | 496.52 | 0 | 471.68 | 0.01 | 471.69 | |
−34.43% | +1.04 | −48.57 | −100% | −48.58 | −50% | −48.59 |
Months ↓ | Baseline | MK Z-Value SSP2-4.5 | MK Z-Value SSP5-8.5 | ||
---|---|---|---|---|---|
Time Frame → | 1983–2020 | 2040–2069 | 2070–2100 | 2040–2069 | 2070–2100 |
Jan | −1.08 | 4.54 * | 2.03 * | 1.38 | 4.90 * |
Feb | −1.59 | 3.75 * | 1.18 | 1.40 | 4.92 * |
Mar | −1.78 | 3.55 * | 1.18 | 1.30 | 4.75 * |
Apr | −1.35 | 4.14 * | 1.97 * | 1.30 | 4.75 * |
May | −1.16 | 3.92 * | 1.56 | 0.42 | 4.28 * |
Jun | −1.05 | 3.95 * | 1.52 | 0.77 | 4.30 * |
Jul | −0.99 | 3.97 * | 1.75 | 0.91 | 4.71 * |
Aug | −0.93 | 3.95 * | 1.65 | 1.17 | 4.71 * |
Sep | −1.22 | 3.79 * | 1.63 | 0.63 | 4.63 * |
Oct | −1.10 | 3.92 * | 1.60 | 0.63 | 4.35 * |
Nov | −1.19 | 3.86 * | 1.75 | 0.00 | 4.32 * |
Dec | −0.52 | 3.90 * | 1.37 | 0.73 | 4.60 * |
Annual | −1.19 | 4.23 * | 1.82 | 1.01 | 4.86 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahana, B.S.; Nguyen, B.Q.; Posite, V.R.; Abdelbaki, C.; Kantoush, S.A. Future Projection of Water Resources of Ruzizi River Basin: What Are the Challenges for Management Strategy? Water 2024, 16, 2783. https://doi.org/10.3390/w16192783
Ahana BS, Nguyen BQ, Posite VR, Abdelbaki C, Kantoush SA. Future Projection of Water Resources of Ruzizi River Basin: What Are the Challenges for Management Strategy? Water. 2024; 16(19):2783. https://doi.org/10.3390/w16192783
Chicago/Turabian StyleAhana, Bayongwa Samuel, Binh Quang Nguyen, Vithundwa Richard Posite, Cherifa Abdelbaki, and Sameh Ahmed Kantoush. 2024. "Future Projection of Water Resources of Ruzizi River Basin: What Are the Challenges for Management Strategy?" Water 16, no. 19: 2783. https://doi.org/10.3390/w16192783
APA StyleAhana, B. S., Nguyen, B. Q., Posite, V. R., Abdelbaki, C., & Kantoush, S. A. (2024). Future Projection of Water Resources of Ruzizi River Basin: What Are the Challenges for Management Strategy? Water, 16(19), 2783. https://doi.org/10.3390/w16192783