Zooplankton Index for Shallow Lakes’ Assessment: Elaboration of a New Classification Method for Polish Lakes
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Sites
2.2. Sampling Method and Laboratory Analysis
2.3. Establishing Reference Conditions
2.4. Testing Zooplankton Indices
2.5. Boundary Setting of Ecological Status Classes
- the boundary between good and moderate classes (G/M) is set at 75%;
- the boundary between moderate and poor classes (M/P) is set at 50%;
- the boundary between poor and bad classes (P/B) is set at 25%.
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Characteristics and Trophic Variables
3.2. Reference Conditions
3.3. The Structure of the Zooplankton Community
3.4. Development of Multimetric Index
3.4.1. NROT—Rotifera Numbers
3.4.2. IHTROT—Percentage Share of the Rotifer Species Indicating High Trophic State
3.4.3. BSI—The Body Size Index of Daphnia cucullata
3.4.4. D—Margalef Index
3.4.5. ZISLA—Zooplankton Index for Shallow Lakes’ Assessment
3.5. ZISLA Index Ecological Status Class Boundaries
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhagowati, B.; Ahamad, K.U. A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol. Hydrobiol. 2019, 19, 155–166. [Google Scholar] [CrossRef]
- Lyche-Solheim, A.; Feld, C.K.; Birk, S.; Phillips, G.; Carvalho, L.; Morabito, G.; Mischke, U.; Søndergaard, M.; Hellsten, S.; Kolada, A.; et al. Ecological status assessment of European lakes: A comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 2013, 704, 57–74. [Google Scholar] [CrossRef]
- Welti, N.; Striebel, M.; Ulseth, A.J.; Cross, W.F.; DeVilbiss, S.; Glibert, P.M.; Guo, L.; Hirst, A.G.; Hood, J.; Kominoski, J.S.; et al. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory. Front. Microbiol. 2017, 8, 1298. [Google Scholar] [CrossRef] [PubMed]
- Karr, J.R.; Fausch, K.D.; Angermeier, P.L.; Yant, P.R.; Schlosser, I.J. Assessing Biological Integrity in Running Waters: A Method Its Rationale; Special Publication no. 05; Illinois Natural History Survey: Champaign, IL, USA, 1986. [Google Scholar]
- Jeppesen, E.; Nõges, P.; Davidson, T.A.; Haberman, J.; Nõges, T.; Blank, K.; Lauridsen, T.L.; Søndergaard, M.; Sayer, C.; Laugaste, R.; et al. Zooplankton as indicators in lakes: A scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 2011, 676, 279–297. [Google Scholar] [CrossRef]
- Mehner, T.; Keeling, C.; Emmrich, M.; Holmgren, K.; Argillier, C.; Volta, P.; Winfield, I.J.; Brucet, S. Effects of fish predation on density and size spectra of prey fish communities in lakes. Can. J. Fish. Aquat. Sci. 2016, 73, 506–518. [Google Scholar] [CrossRef]
- Park, K.S.; Shin, H.W. Studies on phyto-and-zooplankton composition and its relation to fish productivity in a west coast fish pond ecosystem. J. Environ. Biol. 2007, 28, 415–422. [Google Scholar]
- Rollwagen-Bollens, G.; Bollens, S.M.; Gonzalez, A.; Zimmerman, J.; Lee, T.; Emerson, J. Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake. Hydrobiologia 2013, 705, 101–118. [Google Scholar] [CrossRef]
- Bednarska, A.; Dawidowicz, P. Change in filter-screen morphology and depth selection: Uncoupled responses of Daphnia to the presence of filamentous cyanobacteria. Limnol. Oceanogr. 2007, 52, 2358–2363. [Google Scholar] [CrossRef]
- Gliwicz, Z.M. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. Pol. 1969, 17, 663–708. [Google Scholar]
- Haberman, J. Zooplankton of Lake Võrtsjärv. Limnologica 1998, 28, 49–65. [Google Scholar]
- Haberman, J. Contemporary state of the zooplankton in Lake Peipsi. Hydrobiologia 1996, 338, 113–123. [Google Scholar] [CrossRef]
- Andronikova, I.N. Zooplankton characteristics in monitoring of Lake Ladoga. Hydrobiologia 1996, 322, 173–179. [Google Scholar] [CrossRef]
- Ceirans, A. Zooplankton indicators of trophy in Latvian lakes. Acta Univ. Lat. 2007, 723, 61–69. [Google Scholar]
- Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 2012, 60, 339–350. [Google Scholar]
- Hakkari, L. Zooplankton species as indicators of environment. Aqua Fenn. 1972, 1, 46–54. [Google Scholar]
- Karabin, A. Pelagic Zooplankton (Rotatoria and Crustacea) Variation in the Process of Lake Eutrophication. 1. Structural and Quantitative Features. Ekol. Pol. 1985, 33, 567–616. [Google Scholar]
- Ochocka, A.; Pasztaleniec, A. Sensitivity of plankton indices to lake trophic conditions. Environ. Monit. Assess. 2016, 188, 622. [Google Scholar] [CrossRef] [PubMed]
- Stamou, G.; Katsiapi, M.; Moustaka-Gouni, M.; Michaloudi, E. Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia 2019, 844, 83–103. [Google Scholar] [CrossRef]
- Caroni, R.; Irvine, K. The potential of zooplankton communities for ecological assessment of lakes: Redundant concept or political oversight? Biol. Environ. Proc. R. Ir. Acad. 2010, 110, 35–53. [Google Scholar] [CrossRef]
- Moss, B. Shallow lakes, the water framework directive and life. What should it all be about? Hydrobiologia 2007, 584, 381–394. [Google Scholar] [CrossRef]
- Muñoz-Colmenares, M.E.; Soria, J.M.; Vicente, E. Can zooplankton species be used as indicators of trophic status and ecological potential of reservoirs? Aquat. Ecol. 2021, 55, 1143–1156. [Google Scholar] [CrossRef]
- De-Carli, B.P.; Bressane, A.; Longo, R.M.; Manzi-Decarli, A.; Moschini-Carlos, V.; Pompêo, M.L.M. Development of a zooplankton biotic index for trophic state prediction in tropical reservoirs. Limnetica 2019, 38, 303–316. [Google Scholar] [CrossRef]
- Stamou, G.; Mazaris, A.D.; Moustaka-Gouni, M.; Špoljar, M.; Ternjej, I.; Dražina, T.; Dorak, Z.; Michaloudi, E. Introducing a zooplanktonic index for assessing water quality of natural lakes in the Mediterranean region. Ecol. Inform. 2022, 69, 101616. [Google Scholar] [CrossRef]
- Ochocka, A. ZIPLAs: Zooplankton Index for Polish Lakes’ Assessment: A new method to assess the ecological status of stratified lakes. Environ. Monit. Assess. 2021, 193, 664. [Google Scholar] [CrossRef]
- Hutchinson, G.E. A Treatise on Limnology, Introduction to Lake Biology and the Limnoplankton; Wiley: Hoboken, NJ, USA, 1967. [Google Scholar]
- Wilhelm, S.; Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 2008, 53, 226–237. [Google Scholar] [CrossRef]
- Nixdorf, B.; Deneke, R. Why ‘very shallow’ lakes are more successful opposing reduced nutrient loads. Hydrobiologia 1997, 342, 269–284. [Google Scholar] [CrossRef]
- Scheffer, M. Ecology of Shallow Lakes; Kluwer Academic Publishers: Norwell, MA, USA, 2004. [Google Scholar]
- Granéli, W. Internal phosphorus loading in Lake Ringsjén. Hydrobiologia 1999, 404, 19–26. [Google Scholar] [CrossRef]
- Håkanson, L. Internal loading: A new solution to an old problem in aquatic sciences. Lakes Reserv. Res. Manag. 2004, 9, 3–23. [Google Scholar] [CrossRef]
- Dokulil, M. Environmental impacts of tourism on lakes. In Eutrophication: Causes, Consequences and Control; Ansari, A., Gill, S., Eds.; Springer: New York, NY, USA, 2014; pp. 81–88. [Google Scholar] [CrossRef]
- Nurnberg, G.; Tarvainen, M.; Ventelä, A.-M.; Sarvala, J. Internal phosphorus load estimation during biomanipulation in a large polymictic and mesotrophic lake. Inland Waters 2012, 2, 147–162. [Google Scholar] [CrossRef]
- Steinman, A.; Chu, X.; Ogdahl, M. Spatial and temporal variability of internal and external phosphorus loads in Mona Lake, Michigan. Aquat. Ecol. 2009, 43, 1–18. [Google Scholar] [CrossRef]
- Manatunge, J.; Asaeda, T.; Priyadarshana, T. The influence of structural complexity on fish–zooplankton interactions: A study using artificial submerged macrophytes. Environ. Biol. Fishes 2000, 58, 425–438. [Google Scholar] [CrossRef]
- Meerhoff, M.; Iglesias, C.; De Mello, F.T.; Clemente, J.M.; Jensen, E.; Lauridsen, T.L.; Jeppesen, E. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw. Biol. 2007, 52, 1009–1021. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J.; Karabin, A. The suitability of zooplankton as lake ecosystem indicators: Crustacean trophic state index. Pol. J. Ecol. 2013, 61, 561–573. [Google Scholar]
- Sommer, U.A.; Adrian, R.; De Senerpont Domis, L.; Elser, J.J.; Gaedke, U.; Ibelings, B.; Jeppesen, E.; Lürling, M.; Molinero, J.C.; Mooij, W.M.; et al. Beyond the Plankton Ecology Group (PEG) Model: Mechanisms Driving Plankton Succession. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 429–448. [Google Scholar] [CrossRef]
- Straile, D.B. Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions: A test of the PEG model. Freshw. Biol. 2014, 60, 174–183. [Google Scholar] [CrossRef]
- Kolada, A.; Soszka, H.; Kutyła, S.; Pasztaleniec, A. The typology of Polish lakes after a decade of its use: A critical review and verification. Limnologica 2017, 67, 20–26. [Google Scholar] [CrossRef]
- Hermanowicz, W.; Dojlido, J.; Dożańska, W.; Koziorowski, B.; Zerbe, J. Fizyczno-Chemiczne Badania Wody i Ścieków [Physical-chemical Examination of Water and Wastewater]; Arkady: Warszawa, Poland, 1999. (In Polish) [Google Scholar]
- Golterman, H.L. Methods for Chemical Analysis of Fresh Waters; Blackwell Scientific Publications: Oxford, UK; Edinburgh, Scotland, 1969. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Waste-Water; American Public Health Association Inc.: New York, NY, USA, 1960. [Google Scholar]
- Nusch, E.A. Comparison of different methods for chlorophyll and pheopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 1980, 14, 14–36. [Google Scholar]
- Błędzki, L.A.; Rybak, J.I. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida) Key to Species Identification, with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bielańska-Grajner, I.; Ejsmont-Karabin, J.; Radwan, S. Rotifers: Rotifera Monogononta; Łódź University Press: Łódź, Poland, 2017. [Google Scholar]
- Balushkina, E.V.; Vinberg, G.G. Zavisimost mezhdu dlinoy i massoy tela planktonnyih rakoobraznyih [Relationship between body length and mass of planktonic crustaceans]. In Eksperimentalnyie i Polevyie Issledovaniya Biologicheskih Osnov Produktivnosti Ozer [Experimental and Field Studies of the Biological Principles of Lake Productivity]; Nauka: Leningrad, Russia, 1979; pp. 58–79. (In Russian) [Google Scholar]
- Ejsmont-Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydrobiol. 1998, 45, 513–522. [Google Scholar]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Kratzer, C.R.; Brezonik, P.L. A Carlson-type trophic state index for nitrogen in Florida lakes. J. Am. Water Resour. Assoc. 1981, 17, 713–715. [Google Scholar] [CrossRef]
- Birk, S.; Bonne, W.; Borja, A.; Brucet, S.; Courrat, A.; Poikane, S.; Solimini, A.; Van De Bund, W.; Zampoukas, N.; Hering, D. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Indic. 2012, 18, 31–41. [Google Scholar] [CrossRef]
- Lyche-Solheim, A. (Ed.) Reference Conditions of European Lakes. Indicators and methods for the Water Framework Directive. Assessment of Reference Conditions. REBECCA Proj. Deliv. 2005, 7, 105. [Google Scholar]
- REFCOND. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance Document 10, River and Lakes–Typology, Reference Conditions and Classification Systems; OJEC: Luxembourg, 2003. [Google Scholar]
- Büttner, G.; Kosztra, B. CLC2018 Technical Guidelines; European Environment Agency: Copenhagen, Denmark, 2017.
- Karpowicz, M.; Sługocki, Ł.; Kozłowska, J.; Ochocka, A.; López, C. Body size of Daphnia cucullata as an indicator of the ecological status of temperate lakes. Ecol. Indic. 2020, 117, 106585. [Google Scholar] [CrossRef]
- Margalef, R. Information Theory in Ecology. General Sys. 1958, 3, 36–71. [Google Scholar]
- Shannon, C.E.; Weaver, W.W. The Mathematical Theory of Communications; The University of Illinois Press: Urbana, IL, USA, 1963. [Google Scholar]
- Hering, D.; Feld, C.K.; Moog, O.; Ofenböck, T. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: Experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 2006, 566, 311–324. [Google Scholar] [CrossRef]
- Statsoft Inc. STATISTICA (Data Analysis Software System), Version 12.0. 2014. Available online: https://www.statsoft.pl/ (accessed on 20 January 2024).
- Dufrene, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Roberts, D.W. Labdsv: Ordination and Multivariate Analysis for Ecology. R Package. 2023. Available online: https://CRAN.R-project.org/package=labdsv (accessed on 20 January 2024).
- RStudio Team. RStudio: Integrated Development for R. 2023. Available online: https://cran.rstudio.com/ (accessed on 20 January 2024).
- Jeppesen, E.; Jensen, J.P.; Søndergaard, M.; Lauridsen, T.; Landkildehus, F. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshw. Biol. 2000, 45, 201–218. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J.; Kalinowska, K.; Karpowicz, M. Structure of ciliate, rotifer, and crustacean communities in lake systems of Northeastern Poland. In Polish River Basins and Lakes—Part II; Korzeniewska, E., Harnisz, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 77–101. [Google Scholar] [CrossRef]
- Pijanowska, J. Cyclomorphosis in Daphnia: An adaptation to avoid invertebrate predation. Hydrobiologia 1990, 198, 41–50. [Google Scholar] [CrossRef]
- Patalas, J.; Patalas, K. The crustacean plankton communities in Polish lakes. Verh. Internat. Verein. Limnol 1966, 16, 204–215. [Google Scholar] [CrossRef]
- Gliwicz, Z.M. Daphnia growth at different concentration of blue–green filaments. Arch. Hydrobiol. 1990, 120, 51–65. [Google Scholar] [CrossRef]
- Ferrão-Filho, A.S.; Azevedo, S.M.F.O.; DeMott, W.R. Effects of toxic and nontoxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshw. Biol. 2000, 45, 1–19. [Google Scholar] [CrossRef]
- Arnold, D.E. Ingestion, assimilation, survival, and reproduction by Daphnia pulex fed seven species of blue-green algae. Limnol. Oceanogr. 1971, 16, 906–920. [Google Scholar] [CrossRef]
- Yoshida, T.; Urabe, J.; Elser, J.J. Assessment of ‘top-down’ and ‘bottom-up’ forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecol. Res. 2003, 18, 639–650. [Google Scholar] [CrossRef]
- Matveeva, L.K. Can pelagic rotifers be used as indicators of lake trophic state? Int. Verh. Internat. Verein. Limnol. 1991, 24, 2761–2763. [Google Scholar] [CrossRef]
- May, L.; O’Hare, M. Changes in rotifer species composition and abundance along a trophic gradient in loch Lomond, Scotland, UK. Hydrobiologia 2005, 54, 397–404. [Google Scholar] [CrossRef]
- Gumiri, S.; Iwakuma, T. The dynamics of rotiferan communities in relation to environmental factors: Comparison between two tropical oxbow lakes with different hydrological conditions. Verh. Internat. Verein. Limnol. 2002, 28, 1885–1889. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N. Habitat choice in rotifera communities of three shallow lakes: Impact of macrophyte substratum and season. Hydrobiologia 2007, 593, 27–37. [Google Scholar] [CrossRef]
- Scheffer, M.; Van Nes, E.H. Shallow lakes theory revisited: Various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 2007, 584, 455–466. [Google Scholar] [CrossRef]
- Lauridsen, T.L.; Buenk, I. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Arch. Hydrobiol. 1996, 137, 167–176. [Google Scholar] [CrossRef]
- Burks, R.L.; Lodge, D.L.; Jeppesen, E.; Lauridsen, T.L. Diel horizontal migration of zooplankton: Cost and benefits of inhabiting the littoral. Freshw. Biol. 2002, 47, 343–365. [Google Scholar] [CrossRef]
- Burks, R.; Mulderij, G.; Gross, E.; Jones, I.; Jacobsen, L.; Jeppesen, E.; Van Donk, E. Center Stage: The Crucial Role of Macrophytes in Regulating Trophic Interactions in Shallow Lake Wetlands. In Wetlands: Functioning, Biodiversity Conservation, and Restoration; Bobbink, R., Beltman, B., Verhoeven, J.T.A., Whigham, D.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 37–59. [Google Scholar] [CrossRef]
- Sługocki, Ł.; Czerniawski, R. Trophic state (TSISD) and mixing type significantly influence pelagic zooplankton biodiversity in temperate lakes (NW Poland). PeerJ 2018, 6, e5731. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.L.; Snell, T.W.; Ricci, C.; Nogrady, T. Rotifera part 1: Biology, ecology and systematics. In Guides to the Identification of the Microinvertebrates of the Continental Waters of the World; Segers, H., Ed.; Kenobi Productions, Ghent, and Backhuys Publishers: Leiden, The Netherlands, 2006. [Google Scholar]
- Gyllström, M.; Hansson, L.-A.; Jeppesen, E.; García Criado, F.; Gross, E.; Irvine, K.; Kairesalo, T.; Kornijow, R.; Miracle, M.R.; Nykänen, M.; et al. The role of climate in shaping zooplankton communities of shallow lakes. Limnol. Oceanogr. 2005, 50, 2008–2021. [Google Scholar] [CrossRef]
- Soszka, H.; Pasztaleniec, A.; Koprowska, K.; Kolada, A.; Ochocka, A. Wpływ przekształceń hydromorfologicznych jezior na zaspoły organizmów wodnych–przegląd piśmiennictwa [The effect of lake hydromorphological alterations on aquatic biota–an overview]. Ochr. Śr. Zasob. Natur. 2012, 50, 24–52. (In Polish) [Google Scholar]
- Brooks, J.L.; Dodson, S.I. Predation, body size, and composition of plankton. Science 1965, 150, 28–35. [Google Scholar] [CrossRef]
- Rautio, M.; Vincent, W.F. Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshw. Biol. 2006, 51, 1038–1052. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N.; Joniak, T. Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state. Hydrobiologia 2016, 774, 39–51. [Google Scholar] [CrossRef]
Index Type | Acronym | Description | Crustacea/Rotifera | References |
---|---|---|---|---|
Composition/abundance index | NCRU | Crustacea numbers (ind./L) | Crustacea | Karabin, 1985 [17]; Ejsmont-Karabin and Karabin, 2013 [37] |
BCL | Biomass of Cladocera | Crustacea | ||
BCY | Biomass of Cyclopoida | Crustacea | ||
B CA | Biomass of Calanoida | Crustacea | ||
BCRU | Biomass of Crustacea | Crustacea | ||
CB | Percentage of cyclopoid biomass in total biomass of Crustacea | Crustacea | ||
CY/CL | Ratio of Cyclopoida biomass to the biomass of Cladocera | Crustacea | ||
CL/CY | Ratio of Cladocera biomass to the biomass of Cyclopoida | Crustacea | ||
CA/CY | Ratio of Calanoida to Cyclopoida individual numbers | Crustacea | ||
CY/CA | Ratio of Cyclopoida to Calanoida individual numbers | Crustacea | ||
B/NCRU | Ratio of biomass to numbers | Crustacea | ||
ND/NCRU | Ratio of Daphnia to Crustacea numbers | Crustacea | Own elaboration | |
CL/Cop | Ratio of Cladocera to Copepoda (Cyclopoida + Calanoida) numbers | Crustacea | Andronikova, 1996 [13] | |
NROT | Rotifera numbers (ind./L) | Rotifera | Ejsmont-Karabin, 2012 [15] | |
BROT | Biomass of Rotifera | Rotifera | ||
B/NROT | Ratio of biomass to numbers | Rotifera | ||
BMA | Macrozooplankton biomass | Crustacea/Rotifera | Karabin, 1985 [17] | |
BME | Mesozooplankton biomass | Crustacea/Rotifera | ||
BMI | Microzooplankton biomass | Crustacea/Rotifera | ||
NCRU/NROT | Ratio of Crustacea to Rotifera numbers | Crustacea/Rotifera | Own elaboration | |
BCRU/BROT | Ratio of Crustacea to Rotifera biomass | Crustacea/Rotifera | Andronikova, 1996 [13] | |
NZOO | Zooplankton abundance | Crustacea/Rotifera | ||
Nsp | Species number | Crustacea/Rotifera | ||
BZOO | Zooplankton biomass | Crustacea/Rotifera | ||
Sensitivity index | IHTCRU | Percentage of species indicative of high trophy in the indicative group’s numbers | Crustacea | Karabin, 1985 [17]; Ejsmont-Karabin and Karabin 2013 [37] |
TECTA | Percentage of Keratella tecta in the population of Keratella cochlearis | Rotifera | Ejsmont-Karabin, 2012 [15] | |
IHTROT | Percentage of species indicative of high trophy in the indicative group’s number | Rotifera | ||
Functional index | BSI | D. cucullata body length | Crustacea | Karpowicz et al., 2020 [55] |
BAC | Percentage of bacterivorous in total rotifer numbers | Rotifera | Ejsmont-Karabin, 2012 [15] | |
Diversity index | d | Margales index | Crustacea/Rotifera | Margalef, 1958 [56] |
H’ | Shannon–Weaver diversity index | Crustacea/Rotifera | Shannon and Weaver, 1963 [57] | |
Multimetric index | ZIPLAs | Zooplankton Index for Polish Lakes’ Assessment | Crustacea/Rotifera | Ochocka, 2021 [25] |
Species | IndVal | p Value | Low/High Trophy |
---|---|---|---|
Keratella tecta | 0.990 | 0.001 | high trophy |
Mesocyclops leuckarti | 0.808 | 0.005 | high trophy |
Filinia longiseta | 0.614 | 0.047 | high trophy |
Brachionus angularis | 0.590 | 0.012 | high trophy |
Ceriodaphnia quadrangula | 0.681 | 0.034 | low trophy |
Gastropus stylifer | 0.671 | 0.011 | low trophy |
Ascomorpha ovalis | 0.548 | 0.007 | low trophy |
Bosmina (Eubosmina) coregoni | 0.333 | 0.014 | low trophy |
Taxon Name | r | p Value |
---|---|---|
Anuraeopsis fissa | 0.730 | 0.011 |
Chydorus sphaericus | 0.384 | 0.044 |
Pompholyx sulcata | 0.657 | 0.000 |
Trichocerca pusilla | 0.623 | 0.017 |
Index Type | Acronym | Correlations with Trophy Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
TP | TN | SD | Chl-a | ||||||
r | p | r | p | r | p | r | p | ||
Composition/abundance index | NROT | 0.42 | 0.014 | 0.36 | 0.042 | −0.46 | 0.009 | 0.49 | 0.004 |
Sensitivity index | IHTROT | 0.67 | 0.000 | 0.47 | 0.006 | −0.70 | 0.000 | 0.70 | 0.000 |
Functional index | BSI | −0.69 | 0.000 | −0.44 | 0.013 | 0.45 | 0.010 | −0.63 | 0.000 |
Diversity index | D | −0.48 | 0.005 | −0.61 | 0.000 | 0.56 | 0.001 | −0.46 | 0.008 |
Ecological Status | Range of ZISLA Values |
---|---|
High | ≥0.779 |
Good | 0.584–0.778 |
Moderate | 0.389–0.583 |
Poor | 0.196–0.388 |
Bad | ≤0.195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochocka, A. Zooplankton Index for Shallow Lakes’ Assessment: Elaboration of a New Classification Method for Polish Lakes. Water 2024, 16, 2730. https://doi.org/10.3390/w16192730
Ochocka A. Zooplankton Index for Shallow Lakes’ Assessment: Elaboration of a New Classification Method for Polish Lakes. Water. 2024; 16(19):2730. https://doi.org/10.3390/w16192730
Chicago/Turabian StyleOchocka, Agnieszka. 2024. "Zooplankton Index for Shallow Lakes’ Assessment: Elaboration of a New Classification Method for Polish Lakes" Water 16, no. 19: 2730. https://doi.org/10.3390/w16192730
APA StyleOchocka, A. (2024). Zooplankton Index for Shallow Lakes’ Assessment: Elaboration of a New Classification Method for Polish Lakes. Water, 16(19), 2730. https://doi.org/10.3390/w16192730