Seasonal- and Event-Scale Stream DOC Dynamics in Northern Hardwood-Dominated Headwater Catchments of Contrasting Forest Harvest History
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Site
2.2. Experimental Design
2.3. Field Methods
2.3.1. Hydrometeorological Monitoring
2.3.2. Stream Sampling
2.3.3. Groundwater Sampling
2.3.4. Mineral Soil Water and LFH Percolate Sampling
2.3.5. Throughfall Sampling
2.4. Laboratory Analysis
2.5. Data Analysis
2.5.1. Analytical Methods Related to Objective 1: Evaluate Inter- and Intra-Catchment Variability in Stream DOC Concentrations, Stream DOC Export, and Hillslope Solute Pool DOC Concentrations during a Range of Flow Conditions
2.5.2. Analytical Methods Related to Objective 2: Investigate the Spatial Distribution and Contribution to Stream DOC of Hillslope Solute Pool DOC
2.5.3. Analytical Methods Related to Objective 3: Evaluate and Contrast Changing Hydrologic Connectivity during a Range of Flow Conditions
3. Results
3.1. Precipitation and Streamflow
3.2. Results Related to Objective 1: Evaluate Inter- and Intra-Catchment Variability in Stream DOC Concentrations, Stream DOC Export, and Hillslope Solute Pool DOC Concentrations during a Range of Flow Conditions
3.2.1. Stream DOC Concentrations
3.2.2. Stream DOC Export
3.2.3. Hillslope Solute Pool DOC Concentrations
3.3. Results Related to Objective 2: Investigate the Spatial Distribution and Contribution to Stream DOC of Hillslope Solute Pool DOC
3.4. Results Related to Objective 3: Evaluate and Contrast Changing Hydrologic Connectivity during a Range of Flow Conditions
3.4.1. Stream K:SiO2 Ratios
3.4.2. Hillslope Solute Pool K:SiO2 Molar Ratios
4. Discussion
4.1. Legacy Clearcutting Implications for Stream DOC Variability
4.2. Legacy Clearcutting Implications for Hillslope Solute Pool DOC Concentrations
4.3. Legacy Clearcutting Implications for Flowpath Behaviour—Insight from DOC Concentration–Discharge Regression Analysis and K:SiO2
4.4. Study Limitations and Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, Y.; Chang, S.X. Disturbance Effects on Soil Carbon and Greenhouse Gas Emissions in Forest Ecosystems. Forests 2020, 11, 297. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Forests 2018—Forest Pathways to Sustainable Development; FAO: Rome, Italy, 2018. [Google Scholar]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between Forest Soils and Water Quality and Quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Statistics Canada. Human Activity and the Environment: Forests in Canada; Statistics Canada: Ottawa, ON, USA, 2018. [Google Scholar]
- Liu, N.; Caldwell, P.V.; Dobbs, G.R.; Miniat, C.F.; Bolstad, P.V.; Nelson, S.A.C.; Sun, G. Forested Lands Dominate Drinking Water Supply in the Conterminous United States. Environ. Res. Lett. 2021, 16, 084008. [Google Scholar] [CrossRef]
- Natural Resources Canada Water. Available online: https://natural-resources.canada.ca/our-natural-resources/forests/sustainable-forest-management/conservation-and-protection-canadas-forests/water/13207 (accessed on 22 May 2023).
- Emelko, M.B.; Silins, U.; Bladon, K.D.; Stone, M. Implications of Land Disturbance on Drinking Water Treatability in a Changing Climate: Demonstrating the Need for “Source Water Supply and Protection” Strategies. Water Res. 2011, 45, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Gartner, T.; Tracy Mehan, G., III; Mulligan, J.; Roberson, J.A.; Stangel, P.; Qin, Y. Protecting Forested Watersheds Is Smart Economics for Water Utilities. Am. Water Work 2014, 106, 54–64. [Google Scholar] [CrossRef]
- Robinne, F.N.; Bladon, K.D.; Silins, U.; Emelko, M.B.; Flannigan, M.D.; Parisien, M.A.; Wang, X.; Kienzle, S.W.; Dupont, D.P. A Regional-Scale Index for Assessing the Exposure of Drinking-Water Sources to Wildfires. Forests 2019, 10, 384. [Google Scholar] [CrossRef]
- Kreutzweiser, D.P.; Hazlett, P.W.; Gunn, J.M. Logging Impacts on the Biogeochemistry of Boreal Forest Soils and Nutrient Export to Aquatic Systems: A Review. Environ. Rev. 2008, 16, 157–179. [Google Scholar] [CrossRef]
- Porvari, P.; Verta, M.; Munthe, J.; Haapanen, M. Forestry Practices Increase Mercury and Methyl Mercury Output from Boreal Forest Catchments. Environ. Sci. Technol. 2003, 37, 2389–2393. [Google Scholar] [CrossRef]
- Bergknut, M.; Meijer, S.; Halsall, C.; Ågren, A.; Laudon, H.; Köhler, S.; Jones, K.C.; Tysklind, M.; Wiberg, K. Modelling the Fate of Hydrophobic Organic Contaminants in a Boreal Forest Catchment: A Cross Disciplinary Approach to Assessing Diffuse Pollution to Surface Waters. Environ. Pollut. 2010, 158, 2964–2969. [Google Scholar] [CrossRef]
- Schindler, D.W.; Curtis, P.J. The Role of DOC in Protecting Freshwaters Subjected to Climatic Warming and Acidification from UV Exposure. Biogeochemistry 1997, 36, 1–8. [Google Scholar] [CrossRef]
- Christ, M.J.; David, M.B. Temperature and Moisture Effects on the Production of Dissolved Organic Carbon in a Spodosol. Soil Biol. Biochem. 1996, 28, 1191–1199. [Google Scholar] [CrossRef]
- Wen, H.; Perdrial, J.; Abbott, B.W.; Bernal, S.; Dupas, R.; Godsey, S.E.; Harpold, A.; Rizzo, D.; Underwood, K.; Adler, T.; et al. Temperature Controls Production but Hydrology Regulates Export of Dissolved Organic Carbon at the Catchment Scale. Hydrol. Earth Syst. Sci. 2020, 24, 945–966. [Google Scholar] [CrossRef]
- Hope, D.; Billett, M.F.; Cresser, M.S. A Review of the Export of Carbon in River Water: Fluxes and Processes. Environ. Pollut. 1994, 64, 301–324. [Google Scholar] [CrossRef] [PubMed]
- Kalbitz, K.; Solinger, S.; Park, J.-H.; Michalzik, B.; Matzner, E. Controls on the Dynamics of Dissolved Organic Matter in Soils: A Review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Casas-Ruiz, J.P.; Spencer, R.G.M.; Guillemette, F.; von Schiller, D.; Obrador, B.; Podgorski, D.C.; Kellerman, A.M.; Hartmann, J.; Gómez-Gener, L.; Sabater, S.; et al. Delineating the Continuum of Dissolved Organic Matter in Temperate River Networks. Glob. Biogeochem. Cycles 2020, 34, e2019GB006495. [Google Scholar] [CrossRef]
- Hinton, M.J.; Schiff, S.L.; English, M.C. The Significance of Storms for the Concentration and Export of Dissolved Organic Carbon from Two Precambrian Shield Catchments. Biogeochemistry 1997, 36, 67–88. [Google Scholar] [CrossRef]
- Morison, M.Q.; Higgins, S.N.; Webster, K.L.; Emilson, E.J.S.; Yao, H.; Casson, N.J. Spring Coherence in Dissolved Organic Carbon Export Dominates Total Coherence in Boreal Shield Forested Catchments. Environ. Res. Lett. 2022, 17, 014048. [Google Scholar] [CrossRef]
- Hood, E.; Gooseff, M.N.; Johnson, S.L. Changes in the Character of Stream Water Dissolved Organic Carbon during Flushing in Three Small Watersheds, Oregon. J. Geophys. Res. Biogeosci. 2006, 111, 1–8. [Google Scholar] [CrossRef]
- Inamdar, S.P.; Christopher, S.F.; Mitchell, M.J. Export Mechanisms for Dissolved Organic Carbon and Nitrate during Summer Storm Events in a Glaciated Forested Catchment in New York, USA. Hydrol. Process. 2004, 18, 2651–2661. [Google Scholar] [CrossRef]
- McGlynn, B.L.; McDonnell, J.J. Role of Discrete Landscape Units in Controlling Catchment Dissolved Organic Carbon Dynamics. Water Resour. Res. 2003, 39, 1090. [Google Scholar] [CrossRef]
- Natural Resources Canada. The State of Canada’s Forests: Annual Report 2022; Natural Resources Canada: Ottawa, ON, Canada, 2022. [Google Scholar]
- Deval, C.; Brooks, E.S.; Gravelle, J.A.; Link, T.E.; Dobre, M.; Elliot, W.J. Long-Term Response in Nutrient Load from Commercial Forest Management Operations in a Mountainous Watershed. For. Ecol. Manag. 2021, 494, 119312. [Google Scholar] [CrossRef]
- Gannon, B.M.; Wei, Y.; Macdonald, L.H.; Kampf, S.K.; Jones, K.W.; Cannon, J.B.; Wolk, B.H.; Cheng, A.S.; Addington, R.N.; Thompson, M.P. Prioritising Fuels Reduction for Water Supply Protection. Int. J. Wildl. Fire 2019, 28, 785–803. [Google Scholar] [CrossRef]
- Webb, A.A. Can Timber and Water Resources Be Sustainably Co-Developed in South-Eastern New South Wales, Australia? Environ. Dev. Sustain. 2012, 14, 233–252. [Google Scholar] [CrossRef]
- Oda, T.; Egusa, T.; Ohte, N.; Hotta, N.; Tanaka, N.; Green, M.B.; Suzuki, M. Effects of Changes in Canopy Interception on Stream Runoff Response and Recovery Following Clear-Cutting of a Japanese Coniferous Forest in Fukuroyamasawa Experimental Watershed in Japan. Hydrol. Process. 2021, 35, e14177. [Google Scholar] [CrossRef]
- Hotta, N.; Tanaka, N.; Sawano, S.; Kuraji, K.; Shiraki, K.; Suzuki, M. Changes in Groundwater Level Dynamics after Low-Impact Forest Harvesting in Steep, Small Watersheds. J. Hydrol. 2010, 385, 120–131. [Google Scholar] [CrossRef]
- Lamontagne, S.; Carignan, R.; D’Arcy, P.; Prairie, Y.T.; Pare, D. Element Export in Runoff from Eastern Canadian Boreal Shield Drainage Basins Following Forest Harvesting and Wildfires. Can. J. Fish. Aquat. Sci. 2000, 57, 118–128. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The Impact of Heavy Traffic on Forest Soils: A Review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Buttle, J.M.; Beall, F.D.; Webster, K.L.; Hazlett, P.W.; Creed, I.F.; Semkin, R.G.; Jeffries, D.S. Hydrologic Response to and Recovery from Differing Silvicultural Systems in a Deciduous Forest Landscape with Seasonal Snow Cover. J. Hydrol. 2018, 557, 805–825. [Google Scholar] [CrossRef]
- Monteith, S.S.; Buttle, J.M.; Hazlett, P.W.; Beall, F.D.; Semkin, R.G.; Jeffries, D.S. Paired-Basin Comparison of Hydrological Response in Harvested and Undisturbed Hardwood Forests during Snowmelt in Central Ontario: I. Streamflow, Groundwater and Flowpath Behaviour. Hydrol. Process. 2006, 20, 1095–1116. [Google Scholar] [CrossRef]
- Laudon, H.; Hedtjärn, J.; Schelker, J.; Bishop, K.; Sørensen, R.; Agren, A. Response of Dissolved Organic Carbon Following Forest Harvesting in a Boreal Forest. Ambio 2009, 38, 381–386. [Google Scholar] [CrossRef]
- Schelker, J.; Eklöf, K.; Bishop, K.; Laudon, H. Effects of Forestry Operations on Dissolved Organic Carbon Concentrations and Export in Boreal First-Order Streams. J. Geophys. Res. Biogeosci. 2012, 117, G01011. [Google Scholar] [CrossRef]
- Webster, K.L.; Leach, J.A.; Hazlett, P.W.; Buttle, J.M.; Emilson, E.J.S.; Creed, I.F. Long-Term Stream Chemistry Response to Harvesting in a Northern Hardwood Forest Watershed Experiencing Environmental Change. For. Ecol. Manag. 2022, 519, 120345. [Google Scholar] [CrossRef]
- Webster, K.L.; Beall, F.D.; Creed, I.F.; Kreutzweiser, D.P. Impacts and Prognosis of Natural Resource Development on Water and Wetlands in Canada’s Boreal Zone. Environ. Rev. 2015, 23, 78–131. [Google Scholar] [CrossRef]
- Meyer, J.L.; Tate, C.M. The Effects of Watershed Disturbance on Dissolved Organic Carbon Dynamics of a Stream. Ecology 1983, 64, 33–44. [Google Scholar] [CrossRef]
- Knoepp, J.D.; Clinton, B.D. Riparian Zones in Southern Appalachian Headwater Catchments: Carbon and Nitrogen Responses to Forest Cutting. For. Ecol. Manag. 2009, 258, 2282–2293. [Google Scholar] [CrossRef]
- Lepistö, A.; Futter, M.N.; Kortelainen, P. Almost 50 Years of Monitoring Shows That Climate, Not Forestry, Controls Long-Term Organic Carbon Fluxes in a Large Boreal Watershed. Glob. Chang. Biol. 2014, 20, 1225–1237. [Google Scholar] [CrossRef]
- Cawley, K.M.; Campbell, J.; Zwilling, M.; Jaffé, R. Evaluation of Forest Disturbance Legacy Effects on Dissolved Organic Matter Characteristics in Streams at the Hubbard Brook Experimental Forest, New Hampshire. Aquat. Sci. 2014, 76, 611–622. [Google Scholar] [CrossRef]
- Yamashita, Y.; Kloeppel, B.D.; Knoepp, J.; Zausen, G.L.; Jaffé, R. Effects of Watershed History on Dissolved Organic Matter Characteristics in Headwater Streams. Ecosystems 2011, 14, 1110–1122. [Google Scholar] [CrossRef]
- Singh, S.; Inamdar, S.; Mitchell, M. Changes in Dissolved Organic Matter (DOM) Amount and Composition along Nested Headwater Stream Locations during Baseflow and Stormflow. Hydrol. Process. 2015, 29, 1505–1520. [Google Scholar] [CrossRef]
- Webster, K.L.; Leach, J.A.; Houle, D.; Hazlett, P.W.; Emilson, E.J.S. Acidification Recovery in a Changing Climate: Observations from Thirty-Five Years of Stream Chemistry Monitoring in Forested Headwater Catchments at the Turkey Lakes Watershed, Ontario. Hydrol. Process. 2021, 35, e14346. [Google Scholar] [CrossRef]
- Webster, K.L.; Leach, J.A.; Hazlett, P.W.; Fleming, R.L.; Emilson, E.J.S.; Houle, D.; Chan, K.H.Y.; Norouzian, F.; Cole, A.S.; O’Brien, J.M.; et al. Turkey Lakes Watershed, Ontario, Canada: 40 Years of Interdisciplinary Whole-ecosystem Research. Hydrol. Process. 2021, 35, e14109. [Google Scholar] [CrossRef]
- Foster, N.W.; Beall, F.D.; Kreutzweiser, D.P. The Role of Forests in Regulating Water: The Turkey Lakes Watershed Case Study. For. Chron. 2005, 81, 142–148. [Google Scholar] [CrossRef]
- Hazlett, P.W.; Semkin, R.G.; Beall, F.D. Hydrologic Pathways during Snowmelt in First-Order Stream Basins at the Turkey Lakes Watershed. Ecosystems 2001, 4, 527–535. [Google Scholar] [CrossRef]
- Creed, I.F.; Beall, F.D.; Clair, T.A.; Dillon, P.J.; Hesslein, R.H. Predicting Export of Dissolved Organic Carbon from Forested Catchments in Glaciated Landscapes with Shallow Soils. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Baldwin, K.; Allen, L.; Basquill, S.; Chapman, K.; Downing, D.; Flynn, N.; MacKenzie, W. Vegetation Zones of Canada: A Biogeoclimatic Perspective; McGill-Queen’s Press: Montreal, QC, Canada, 2018. [Google Scholar]
- Jeffries, D.S.; Kelso, J.R.M.; Morrison, I.K. Physical, Chemical, and Biological Characteristics of the Turkey Lakes Watershed, Central Ontario, Canada. Can. J. Fish. Aquat. Sci. 1988, 45, s3–s13. [Google Scholar] [CrossRef]
- Leach, J.A.; Buttle, J.M.; Webster, K.L.; Hazlett, P.W.; Jeffries, D.S. Travel Times for Snowmelt-Dominated Headwater Catchments: Influences of Wetlands and Forest Harvesting, and Linkages to Stream Water Quality. Hydrol. Process. 2020, 34, 2154–2175. [Google Scholar] [CrossRef]
- Morrison, I.K.; Cameron, D.A.; Foster, N.W.; Groot, A. Forest Research at the Turkey Lakes Watershed. For. Chron. 1999, 75, 395–399. [Google Scholar] [CrossRef]
- Buttle, J.M.; Webster, K.L.; Hazlett, P.W.; Jeffries, D.S. Quickflow Response to Forest Harvesting and Recovery in a Northern Hardwood Forest Landscape. Hydrol. Process. 2019, 33, 47–65. [Google Scholar] [CrossRef]
- OMNRF. Forest Management Guide to Silviculture in the Great Lakes—St. Lawrence and Boreal Forests of Ontario; Queens Printer for Ontario: Toronto, ON, Canada, 2015; ISBN 9781460650998. [Google Scholar]
- Buttle, J.M.; Hazlett, P.W.; Murray, C.D.; Creed, I.F.; Jeffries, D.S.; Semkin, R. Prediction of Groundwater Characteristics in Forested and Harvested Basins during Spring Snowmelt Using a Topographic Index. Hydrol. Process. 2001, 15, 3389–3407. [Google Scholar] [CrossRef]
- Creed, I.F.; Sanford, S.E.; Beall, F.D.; Molot, L.A.; Dillon, P.J. Cryptic Wetlands: Integrating Hidden Wetlands in Regression Models of the Export of Dissolved Organic Carbon from Forested Landscapes. Hydrol. Process. 2003, 17, 3629–3648. [Google Scholar] [CrossRef]
- Fines, R.W.; Stone, M.; Webster, K.L.; Leach, J.A.; Buttle, J.M.; Emelko, M.B.; Collins, A.L. Evaluation of Legacy Forest Harvesting Impacts on Dominant Stream Water Sources and Implications for Water Quality Using End Member Mixing Analysis. Water 2023, 15, 2825. [Google Scholar] [CrossRef]
- Hazlett, P.; Broad, K.; Gordon, A.; Sibley, P.; Buttle, J.; Larmer, D. The Importance of Catchment Slope to Soil Water N and C Concentrations in Riparian Zones: Implications for Riparian Buffer Width. Can. J. For. Res. 2008, 38, 16–30. [Google Scholar] [CrossRef]
- Peacock, M.; Freeman, C.; Gauci, V.; Lebron, I.; Evans, C.D. Investigations of Freezing and Cold Storage for the Analysis of Peatland Dissolved Organic Carbon (DOC) and Absorbance Properties. Environ. Sci. Process. Impacts 2015, 17, 1290–1301. [Google Scholar] [CrossRef]
- Nachimuthu, G.; Watkins, M.D.; Hulugalle, N.; Finlay, L.A. Storage and Initial Processing of Water Samples for Organic Carbon Analysis in Runoff. MethodsX 2020, 7, 101012. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org/ (accessed on 1 September 2020).
- Ducharme, A.A.; Casson, N.J.; Higgins, S.N.; Friesen-Hughes, K. Hydrological and Catchment Controls on Event-Scale Dissolved Organic Carbon Dynamics in Boreal Headwater Streams. Hydrol. Process. 2021, 35, e14279. [Google Scholar] [CrossRef]
- Butturini, A.; Alvarez, M.; Bernał, S.; Vazquez, E.; Sabater, F. Diversity and Temporal Sequences of Forms of DOC and NO3- Discharge Responses in an Intermittent Stream: Predictable or Random Succession? J. Geophys. Res. Biogeosci. 2008, 113, 1–10. [Google Scholar] [CrossRef]
- Rose, L.A.; Karwan, D.L.; Godsey, S.E. Concentration–Discharge Relationships Describe Solute and Sediment Mobilization, Reaction, and Transport at Event and Longer Timescales. Hydrol. Process. 2018, 32, 2829–2844. [Google Scholar] [CrossRef]
- McPhail, S.; Buttle, J.M.; Webster, K.L.; Leach, J.A. Persistent Chemostatic Behaviour of Stream Solutes in a Northern Hardwood Forest under Climatic and Atmospheric Deposition Changes. Hydrol. Process. 2023, 37, e14888. [Google Scholar] [CrossRef]
- Musolff, A.; Schmidt, C.; Selle, B.; Fleckenstein, J.H. Catchment Controls on Solute Export. Adv. Water Resour. 2015, 86, 133–146. [Google Scholar] [CrossRef]
- Godsey, S.E.; Kirchner, J.W.; Clow, D.W. Concentration-Discharge Relationships Reflect Chemostatic Characteristics of US Catchments. Hydrol. Process. 2009, 23, 1844–1864. [Google Scholar] [CrossRef]
- Thompson, S.E.; Basu, N.B.; Lascurain, J.; Aubeneau, A.; Rao, P.S.C. Relative Dominance of Hydrologic versus Biogeochemical Factors on Solute Export across Impact Gradients. Water Resour. Res. 2011, 47, 1–20. [Google Scholar] [CrossRef]
- Moatar, F.; Abbott, B.W.; Minaudo, C.; Curie, F.; Pinay, G. Elemental Properties, Hydrology, and Biology Interact to Shape Concentration-Discharge Curves for Carbon, Nutrients, Sediment, and Major Ions. Water Resour. Res. 2017, 53, 1270–1287. [Google Scholar] [CrossRef]
- Cartwright, I.; Morgenstern, U.; Hofmann, H. Concentration versus Streamflow Trends of Major Ions and Tritium in Headwater Streams as Indicators of Changing Water Stores. Hydrol. Process. 2020, 34, 485–505. [Google Scholar] [CrossRef]
- Moore, T.R. Dynamics of Dissolved Organic Carbon in Forested and Disturbed Catchments, Westland, New Zealand: 1. Maimai. Water Resour. Res. 1989, 25, 1321–1330. [Google Scholar] [CrossRef]
- Oni, S.K.; Tiwari, T.; Ledesma, J.L.J.; Ågren, A.M.; Teutschbein, C.; Schelker, J.; Laudon, H.; Futter, M.N. Local- and Landscape-Scale Impacts of Clear-Cuts and Climate Change on Surface Water Dissolved Organic Carbon in Boreal Forests. J. Geophys. Res. G Biogeosci. 2015, 120, 2402–2426. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling Downwards—Dissolved Organic Matter in Soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- McDowell, W.H.; Likens, G.E. Origin, Composition, and Flux of Dissolved Organic Carbon in the Hubbard Brook Valley. Ecol. Monogr. 1988, 58, 177–195. [Google Scholar] [CrossRef]
- Kalbitz, K.; Schwesig, D.; Rethemeyer, J.; Matzner, E. Stabilization of Dissolved Organic Matter by Sorption to the Mineral Soil. Soil Biol. Biochem. 2005, 37, 1319–1331. [Google Scholar] [CrossRef]
- Mikutta, R.; Mikutta, C.; Kalbitz, K.; Scheel, T.; Kaiser, K.; Jahn, R. Biodegradation of Forest Floor Organic Matter Bound to Minerals via Different Binding Mechanisms. Geochim. Cosmochim. Acta 2007, 71, 2569–2590. [Google Scholar] [CrossRef]
- Johnson, C.E.; Driscoll, C.T.; Fahey, T.J.; Siccama, T.G.; Hughes, J.W. Carbon Dynamics Following Clear-Cutting of a Northern Hardwood Forest. In Carbon Forms and Functions in Forest Soils; McPhee, W.W., Kelly, J.M., Eds.; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Semkin, R.G.; Hazlett, P.W.; Beall, F.D.; Jeffries, D.S. Development of Stream Water Chemistry During Spring Melt in a Northern Hardwood Forest. Water Res. 2002, 2, 37–61. [Google Scholar]
- Hagedorn, F.; Schlepppi, P.; Waldner, P.; Flühler, H. Export of Dissolved Organic Carbon and Nitrogen from Gleysol Dominated Catchments: The Significance of Water Flow Paths. Biogeochemistry 2000, 50, 137–161. [Google Scholar]
- Raymond, P.A.; Saiers, J.E. Event Controlled DOC Export from Forested Watersheds. Biogeochemistry 2010, 100, 197–209. [Google Scholar] [CrossRef]
- Oswald, C.J.; Branfireun, B.A. Antecedent Moisture Conditions Control Mercury and Dissolved Organic Carbon Concentrations Dynamics in a Boreal Headwater Catchment. Water Resour. Res. 2014, 50, 6610–6627. [Google Scholar] [CrossRef]
- Briggs, M.A.; Hare, D.K. Explicit Consideration of Preferential Groundwater Discharges as Surface Water Ecosystem Control Points. Hydrol. Process. 2018, 32, 2435–2440. [Google Scholar] [CrossRef]
- Ploum, S.W.; Leach, J.A.; Laudon, H.; Kuglerová, L. Groundwater, Soil, and Vegetation Interactions at Discrete Riparian Inflow Points (DRIPs) and Implications for Boreal Streams. Front. Water 2021, 3, 669007. [Google Scholar] [CrossRef]
- McGlynn, B.L.; McDonnell, J.J. Quantifying the Relative Contributions of Riparian and Hillslope Zones to Catchment Runoff. Water Resour. Res. 2003, 39, 1310. [Google Scholar] [CrossRef]
Catchment Characteristic | C32 | C31 |
---|---|---|
Harvest History | Unharvested | Clearcut |
Area (ha) | 6.74 | 4.62 |
Relief (m) | 107 | 59 |
Weir Elevation (m.a.s.l.) | 352 | 359 |
Average Slope (°) | 17.49 | 14.61 |
Aspect | SW | SW |
Wetland Area (%) | 1 | 3 |
ln (DOC)–ln(Q) Slope | CVDOC/CVQ | Interpretation |
---|---|---|
0 < slope < |0.1| or p > 0.05 | ≥0.5 | Chemostochastic DOC behavior whereby DOC varies independently of Q |
0 < slope < |0.1| or p > 0.05 | ≤0.5 | Chemostatic DOC behavior, indicative of a relatively homogenous or uniform source whereby changes in hydrologic connectivity and flow paths do not impact DOC concentration |
Slope > 0.1 | Not applicable | Flushing DOC behavior indicative of a transport-limited export regime |
Slope < −0.1 | Not applicable | Dilution DOC behavior indicative of a source-limited export regime |
Flow Condition | Date | Total Precipitation (mm) | Total Streamflow C32 (mm) | Total Streamflow C31 (mm) |
---|---|---|---|---|
Calendar Year | 1 January 2021 to 31 December 2021 | 1183.9 | 424.2 | 320.3 |
Freshet | 25 March 2021 to 9 May 2021 | 116.2 | 150.0 | 132.9 |
Event A | 24 May 2021 to 25 May 2021 | 25.4 | 1.6 | 2.0 |
Event B | 21 June 2021 to 22 June 2021 | 18.9 | 0.6 | 0.5 |
Event C | 24 June 2021 to 26 June 2021 | 13.7 | 1.8 | 2.5 |
Event D | 15 July 2021 to 16 July 2021 | 17.2 | 0.7 | 0.4 |
Fall | 9 October 2021 to 30 October 2021 | 97.9 | 27.4 | 18.5 |
Catchment | Freshet | Baseflow | Event A | Event B | Event C | Event D | Fall | All | |
---|---|---|---|---|---|---|---|---|---|
n | C32 | 46 | 20 | 24 | 19 | 27 | 21 | 22 | 179 |
C31 | 50 | 13 | 24 | 14 | 27 | 8 | 22 | 158 | |
minimum | C32 | 0.93 | 1.38 | 1.96 | 1.67 | 1.67 | 1.31 | 1.63 | 0.93 |
C31 | 1.41 | 1.82 | 3.03 | 2.63 | 2.70 | 3.55 | 2.40 | 1.41 | |
maximum | C32 | 5.13 | 2.65 | 4.64 | 2.74 | 3.98 | 3.79 | 4.81 | 5.13 |
C31 | 4.81 | 4.48 | 6.05 | 5.86 | 5.92 | 6.26 | 6.32 | 6.32 | |
mean | C32 | 2.50 | 1.75 | 2.81 | 2.22 | 2.56 | 2.37 | 2.53 | 2.42 |
C31 | 3.04 | 2.61 | 4.81 | 3.82 | 3.44 | 4.48 | 3.62 | 3.56 | |
median | C32 | 2.31 | 1.69 | 2.66 | 2.23 | 2.44 | 2.46 | 2.49 | 2.36 |
C31 | 3.06 | 2.46 | 5.03 | 3.65 | 3.18 | 4.10 | 3.50 | 3.38 | |
SD | C32 | 0.76 | 0.29 | 0.75 | 0.35 | 0.51 | 0.75 | 0.70 | 0.69 |
C31 | 0.66 | 0.67 | 0.84 | 0.96 | 0.80 | 1.02 | 0.81 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gray, A.; Stone, M.; Webster, K.L.; Leach, J.A.; Buttle, J.M.; Emelko, M.B. Seasonal- and Event-Scale Stream DOC Dynamics in Northern Hardwood-Dominated Headwater Catchments of Contrasting Forest Harvest History. Water 2024, 16, 2724. https://doi.org/10.3390/w16192724
Gray A, Stone M, Webster KL, Leach JA, Buttle JM, Emelko MB. Seasonal- and Event-Scale Stream DOC Dynamics in Northern Hardwood-Dominated Headwater Catchments of Contrasting Forest Harvest History. Water. 2024; 16(19):2724. https://doi.org/10.3390/w16192724
Chicago/Turabian StyleGray, Annie, Micheal Stone, Kara L. Webster, Jason A. Leach, James M. Buttle, and Monica B. Emelko. 2024. "Seasonal- and Event-Scale Stream DOC Dynamics in Northern Hardwood-Dominated Headwater Catchments of Contrasting Forest Harvest History" Water 16, no. 19: 2724. https://doi.org/10.3390/w16192724
APA StyleGray, A., Stone, M., Webster, K. L., Leach, J. A., Buttle, J. M., & Emelko, M. B. (2024). Seasonal- and Event-Scale Stream DOC Dynamics in Northern Hardwood-Dominated Headwater Catchments of Contrasting Forest Harvest History. Water, 16(19), 2724. https://doi.org/10.3390/w16192724