Sustainable Groundwater Management Using Machine Learning-Based DRASTIC Model in Rurbanizing Riverine Region: A Case Study of Kerman Province, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methodology
2.3.1. Implementing the Basic DRASTIC Model
2.3.2. Implementation of Machine Learning-Based DRASTIC Models
2.3.3. Models Validation
2.3.4. Mapping Spatial Variations of Groundwater Physico-Chemical Properties
3. Results
3.1. Basic DRASTIC Vulnerability Index
3.2. GwPR Vulnerability Assessment Using ML-Based DRASTIC Models
3.3. Groundwater Physicochemical Characteristics
4. Discussion
- Geographical, Geological, and Climatic Characteristics: The unique geographical and climatic conditions of Kerman Province, such as water scarcity and the dispersion of water sources, can significantly impact water quality. Additionally, groundwater quality variations in Kerman Province are heavily influenced by geological conditions. Numerous factors, including surface water levels, soil properties, topography, hydrogeomorphology, drainage patterns, land use, and climate conditions, determine the composition and quality of groundwater [50].
- Human and Industrial Activities: Human activities such as agriculture, industry, power generation, use of chemicals, urban solid waste production, and the use of pesticides and insecticides in the region may increase TDS levels and other chemical parameters that do not conform to WHO standards, leading to groundwater quality deterioration and contamination. These concentrations are influenced by environmental conditions such as temperature, turbidity, pH, and EC. The increase in these toxic metals, without noticeable changes in the color, taste, and smell of the water, can degrade water quality and pose a threat to the environment and consumers.
- Water Resource Management: Managerial challenges and limitations in providing and controlling water quality in Kerman Province may cause deviations from international standards. Water resource management in this region, due to the arid and semi-arid climate, excessive groundwater extraction, particularly in agriculture, low rainfall, and declining groundwater levels, faces serious challenges in the development of modern water treatment technologies. Moreover, climate change and population growth have placed additional pressure on water resources. Addressing these challenges requires raising public awareness, appropriate policymaking, the use of modern technologies, and sustainable groundwater management strategies [11,17].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dandapat, K.; Chatterjee, U.; Das, S.; Patra, A.; Manna, H.; Ghosh, A.; Chandra Pal, S.; Md. Islam, A.R.; Costache, R.; Alam, E.; et al. Assessment of groundwater potential zones in data-scarce regions using GIS-based multicriteria decision-making approach. Geocarto Int. 2024, 39, 2311202. [Google Scholar] [CrossRef]
- Ibraheem, I.M.; El-Qady, G. Hydrogeophysical Investigations at El-Nubariya-Wadi El-Natrun Area, West Nile Delta, Egypt. In Groundwater in the Nile Delta; Negm, A., Ed.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2019; Volume 73, pp. 235–271. [Google Scholar]
- Singh, C.; Chandra Swain, K.; Pradhan, B.; Kumar Rusia, D.; Moghimi, A.; Ranjgar, B. Mapping groundwater potential zone in the subarnarekha basin, India, using a novel hybrid multi-criteria approach in Google earth Engine. Heliyon 2024, 10, E24308. [Google Scholar] [CrossRef] [PubMed]
- Haggag, M.; Ghazala, H.H.; Ibraheem, I.M. Evaluation of the Groundwater Resources in the Nile Valley, Egypt. In Sustainability of Groundwater in the Nile Valley, Egypt; Negm, A.M., El-Rawy, M., Eds.; Earth and Environmental Sciences Library; Springer: Cham, Switzerland, 2022; pp. 11–36. [Google Scholar]
- Rezaei, A.; Sayadi, M.H.; Zadeh, R.J.; Mousazadeh, H. Assessing the hydrogeochemical processes through classical integration of groundwater parameters in the Birjand plain in eastern Iran. Groundw. Sustain. Dev. 2021, 15, 100684. [Google Scholar] [CrossRef]
- Youssef, Y.M.; Gemail, K.S.; Atia, H.M.; Mahdy, M. Insight into land cover dynamics and water challenges under anthropogenic and climatic changes in the eastern Nile Delta: Inference from remote sensing and GIS data. Sci. Total Environ. 2024, 913, 169690. [Google Scholar] [CrossRef] [PubMed]
- Ikirri, M.; Boutaleb, S.; Ibraheem, I.M.; Abioui, M.; Echogdali, F.Z.; Abdelrahman, K.; Id-Belqas, M.; Abu-Alam, T.; El Ayady, H.; Essoussi, S.; et al. Delineation of Groundwater Potential Area using an AHP, Remote Sensing, and GIS Techniques in the Ifni Basin, Western Anti-Atlas, Morocco. Water 2023, 15, 1436. [Google Scholar] [CrossRef]
- Othman, A.; Ghazala, H.; Ibraheem, I.M. Hydrochemical Analysis of Groundwater in the Area Northwest of El-Sadat City, West Nile Delta, Egypt. In Sustainability of Groundwater in the Nile Valley, Egypt; Negm, A.M., El-Rawy, M., Eds.; Earth and Environmental Sciences Library; Springer: Cham, Switzerland, 2022; pp. 141–178. [Google Scholar]
- El-Rawy, M.; Fathi, H.; Wahba, M.; Negm, A. An Overview of Water Resource Challenges and Managed Aquifer Recharge (MAR) in the MENA Region. In Managed Aquifer Recharge in MENA Countries; El-Rawy, M., Negm, A., Eds.; Earth and Environmental Sciences Library; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Othman, A.A.; Beshr, A.M.; Abd El-Gawad, A.M.S.; Ibraheem, I.M. Hydrogeophysical investigation using remote sensing and geoelectrical data in southeast Hiw, Qena, Egypt. Geocarto Int. 2022, 37, 14241–14260. [Google Scholar] [CrossRef]
- An, Y.; Li, Q.; Zhang, L. Managing Agricultural Water Use in a Changing Climate in China. Sustain. Prod. Consum. 2022, 33, 978–990. [Google Scholar] [CrossRef]
- Alipour, E.; Aghapour, A.A.; Bahrami Asl, F. Concentration, spatial distribution, and non-carcinogenic risk assessment of arsenic, cadmium, chromium, and lead in drinking water in rural areas of eight cities of West Azerbaijan province, Iran. Environ. Sci. Pollut. Res. 2024, 31, 20222–20233. [Google Scholar] [CrossRef]
- Orîndaru, A.; Constantinescu, M.; Țuclea, C.-E.; Căescu, Ș.-C.; Florescu, M.S.; Dumitru, I. Rurbanization—Making the City Greener: Young Citizen Implication and Future Actions. Sustainability 2020, 12, 7175. [Google Scholar] [CrossRef]
- Barros, J.L.; Tavares, A.O.; Monteiro, M.; Santos, P.P. Peri-Urbanization and Rurbanization in Leiria City: The Importance of a Planning Framework. Sustainability 2018, 10, 2501. [Google Scholar] [CrossRef]
- Hoffmann, E.M.; Schareika, N.; Dittrich, C.; Schlecht, E.; Sauer, D.; Buerkert, A. Rurbanity: A concept for the interdisciplinary study of rural–urban transformation. Sustain. Sci. 2023, 18, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.; Sowmya Chiravuri, S.; Chandra Das, I.; Kandrika, S.; Kumar Kumranchat, V.; Chauhan, P.; Laxmi Chitikela, V. Urban aquifer health assessment and its management for sustainable water supply: An innovative approach using machine learning techniques. Groundw. Sustain. Dev. 2024, 25, 101130. [Google Scholar] [CrossRef]
- Dao, P.U.; Heuzard, A.G.; Le, T.X.H.; Zhao, J.; Yin, R.; Shang, C.; Fan, C. The impacts of climate change on groundwater quality: A review. Sci. Total Environ. 2024, 912, 169241. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.S.S.; Filho, M.S.C.; Marques, I.M.; Gomes de Oliveira, A.; Cordeiro de Oliveira, O.M.; Thiago Andrade Moreira, Í. Groundwater Contamination in a Rural Municipality of Northeastern Brazil: Application of Geostatistics, Geoprocessing, and Geochemistry Techniques. Water Air Soil Pollut. 2024, 235, 179. [Google Scholar] [CrossRef]
- Mallik, S.; Mishra, U.; Paul, N. Groundwater suitability analysis for drinking using GIS based fuzzy logic. Ecol. Indic. 2021, 121, 107179. [Google Scholar] [CrossRef]
- Faruki Fahim, A.K.; Kamal, A.S.M.M.; Shahid, S. Modeling spatial groundwater level patterns of Bangladesh using physio-climatic variables and machine learning algorithms. Groundw. Sustain. Dev. 2024, 25, 101142. [Google Scholar] [CrossRef]
- Mundetia, N.; Sharma, D.; Sharma, A. Groundwater sustainability assessment under climate change scenarios using integrated modelling approach and multi-criteria decision method. Ecol. Model. 2024, 487, 110544. [Google Scholar] [CrossRef]
- Youssef, Y.M.; Gemail, K.S.; Sugita, M.; AlBarqawy, M.; Teama, M.A.; Koch, M.; Saada, S.A. Natural and Anthropogenic Coastal Environmental Hazards: An Integrated Remote Sensing, GIS, and Geophysical-based Approach. Surv. Geophys. 2021, 42, 1109–1141. [Google Scholar] [CrossRef]
- Subba Rao, N.; Das, R.; Sahoo, H.K.; Gugulothu, S. Hydrochemical characterization and water quality perspectives for groundwater management for urban development. Groundw. Sustain. Dev. 2024, 24, 101071. [Google Scholar] [CrossRef]
- Kumar, R.; Kumari, A.; Kumar, R.; Sulaiman, M.A.; Zafar, M.M.; Singh, A.; Prabhakar, R.; Pippal, P.S. Assessing the geochemical processes controlling groundwater quality and their possible effect on human health in Patna, Bihar. Environ. Sci. Pollut. Res. 2023, 30, 107138–107157. [Google Scholar] [CrossRef]
- Arafa, N.A.; Salem, Z.E.-S.; Ghorab, M.A.; Soliman, S.A.; Abdeldayem, A.L.; Moustafa, Y.M.; Ghazala, H.H. Evaluation of Groundwater Sensitivity to Pollution Using GIS-Based Modified Drastic-LU Model for Sustainable Development in the Nile Delta Region. Sustainability 2022, 14, 14699. [Google Scholar] [CrossRef]
- Salem, Z.E.; Sefelnasr, A.M.; Hasan, S.S. Assessment of groundwater vulnerability for pollution using Drastic Index, young alluvial plain, Western Nile Delta, Egypt. Arab. J. Geosci. 2019, 12, 727. [Google Scholar] [CrossRef]
- Gemail Kh El Alfy, M.; Ghoneim, M.F.; Shishtawy, A.M.; Abd El-Bary, M. Comparison of Drastic and DC resistivity modeling for assessing aquifer vulnerability in the central Nile Delta, Egypt. Environ. Earth Sci. 2017, 76, 350. [Google Scholar] [CrossRef]
- Aller, L.; Bennet, T.; Leher, J.H.; Petty, R.J.; Hackett, G. Drastic: A standardized system for evaluating groundwater pollution potential using hydro-geological settings. J. Geol. Soc. India 1987, 29, 23–37. [Google Scholar]
- Taghavi, N.; Niven, R.K.; Paull, D.J.; Kramer, M. Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Sci. Total Environ. 2022, 822, 153486. [Google Scholar] [CrossRef]
- Sajedi-Hosseini, F.; Malekian, A.; Choubin, B.; Rahmati, O.; Cipullo, S.; Coulon, F.; Pradhan, B. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 2018, 644, 954–962. [Google Scholar] [CrossRef]
- Ijlil, S.; Essahlaoui, A.; Mohajane, M.; Essahlaoui, N.; Mili, E.M.; Van Rompaey, A. Machine Learning Algorithms for Modeling and Mapping of Groundwater Pollution Risk: A Study to Reach Water Security and Sustainable Development (Sdg) Goals in a Mediterranean Aquifer System. Remote Sens. 2022, 14, 2379. [Google Scholar] [CrossRef]
- Motlagh, Z.K.; Derakhshani, R.; Sayadi, M.H. Groundwater vulnerability assessment in central Iran: Integration of GIS-based DRASTIC model and a machine learning approach. Groundw. Sustain. Dev. 2023, 23, 101037. [Google Scholar]
- Khan, Z.; Mohsin, M.; Ali, S.A.; Vashishtha, D.; Husain, M.; Parveen, A.; Shamim, S.K.; Parvin, F.; Anjum, R.; Jawaid, S.; et al. Comparing the Performance of Machine Learning Algorithms for Groundwater Mapping in Delhi. J. Indian Soc. Remote Sens. 2024, 52, 17–39. [Google Scholar] [CrossRef]
- Rokhshad, A.M.; Khashei Siuki, A.; Yaghoobzadeh, M. Evaluation of a machine-based learning method to estimate the rate of nitrate penetration and groundwater contamination. Arab. J. Geosci. 2021, 14, 40. [Google Scholar] [CrossRef]
- Sadeghi-Jahani, H.; Ketabchi, H.; Shafizadeh-Moghadam, H. Spatiotemporal assessment of sustainable groundwater management using process-based and remote sensing indices: A novel approach. Sci. Total Environ. 2024, 918, 170828. [Google Scholar] [CrossRef] [PubMed]
- Chamanehpour, E.; Sayadi, M.H.; Yousefi, E. The potential evaluation of groundwater pollution is based on the intrinsic and the specific vulnerability index. Groundw. Sustain. Dev. 2020, 10, 100313. [Google Scholar] [CrossRef]
- Youssef, Y.M.; Gemail, K.S.; Sugita, M.; Saada, S.A.; Teama, M.A.; AlBarqawy, M.; Abdelaziz, E.; Fares, K. Multi-temporal analysis of Coastal Urbanization and Land Cover Changes in Suez City, Egypt Using Remote Sensing and GIS. Front. Sci. Res. Technol. 2022, 4, 2682–2962. [Google Scholar] [CrossRef]
- Embaby, A.; Youssef, Y.M.; Abu El-Magd, S.A. Delineation of lineaments for groundwater prospecting in hard rocks: Inferences from remote sensing and geophysical data. Environ. Earth Sci. 2024, 83, 62. [Google Scholar] [CrossRef]
- Khalil, M.M.E.; Khodary, S.M.; Youssef, Y.M.; Alsubaie, M.S.; Sallam, A. Geo-Environmental Hazard Assessment of Archaeological Sites and Archaeological Domes—Fatimid Tombs—Aswan, Egypt. Buildings 2022, 12, 2175. [Google Scholar] [CrossRef]
- Hayeri Yazdi, S.; Robati, M.; Samani, S.; Zamani Hargalani, F. Assessing the sustainability of groundwater quality for irrigation purposes using a fuzzy logic approach. Environ. Sustain. Ind. 2024, 22, 100342. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Parizi, E.; Ataie-Ashtiani, B.; Simmons, C.T. Assessment of sustainable groundwater resources management using integrated environmental index: Case studies across Iran. Sci. Total Environ. 2019, 676, 792–810. [Google Scholar] [CrossRef]
- Noori, A.; Bonakdari, H.; Hassaninia, M.; Morovati, K.; Khorshidi, I.; Noori, A.; Gharabaghi, B. A reliable GIS-based FAHP-FTOPSIS model to prioritize urban water supply management scenarios: A case study in semi-arid climate. Sustain. Cities Soc. 2022, 81, 103846. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Cerda, A.; Lombardo, L.; Rodrigo-Comino, J. GIS-based groundwater potential mapping in Shahroud Plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci. Total Environ. 2019, 658, 160–177. [Google Scholar] [CrossRef]
- Anjum, R.; Ali, S.A.; Siddiqui, M.A. Assessing the Impact of Land Cover on Groundwater Quality in a Smart City Using GIS and Machine Learning Algorithms. Water Air Soil Pollut. 2023, 234, 182. [Google Scholar] [CrossRef]
- Liao, H.; He, Y.; Wu, X.; Wu, Z.; Bausys, R. Reimagining multi-criterion decision making by data-driven methods based on machine learning: A literature review. Inf. Fusion 2023, 100, 101970. [Google Scholar] [CrossRef]
- Mohammadi Arasteh, S.; Shoaei, S.M. A comprehensive review of the salinity assessment in groundwater resources of Iran. Acta Geophys. 2024, 72, 385–403. [Google Scholar] [CrossRef]
- Hosseininia, M.; Hassanzadeh, R. Groundwater quality assessment for domestic and agricultural purposes using GIS, hydrochemical facies and water quality indices: Case study of Rafsanjan plain, Kerman province, Iran. Appl. Water Sci. 2023, 13, 84. [Google Scholar] [CrossRef]
- Statistical Yearbook of Kerman Province. Iran Statistics Center. Tehran. Iran. 2016. Available online: https://www.amar.org.ir/en/ (accessed on 20 June 2024). (In Persian).
- Nilzad, M.; Moradi, H.; Jalili, K. Estimation of temporal and spatial variations of the level of the aquifers in Bisotun plain of Kermanshah province with geostatistical methods. Irrig. Water Eng. 2018, 8, 79–92. (In Persian) [Google Scholar]
- Malakootian, M.; Nozari, M. GIS-based Drastic and composite Drastic indices for assessing groundwater vulnerability in the Baghin aquifer, Kerman, Iran. Nat. Hazards Earth Syst. Sci. 2020, 20, 2351–2363. [Google Scholar] [CrossRef]
- Huang, P.; Hou, M.; Sun, T.; Xu, H.; Ma, C.; Zhou, A. Sustainable groundwater management in coastal cities: Insights from groundwater potential and vulnerability using ensemble learning and knowledge-driven models. J. Clean. Prod. 2024, 442, 141152. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995; pp. 291–299. [Google Scholar] [CrossRef]
- Yu, P.; Chen, S.; Chang, I. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006, 328, 704–716. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Jorda, H.; Bechtold, M.; Jarvis, N.; Koestel, J. Using boosted regression trees to explore key factors controlling saturated and near-saturated hydraulic conductivity. Eur. J. Soil Sci. 2015, 66, 744–756. [Google Scholar] [CrossRef]
- Sutton, C.D. 11—Classification and Regression Trees, Bagging, and Boosting. In Handbook of Statistics; Rao, C.R., Wegman, E.J., Solka, J.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 24, pp. 303–329. [Google Scholar] [CrossRef]
- Cotruvo, J.A. 2017 WHO Guidelines for Drinking Water Quality: First Addendum to the Fourth Edition. J. Am. Water Works Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef]
- Gharekhani, M.; Nadiri, A.A.; Khatibi, R.; Sadeghfam, S.; Moghaddam, A.A. A study of uncertainties in groundwater vulnerability modelling using Bayesian model averaging (BMA). J. Environ. Manag. 2022, 303, 114168. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.; Homaee, M.; Pereira, L.S.; Bybordi, M. Water management dilemma in the agricultural sector of Iran: A review focusing on water governance. Agric. Water Manag. 2023, 288, 108480. [Google Scholar] [CrossRef]
- Yang, X.; Du, J.; Jia, C.; Yang, T.; Shao, S. Groundwater pollution risk, health effects and sustainable management of halocarbons in typical industrial parks. Environ. Res. 2024, 250, 118422. [Google Scholar] [CrossRef] [PubMed]
- Gambo, J.; Aliaa binti Roslan, S.N.; Zulhaidi Mohd Shafrib, H.; Norasma Che Ya, N.; Ahmed Yusuf, Y. Unveiling groundwater potential zones as catalyst for multidimensional poverty reduction using analytical hierarchical process and geospatial decision support systems (S-DSS) approach in the semiarid region, Jigawa, Nigeria. Groundw. Sustain. Dev. 2024, 24, 101038. [Google Scholar] [CrossRef]
- Motlagh, Z.K.; Sayadi, M.H. Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran). Waste Manag. 2015, 46, 322–337. [Google Scholar] [CrossRef]
- Arnous, M.O.; El-Rayes, A.E.; Green, D.R. Hydrosalinity and environmental land degradation assessment of the East Nile Delta region, Egypt. J. Coast. Conserv. 2015, 19, 491–513. [Google Scholar] [CrossRef]
- Alhamd, A.; Ibrahim, M. Unveiling soil and groundwater salinity dynamics and its impact on date palm yield in Southern Basrah, Iraq. Dysona Appl. Sci. 2024, 5, 25–32. [Google Scholar] [CrossRef]
- Khalil, M.M.; Aboueldahab, S.M.; Abdel-Raheem, K.H.M.; Ahmed, M.; Ahmed, M.S.; Abdelhady, A.A. Mixed agricultural, industrial, and domestic drainage water discharge poses a massive strain on freshwater ecosystems: A case from the Nile River in Upper Egypt. Environ. Sci. Pollut. Res. 2023, 30, 122642–122662. [Google Scholar] [CrossRef]
- Arefin, R.; Rahman, A.T.M.S.; Das, J.; Jahan, C.S.; Mazumder, Q.H.; Gomaa, E.; Abd El Aal, A.K.; Radwan, A.E.; Youssef, Y.M. Megacity solid waste disposal suitability mapping in Dhaka, Bangladesh: An integrated approach using remote sensing, GIS and statistics. Environ. Monit. Assess. 2024, 196, 910. [Google Scholar] [CrossRef]
- Gharechaee, H.; Nazari Samani, A.; Khalighi Sigaroodi, S.; Sadeghi, S.M.M.; Sharifitabesh, S.; Mousavi, M.S.; Marcu, M.V.; Hubbart, J.A. Introducing a novel approach for assessment of groundwater salinity hazard, vulnerability, and risk in a semiarid region. Ecol. Inform. 2024, 81, 102647. [Google Scholar] [CrossRef]
- Issaoui, W.; Nasr, I.H.; Alexakis, D.D.; Bejaoui, W.; Ibraheem, I.M.; Ezzine, A.; Ben Othman, D.; Inoubli, M.H. Geometric Characterization of the Mateur Plain in Northern Tunisia Using Vertical Electrical Sounding and Remote Sensing Techniques. ISPRS Int. J. Geo-Inf. 2024, 13, 333. [Google Scholar] [CrossRef]
- Mosavi, A.; Sajedi Hosseini, F.; Choubin, B.; Taromideh, F.; Ghodsi, M.; Nazari, B.; Dineva, A.A. Susceptibility mapping of groundwater salinity using machine learning models. Environ. Sci. Pollut. Res. 2021, 28, 10804–10817. [Google Scholar] [CrossRef] [PubMed]
- Eid, M.H.; Shebl, A.; Eissa, M.; Mohamed, E.A.; Fahil, A.S.; Ramadan, H.S.; Abukhadra, R.M.; El-Sherbeeny, A.M.; Szűcs, P.; Kovacs, A. Comprehensive approach integrating remote sensing, machine learning, and physicochemical parameters to detecthydrodynamic conditions and groundwater quality deterioration in non-rechargeable aquifer systems. Heliyon 2024, 10, e32992. [Google Scholar] [CrossRef] [PubMed]
- Jesiya, N.P.; Gopinath, G.A. Customized FuzzyAHP—GIS based DRASTIC-L model for intrinsic groundwater vulnerability assessment of urban and peri urban phreatic aquifer clusters. Groundw. Sustain. Dev. 2019, 8, 654–666. [Google Scholar] [CrossRef]
- Motlagh, Z.K.; Lotfi, A.; Pourmanafi, S.; Ahmadizadeh, S.; Soffianian, A. Spatial modeling of land-use change in a rapidly urbanizing landscape in central Iran: Integration of remote sensing, CA-Markov, and landscape metrics. Environ. Monit. Assess. 2020, 192, 695. [Google Scholar] [CrossRef]
DRASTIC Parameter | Range | Rank | Weights |
---|---|---|---|
Depth to water table (m) | 0–20 | 9 | 5 |
20–30 | 7 | ||
30–40 | 5 | ||
40–50 | 3 | ||
50–60 | 2 | ||
>60 | 1 | ||
Net recharge (mm) | 0–50 | 1 | 4 |
50–100 | 3 | ||
100–180 | 5 | ||
>180 | 8 | ||
Aquifer media | Gray thick-bedded to massive orbitolina limestone | 2 | 3 |
Conglomerate and sandstone | 9 | ||
Marl, shale, sandstone, and conglomerate | 6 | ||
Shale, siltstone, sandstone, and thin sandy limestone with thin coal seams | 5 | ||
Red conglomerate and sandstone | 9 | ||
Low-level piedmont fan and valley terrace deposits | 4 | ||
High-level piedmont fan and valley terrace deposits | 4 | ||
Polymictic conglomerate and sandstone, sand dunes, and sand sheet | 5 | ||
Clay flat | 3 | ||
Andesitic volcanic tuff | 1 | ||
Granite to diorite | 4 | ||
Marl, sandstone, marl, limestone, calcareous sandstone, and limestone | 6 | ||
Black limestone, andesitic to basaltic volcanic, salt flat, and red marl | 8 | ||
Soil media | Silty loam | 8 | 2 |
Loam | 7 | ||
Sandy loam | 6 | ||
Sandy clay loam | 5 | ||
Sand | 4 | ||
Loamy sand | 6 | ||
Clay loam | 3 | ||
Slope (%) | <2 | 10 | 1 |
2–6 | 9 | ||
6–12 | 5 | ||
12–18 | 3 | ||
>18 | 1 | ||
Impact of vadose zone | Silty loam | 9 | 5 |
Loamy sand, loam | 7 | ||
Clay loam | 5 | ||
Sand, sandy loam, sandy clay loam | 3 | ||
Hydraulic conductivity (m/day) | 0.04–4.1 | 1 | 3 |
4.1–7.3 | 2 | ||
7.3–10.6 | 3 | ||
10.6–12.2 | 5 | ||
12.2–15.4 | 7 | ||
15.4–28.5 | 9 |
Machine Learning Method | Parameter | Value/Unit | Resolution |
---|---|---|---|
Random Forest (RF) | Number of Trees | 100 (default) | 100 m |
Support Vector Machine (SVM) | Kernel Type | Radial Basis Function | 100 m |
Gradient Boosting Trees (BRT) | Number of Trees | 100 (default) | 100 m |
Generalized Linear Model (GLM) | Link Function | Logit (default) | 100 m |
Multivariate Adaptive Regression Splines (MARS) | Number of Basis Functions | 10 (default) | 100 m |
Chemical Parameter | Unit | Min | Max | WHO [57] |
---|---|---|---|---|
Ca2+ | mg/L | 0 | 39.98 | 200 |
TDS | mg/L | 0 | 10,704.3 | 1000 |
Cl− | mg/L | 0 | 264.93 | 250 |
HCO3− | mg/L | 0 | 32.48 | 250 |
SO42− | mg/L | 0 | 61.98 | 100 |
Na+ | mg/L | 0 | 360 | 200 |
Mg2+ | mg/L | 0 | 34.99 | 200 |
EC | μS/cm | 145.12 | 24,394.7 | 1000 |
TH | mg/L | 0 | 3498.4 | 100 |
pH | - | 0 | 9.09 | 7 |
Vulnerability Class | Attributes | Min |
---|---|---|
Very low | Index range | 0–82 |
Area (km2) | 14,371 | |
Area (%) | 8.03 | |
Low | Index range | 82–95 |
Area (km2) | 48,610 | |
Area (%) | 27.18 | |
Moderate | Index range | 95–107 |
Area (km2) | 57,079 | |
Area (%) | 31.92 | |
High | Index range | 107–121 |
Area (km2) | 40,205 | |
Area (%) | 22.48 | |
Very high | Index range | 121–170 |
Area (km2) | 18,533 | |
Area (%) | 10.36 |
Vulnerability Class | Attributes | Attribute Values | ||||
---|---|---|---|---|---|---|
(RF) | (MARS) | (SVM) | (GLM) | (BRT) | ||
Very low | Index range | 0–82 | 0–24 | 0–90 | 0–17 | 0–59 |
Area (km2) | 1687 | 680 | 770 | 530 | 14,412 | |
Area (%) | 0.94 | 0.38 | 0.43 | 0.29 | 8.06 | |
Low | Index range | 82–95 | 24–39 | 90–95 | 17–35 | 59–69 |
Area (km2) | 11,002 | 15,764 | 93,301 | 13,302 | 3426 | |
Area (%) | 6.15 | 8.81 | 52.18 | 7.44 | 1.92 | |
Moderate | Index range | 95–107 | 39–74 | 95–106 | 35–50 | 69–91 |
Area (km2) | 79,446 | 105,459 | 51,599 | 11,311 | 79,682 | |
Area (%) | 44.43 | 58.98 | 28.86 | 6.32 | 44.56 | |
High | Index range | 107–121 | 74–125 | 106–124 | 50–111 | 91–116 |
Area (km2) | 51,684 | 34,110 | 6597 | 82,227 | 42,502 | |
Area (%) | 28.9 | 19.08 | 3.69 | 45.99 | 23.77 | |
Very high | Index range | 121–170 | 125–184 | 124–141 | 111–138 | 116–143 |
Area (km2) | 34,978 | 22,786 | 26,532 | 71,429 | 38,777 | |
Area (%) | 19.56 | 12.74 | 14.84 | 39.95 | 21.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavakoli, M.; Motlagh, Z.K.; Sayadi, M.H.; Ibraheem, I.M.; Youssef, Y.M. Sustainable Groundwater Management Using Machine Learning-Based DRASTIC Model in Rurbanizing Riverine Region: A Case Study of Kerman Province, Iran. Water 2024, 16, 2748. https://doi.org/10.3390/w16192748
Tavakoli M, Motlagh ZK, Sayadi MH, Ibraheem IM, Youssef YM. Sustainable Groundwater Management Using Machine Learning-Based DRASTIC Model in Rurbanizing Riverine Region: A Case Study of Kerman Province, Iran. Water. 2024; 16(19):2748. https://doi.org/10.3390/w16192748
Chicago/Turabian StyleTavakoli, Mortaza, Zeynab Karimzadeh Motlagh, Mohammad Hossein Sayadi, Ismael M. Ibraheem, and Youssef M. Youssef. 2024. "Sustainable Groundwater Management Using Machine Learning-Based DRASTIC Model in Rurbanizing Riverine Region: A Case Study of Kerman Province, Iran" Water 16, no. 19: 2748. https://doi.org/10.3390/w16192748
APA StyleTavakoli, M., Motlagh, Z. K., Sayadi, M. H., Ibraheem, I. M., & Youssef, Y. M. (2024). Sustainable Groundwater Management Using Machine Learning-Based DRASTIC Model in Rurbanizing Riverine Region: A Case Study of Kerman Province, Iran. Water, 16(19), 2748. https://doi.org/10.3390/w16192748