Water Inflow Forecasting Based on Visual MODFLOW and GS-SARIMA-LSTM Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Numerical Simulation Method
2.3. Time Series Method
3. Results
3.1. Numerical Simulation Predicting
3.2. Time Series Predicting
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, W.; Yin, S. Dynamic mechanism of water inflow from floor of mining face. Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. 2010, 29, 3344–3349. [Google Scholar]
- Ji, Z.; Tian, H.; Yang, Z.; Liu, T.; Bandara, S. Mechanism of water inflow from coal seam floor based on coupling mechanism of seepage and stress. J. Intell. Fuzzy Syst. 2018, 34, 965–974. [Google Scholar] [CrossRef]
- Bukowski, P. Water Hazard Assessment in Active Shafts in Upper Silesian Coal Basin Mines. Mine Water Environ. 2011, 30, 302–311. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, K.; Zhang, W.; Wei, Z. Roof aquifer water abundance evaluation: A case study in Taigemiao, China. Arab. J. Geosci. 2017, 10, 254. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C. Evaluation of relative technological innovation capability: Model and case study for China’s coal mine. Resour. Policy 2018, 58, 144–149. [Google Scholar] [CrossRef]
- Cui, F.; Wu, Q.; Lin, Y.; Zeng, Y.; Zhang, K. Damage Features and Formation Mechanism of the Strong Water Inflow Disaster at the Daxing Co Mine, Guangdong Province, China. Mine Water Environ. 2018, 37, 346–350. [Google Scholar] [CrossRef]
- Liu, B.; Li, S.-C.; Nie, L.-C.; Wang, J.; Li, L.-P.; Liu, Z.-Y.; Song, J. Research on simulation of mine water inflow real-time monitoring of using electrical resistivity constrained inversion imaging method. Meitan Xuebao/J. China Coal Soc. 2012, 37, 1722–1731. [Google Scholar]
- Wu, Q.; Zhao, D.; Wang, Y.; Shen, J.; Mu, W.; Liu, H. Method for assessing coal-floor water-inflow risk based on the variable-weight model and unascertained measure theory. Hydrogeol. J. 2017, 25, 2089–2103. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, T.; Li, J.; Sun, Y.; Zhang, C.; Chen, G.; Gao, Y.; He, Y. Defects and Improvement of Predicting Mine Water Inflow by Virtual Large Diameter Well Method. Geofluids 2022, 2022, 3067983. [Google Scholar] [CrossRef]
- Zhixiong, Z.; Yang, L.; Mo, X.; Yunhui, Z.; Yun, L. Study on analytical calculation method of water inflow in the tunnel of oblique crossing layered aquifer structure. In Proceedings of the 2020 International Conference on New Energy and Sustainable Development, NESD 2020, Changchun, China, 21–23 August 2020. [Google Scholar]
- Li, W.; Liu, Z.; Guo, H.; Li, N.; Kang, W. Simulation of a groundwater fall caused by geological discontinuities. Hydrogeol. J. 2011, 19, 1121–1133. [Google Scholar] [CrossRef]
- Miladinovic, B.; Vakanjac, V.R.; Bukumirovic, D.; Dragisic, V.; Vakanjac, B. Simulation of mine water inflow: Case study of the stavalj coal mine (southwestern serbia). Arch. Min. Sci. 2015, 60, 955–969. [Google Scholar] [CrossRef]
- Liu, K.; Goyes, Y.; Chen, C.; Gélvez, S. Estimación de los parámetros hidrogeológicos (S, T) a partir de ensayos de bombeo en régimen variable resolviendo un sistema no-lineal de ecuaciones (SNE). Boletín Geol. 2014, 36, 71–77. [Google Scholar]
- Ngo, A.Q.T.; Bastian, P.; Ippisch, O. Numerical solution of steady-state groundwater flow and solute transport problems: Discontinuous Galerkin based methods compared to the Streamline Diffusion approach. Comput. Methods Appl. Mech. Eng. 2015, 294, 331–358. [Google Scholar] [CrossRef]
- Wu, C.; Wu, X.; Zhu, G.; Qian, C. Predicting mine water inflow and groundwater levels for coal mining operations in the Pangpangta coalfield, China. Environ. Earth Sci. 2019, 78, 130. [Google Scholar] [CrossRef]
- Zhai, Y.; Cao, X.; Jiang, Y.; Sun, K.; Hu, L.; Teng, Y.; Wang, J.; Li, J. Further Discussion on the Influence Radius of a Pumping Well: A Parameter with Little Scientific and Practical Significance That Can Easily Be Misleading. Water 2021, 13, 2050. [Google Scholar] [CrossRef]
- Golian, M.; Teshnizi, E.S.; Nakhaei, M. Prediction of water inflow to mechanized tunnels during tunnel-boring-machine advance using numerical simulation. Hydrogeol. J. 2018, 26, 2827–2851. [Google Scholar] [CrossRef]
- Song, C.; Hu, X.; Chen, Z.; Huang, W. Study on Stress—Fluid Coupling of Coal Seam Floor Water Outburst Based on FLAC 3D Simulation. Chem. Technol. Fuels Oils 2024, 59, 1304–1312. [Google Scholar] [CrossRef]
- Yin, L.; Shi, N.; Li, C. Numerical Simulation of Deformation Failure Law of Floor in Deep Mining. In Proceedings of the 3RD International Workshop on Mine Hazards Prevention and Control, Brisbane, Australia, 19–21 November 2013; pp. 273–279. [Google Scholar]
- Adhikari, K.; Mal, U. Evaluation of contamination of manganese in groundwater from overburden dumps of Lower Gondwana coal mines. Environ. Earth Sci. 2021, 80, 23. [Google Scholar] [CrossRef]
- Khan, M.S.H.; Haque, M.E.; Ahmed, M.; Mallick, J.; Islam, A.R.M.T.; Fattah, M.A. Quantitative analysis and modeling of groundwater flow using visual MODFLOW: A case from subtropical coal mine, northwest Bangladesh. Environ. Dev. Sustain. 2023, 26, 12971–12993. [Google Scholar] [CrossRef]
- Liu, B.; Liu, G.; Sha, J.; Sun, J.; Zhao, X.; Ren, S.; Liu, R.; Li, S. Numerical simulation of the interaction between mine water drainage and recharge: A case study of Wutongzhuang coal mine in Heibei Province, China. Ecol. Indic. 2024, 158, 111568. [Google Scholar] [CrossRef]
- Xu, K.; Wei, Z.; Wang, G.Q. Coal mine roof aquifer drainage prediction by visual modflow. In Proceedings of the International Conference on Water Resources and Environment, WRE 2015, Beijing, China, 25–28 July 2015; pp. 463–466. [Google Scholar]
- Surinaidu, L.; Gurunadha Rao, V.V.S.; Srinivasa Rao, N.; Srinu, S. Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India. Water Resour. Ind. 2014, 7–8, 49–65. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, W.; Wang, J.; Xie, S. Prediction of groundwater inflow into coal mines from aquifers underlying the coal seams in China: Application of vulnerability index method to Zhangcun Coal Mine, China. Environ. Geol. 2009, 57, 1187–1195. [Google Scholar] [CrossRef]
- Fu, H.L.; An, P.T.; Chen, L.; Cheng, G.W.; Li, J.; Yu, X.H. Analysis of Tunnel Water Inflow Considering the Influence of Surrounding Rock Permeability Coefficient by Excavation Disturbance and Ground Stress. Appl. Sci. 2021, 11, 3645. [Google Scholar] [CrossRef]
- Nearing, G.S.; Kratzert, F.; Sampson, A.K.; Pelissier, C.S.; Klotz, D.; Frame, J.M.; Prieto, C.; Gupta, H.V. What Role Does Hydrological Science Play in the Age of Machine Learning? Water Resour. Res. 2021, 57, e2020WR028091. [Google Scholar] [CrossRef]
- Weiss, C.H. Time Series Modelling. Entropy 2021, 23, 1163. [Google Scholar] [CrossRef]
- Yu, X.G.; Han, J.; Shi, L.Q.; Wang, Y.; Zhao, Y.P. Application of a BP neural network in predicting destroyed floor depth caused by underground pressure. Environ. Earth Sci. 2017, 76, 535. [Google Scholar] [CrossRef]
- Choubin, B.; Malekian, A. Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions. Environ. Earth Sci. 2017, 76, 538. [Google Scholar] [CrossRef]
- Valipour, M. Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol. Appl. 2015, 22, 592–598. [Google Scholar] [CrossRef]
- Houria, B.; Abderrahmane, M.; Kenza, K.; Gabor, G. Short-term predictions of PM10 and NO2 concentrations in urban environments based on ARIMA search grid modeling. Clean-Soil Air Water 2024, 52, 2300395. [Google Scholar] [CrossRef]
- Gao, X.; Hou, J. An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process. Neurocomputing 2016, 174, 906–911. [Google Scholar] [CrossRef]
- Yan, P.-c.; Zhang, X.-f.; Shang, S.-h.; Zhang, C.-y. Research on Mine Water Inflow Identification Based on LIF and LSTM Neural Network. Spectrosc. Spectr. Anal. 2022, 42, 3091–3096. [Google Scholar] [CrossRef]
- Kong, T.; Fang, W.; Love, P.E.D.; Luo, H.; Xu, S.; Li, H. Computer vision and long short-term memory: Learning to predict unsafe behaviour in construction. Adv. Eng. Inform. 2021, 50, 101400. [Google Scholar] [CrossRef]
- Emami, M.; Nazif, S.; Mousavi, S.F.; Karami, H.; Daccache, A. A hybrid constrained coral reefs optimization algorithm with machine learning for optimizing multi-reservoir systems operation. J. Environ. Manag. 2021, 286, 112250. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Zou, Y.; He, K.; Zhu, B. Carbon futures price forecasting based with ARIMA-CNN-LSTM model. In Proceedings of the 7th International Conference on Information Technology and Quantitative Management, ITQM 2019, Granada, Spain, 3–6 November 2019; pp. 33–38. [Google Scholar]
- Mao, W.; Zou, X.; Guo, Z.; Sun, S.; Ma, S.; Lyv, S.; Xiao, Y.; Ji, X.; Wang, Y. Numerical simulations of calcium sulphate scaling in full-scale brackish water reverse osmosis pressure vessels using computational fluid dynamics. Membranes 2021, 11, 521. [Google Scholar] [CrossRef]
- Liu, Q.L.; Zhang, Z.J.; Zhang, B.; Mu, W.P.; Zhang, H.J.; Li, Y.T.; Xu, N.X. Hydrochemical analysis and identification of open-pit mine water sources: A case study from the Dagushan iron mine in Northeast China. Sci. Rep. 2021, 11, 23152. [Google Scholar] [CrossRef]
- McDonald, M.G.; Harbaugh, A.W. The history of MODFLOW. Ground Water 2003, 41, 280–283. [Google Scholar] [CrossRef]
- Moeeni, H.; Bonakdari, H.; Ebtehaj, I. Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach. J. Earth Syst. Sci. 2017, 126, 18. [Google Scholar] [CrossRef]
- Fouli, H.; Fouli, R.; Bashir, B.; Loni, O.A. Seasonal forecasting of rainfall and runoff volumes in Riyadh Region, KSA. KSCE J. Civ. Eng. 2018, 22, 2637–2647. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Liu, B.; Feng, R.; Liu, A.; Dong, L. Science mapping approach to assisting the review of mine water disaster prediction and evaluation in China between 2009 and 2019. In Proceedings of the 2019 5th International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE 2019), Chongqing, China, 6–8 December 2019. [Google Scholar]
- Wang, J.; Wang, T.; Zhao, S.; Sun, R.; Lan, Y.; Zhang, Y.; Du, M.; Zhang, T.; Wu, J.; Zhang, Q. Numerical simulation of groundwater in hyporheic zone with coupled parameter stochastic scheme. Front. Earth Sci. 2024, 12, 1426899. [Google Scholar] [CrossRef]
- Henderson, T.; Fulcher, B.D. Feature-Based Time-Series Analysis in R using the theft Package. arXiv 2022, arXiv:2208.06146. [Google Scholar]
- Peng, S.; Weng, Y. Development and Application of Experimental Platform for Time Series Analysis Course. In Proceedings of the 13th IEEE International Conference on Software Engineering and Service Science, ICSESS 2022, Beijing, China, 21–23 October 2022; pp. 267–270. [Google Scholar]
- Abebe, A.; Foerch, G. Stochastic simulation of the severity of hydrological drought. Water Environ. J. 2008, 22, 2–10. [Google Scholar] [CrossRef]
- Aksoy, H.; Unal, N.E.; Eris, E.; Yuce, M.I. Stochastic modeling of lake van water level time series with jumps and multiple trends. Hydrol. Earth Syst. Sci. 2013, 17, 2297–2303. [Google Scholar] [CrossRef]
- Clark, S.R.; Lerat, J.; Perraud, J.-M.; Fitch, P. Deep learning for monthly rainfall-runoff modelling: A large-sample comparison with conceptual models across Australia. Hydrol. Earth Syst. Sci. 2024, 28, 1191–1213. [Google Scholar] [CrossRef]
- Frame, J.M.; Kratzert, F.; Raney, A.; Rahman, M.; Salas, F.R.; Nearing, G.S. Post-Processing the National Water Model with Long Short-Term Memory Networks for Streamflow Predictions and Model Diagnostics. J. Am. Water Resour. Assoc. 2021, 57, 885–905. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 2019, 23, 5089–5110. [Google Scholar] [CrossRef]
Generalized Strata | Permeability Heterogeneity | Permeability Coefficient (m/d) | Stratum Property |
---|---|---|---|
Alluvial Sand and Gravel Aquifer | 1 | 10.2 | Submerged Aquifer |
2 | 11.6 | ||
3 | 12.4 | ||
4 | 19 | ||
Marl Aquifers | 5 | 0.0006 | Pressure Aquifer |
6 | 0.001 | ||
Tuff Basalt Aquifers | 7 | 0.000028 | Pressure Aquifer |
8 | 0.00005 |
DATA | RMSE |
---|---|
0.8 | 69.18227829955616 |
0.85 | 82.79368072474763 |
0.9 | 85.38385786475945 |
DATA | RMSE | R2 | ||
---|---|---|---|---|
VM | G-S-L | VM | G-S-L | |
2023-01 | 68 | 58.028342 | −0.529143 | −0.304688 |
2023-02 | 28 | 13.084358 | 0.740734 | 0.925511 |
2023-03 | 34 | 26.220373 | 0.617714 | 0.659466 |
2023-04 | 92 | 62.046975 | −1.799019 | −0.423810 |
2023-05 | 82 | 69.788770 | −1.223606 | −0.697176 |
2023-06 | 68 | 33.570071 | −0.529143 | 0.541864 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Dong, D.; Chen, Y.; Wang, R. Water Inflow Forecasting Based on Visual MODFLOW and GS-SARIMA-LSTM Methods. Water 2024, 16, 2749. https://doi.org/10.3390/w16192749
Yang Z, Dong D, Chen Y, Wang R. Water Inflow Forecasting Based on Visual MODFLOW and GS-SARIMA-LSTM Methods. Water. 2024; 16(19):2749. https://doi.org/10.3390/w16192749
Chicago/Turabian StyleYang, Zhao, Donglin Dong, Yuqi Chen, and Rong Wang. 2024. "Water Inflow Forecasting Based on Visual MODFLOW and GS-SARIMA-LSTM Methods" Water 16, no. 19: 2749. https://doi.org/10.3390/w16192749
APA StyleYang, Z., Dong, D., Chen, Y., & Wang, R. (2024). Water Inflow Forecasting Based on Visual MODFLOW and GS-SARIMA-LSTM Methods. Water, 16(19), 2749. https://doi.org/10.3390/w16192749