Influence of Organic Loading Rates on the Treatment Performance of Membrane Bioreactors Treating Saline Industrial Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. MBR System and Experiment
2.2. System Start-Up and Operation
2.3. Monitoring Parameters and Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Industrial Wastewater
3.2. Organic Loading Rates (OLRs) and Their Impacts on the Treatment Performance
3.3. Influence of OLRs during the Treatment Experiments on Membrane Fouling and TMP
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasr, A.F.; El-Shafai, S.A.; Abdel Fadil, A.S.; Ibrahim, H.S.; Hemdan, B.A. Potential use of treated domestic sewage for cultivation of biofuel crops in Egypt. Int. J. Environ. Sci. Technol. 2019, 16, 7433–7442. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Katsigiannis, L.A. Recent advances in water and wastewater treatment with emphasis in membrane treatment operations. Water 2019, 11, 45. [Google Scholar] [CrossRef]
- Ghanim, A.A.J. Water resources crisis in Saudi Arabia, challenges and possible management options: An analytic review. Int. J. Environ. Ecol. Eng. 2019, 13, 51–56. [Google Scholar]
- Charazińska, S.; Kochanski, P.; Markiewicz, M.; Stolte, S.; Adamiak, E.B. Treatment of electropolishing industrial wastewater and its impact on the immobilization of Daphnia magna. Environ. Res. 2022, 212, 113438. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.A.; Thakur, A.; Garg, N.; Devi, P. Impact of industrial effluents on groundwater. In Groundwater Geochemistry: Pollution and Remediation Methods; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021; pp. 193–211. [Google Scholar]
- Al-Omran, A.M.; Aly, A.A.; Al-Wabel, M.; Sallam, A.S.; Al-Shayaa, M.S. Hadrochemical characterization of groundwater under agricultural land in arid environment: A case study of Al-Kharj, Saudi Arabia. Arab. J. Geosci. 2016, 9, 68. [Google Scholar] [CrossRef]
- Vo, T.D.H.; Bui, X.T.; Dang, T.B.; Nguyen, T.T.; Nguyen, V.V.; Tran, D.P.H.; Nguyen, P.T.; Boller, M.; Lin, K.Y.A.; Varjani, S.; et al. Influence of organic loading rates on treatment performance of membrane bioreactor treating tannery wastewater. Environ. Technol. Innov. 2021, 24, 101810. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Giwa, A.; Dufour, V.; Marzooqi, F.A.; Kaabi, M.; Hasan, S.W. Brine management methods: Recent innovations and current status. Desalination 2017, 407, 1–23. [Google Scholar] [CrossRef]
- Srivastava, A.; Parida, V.K.; Majumder, A.; Gupta, B.; Gupta, A.; Gupta, B. Treatment of saline wastewater using physicochemical, biological, and hybrid processes: Insights into inhibition mechanisms, treatment efficiencies, and performance enhancement. J. Environ. Chem. Eng. 2021, 9, 105775. [Google Scholar] [CrossRef]
- Afrad, S.; Monir, M.; Haque, M.; Barau, A.; Haque, M. Impact of industrial effluent on water, soil and Rice production in Bangladesh: A case of Turag Riverbank. J. Environ. Health. Sci. Eng. 2020, 18, 825–834. [Google Scholar] [CrossRef]
- Li, Y.Y.; Lin, L.; Huang, X.; Li, X.Y. Partial nitritation-anammox for treatment of saline wastewater: Hydrazine-assisted salinity adaptation and nitrate control. Chem. Eng. J. 2023, 470, 144–268. [Google Scholar] [CrossRef]
- Cao, T.N.D.; Bui, X.T.; Le, L.T.; Dang, B.T.; Tran, D.P.H.; Vo, T.K.Q.; Tran, H.T.; Nguyen, T.B.; Mukhtar, H.; Pan, S.-Y.; et al. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. Bioresour. Technol. 2022, 363, 127831. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Deng, Y.; Zou, L.X.; Yang, Y.S.; Liu, Z.; Liu, Z.; Wang, Z. Nitrification performance and bacterial community dynamics in a membrane bioreactor with elevated ammonia concentration: The combined inhibition effect of salinity, free ammonia and free nitrous acid on nitrification at high ammonia loading rates. Sci. Total Environ. 2022, 831, 154972. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Hwang, Y.; Shin, H.; Lee, W. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors. Bioresour. Technol. 2023, 141, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Trapani, D.D.; Bella, G.D.; Mannina, G.; Torregrossa, M.; Viviani, G. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: Influence of wastewater salinity variation. Bioresour. Technol. 2014, 162, 60–69. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, W.; Chen, X.; Zhou, Y.; He, B.; Tan, S. Analysis of the biodegradation performance and biofouling in a halophilic MBBR-MBR to improve the treatment of disinfected saline wastewater. Chemosphere 2021, 269, 128716. [Google Scholar] [CrossRef]
- Bella, G.D.; Trapani, D.D.; Torregrossa, M.; Viviani, G. Performance of an MBR pilot plant treating high strength wastewater subject to salinity increase: Analysis of biomass activity and fouling behavior. Bioresour. Technol. 2013, 147, 614–618. [Google Scholar] [CrossRef]
- Giacobbo, A.; Feron, G.L.; Rodrigues, M.A.S.; Ferreira, J.Z.; Meneguzzi, A.; Bernardes, A.M. Integration of membrane bioreactor and advanced oxidation processes for water recovery in leather industry. Desalination Water Treat. 2015, 56, 1712–1721. [Google Scholar] [CrossRef]
- KSA. Kingdom of Saudi Arabia National Environmental Standard Industrial and Municipal Wastewater Discharges. pp. 1–17. Available online: https://www.scribd.com/document/262051071/En-EnvStand17-Industrial-and-Municipal-Wastewater-Discharges (accessed on 1 March 2017).
- Nasr, F.; Abdelfattah, I.; El-Shafai, S. Cost-effective management of confectionery industrial wastewater. Egypt. J. Chem. 2022, 65, 391–399. [Google Scholar] [CrossRef]
- Mata, R.A.D.; Silva, C.M.; Zanuncio, J.C.; Materazzi, L.B. Effects of electrostatic precipitators ash leachate (EPAL) from recovery boilers on the biological treatment of effluent of kraft pulp mills. Sci. Total Environ. 2019, 659, 905–911. [Google Scholar] [CrossRef]
- Abdel Fadil, A.; Aly, M.M.; El-Shafai, S.A. Nasr, low-Cost MBR for Sewage Treatment As Non-Conventional Water Resource. Egypt. J. Chem. 2024, 67, 347–360. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 24th ed.; Lipps, W.C., Braun-Howland, E.B., Baxter, T.E., Eds.; APHA Press: Washington, DC, USA.
- Abdullah, Z.; Bérubé, P.R.; Horne, D.J. SEM imaging of membranes: Importance of sample preparation and imaging parameters. J. Membr. Sci. 2014, 463, 113–125. [Google Scholar] [CrossRef]
- Zahid, W.M.; El-Shafai, S.A. Use of cloth-media filter for membrane bioreactor treating municipal wastewater. Bioresour. Technol. 2011, 3, 2193–2198. [Google Scholar] [CrossRef] [PubMed]
- Vergine, P.; Salerno, C.; Berardi, G.; Pappagallo, G.; Pollice, A. The Self-Forming Dynamic Membrane Bioreactors (SFD MBR) as a suitable technology for agro-industrial wastewater treatment. New Biotechnol. 2020, 56, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, W.; Zhan, X.; Chi, Z.; Li, W.; He, B.; Tan, S. Biodegradation performance and biofouling control of a halophilic biocarriers-MBR in saline pharmaceutical (ampicillin-containing) wastewater treatment. Chemosphere 2021, 263, 127949. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Song, K.; Xia, S.; Qiu, L.; Wang, J.; Zhang, S. Treatment of High Salinity Wastewater Using an Intermittently Aerated Membrane Bioreactor. Adv. Mater. Res. 2015, 1092–1093, 1033–1036. [Google Scholar] [CrossRef]
- Cartagena, P.; Kaddouri, M.E.; Cases, V.; Trapote, A.; Rico, D.P. Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR–NF/RO treatment. Sep. Purif. Technol. 2013, 110, 32–143. [Google Scholar] [CrossRef]
- Munz, g.; Gualtiero, M.; Salvadori, L.; Claudia, B.; Claudio, L. Process efficiency and microbial monitoring in MBR (membrane bioreactor) and CASP (conventional activated sludge process) treatment of tannery wastewater. Bioresour. Technol. 2008, 18, 8559–8564. [Google Scholar] [CrossRef]
- Frank, V.B.; Regnery, J.; Chan, K.E.; Ramey, D.F.; Spear, J.R.; Cath, T. Co-treatment of residential and oil and gas production wastewater with a hybrid sequencing batch reactor-membrane bioreactor process. J. Water Process Eng. 2017, 17, 82–94. [Google Scholar] [CrossRef]
- Huang, S.; Pooi, C.K.; Shi, X.; Varjani, S.; Ng, H.W. Performance and process simulation of membrane bioreactor (MBR) treating petrochemical wastewater. Sci. Total Environ. 2020, 747, 141311. [Google Scholar] [CrossRef]
- Johir, M.A.H.; Vigneswaran, S.; Kandasamy, J.; Ben Aim, R.; Grasmick, A. Effect of salt concentration on membrane bioreactor (MBR) performances: Detailed organic characterization. Desalination 2013, 322, 13–20. [Google Scholar] [CrossRef]
- Chen, Y.; He, H.; Liu, H.; Li, H.; Zeng, G.; Xia, X.; Yang, C. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors. Bioresource. Technol. 2018, 249, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Kamal, N.; Sindhu, R.; Bhargava, P.C. Biodegradation of emerging organic pollutant gemfibrozil: Mechanism, kinetics, and pathway modeling. Bioresour. Technol. 2023, 374, 128749. [Google Scholar] [CrossRef] [PubMed]
- Yogalakshmi, K.N.; Joseph, K. Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor. Bioresource. Technol. 2010, 101, 7054–7061. [Google Scholar] [CrossRef] [PubMed]
- Artiga, P.; Toriello, G.G.; Méndez, R.; Garrido, J.M. Use of a hybrid membrane bioreactor for the treatment of saline wastewater from a fish canning factory. Desalination 2008, 221, 518–525. [Google Scholar] [CrossRef]
- Ali, M.; Elreedy, A.; Fujii, M. Impacts of micro-to nano-sized carbon supplements on mixed and archaea-free halophilic cultures when used for bioenergy recovery from saline wastewater. J. Clean. Prod. 2024, 447, 141478. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, H.; Shen, Y.; Li, J.; Zhou, W.; Song, H.; Liu, M.; Wang, H. Impact of salinity on anaerobic ceramic membrane bioreactor for textile wastewater treatment: Process performance, membrane fouling, and machine learning models. J. Environ. Manag. 2023, 345, 118717. [Google Scholar] [CrossRef]
- Hai, F.I.; Riley, T.; Shawkat, S.; Magram, S.F.; Yamamoto, K. Removal of pathogens by membrane bioreactors: A review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water 2014, 12, 3603–3630. [Google Scholar] [CrossRef]
- Zanetti, F.; Luca, G.D.; Sacchetti, R. Performance of a full-scale membrane bioreactor system in treating municipal wastewater for reuse purposes. Bioresour. Technol. 2010, 10, 3768–3771. [Google Scholar] [CrossRef]
Facility Type | Quantity (m3/day) | Total Dissolved Solids (TDSs) (mg/L) | COD (mgO2/L) |
---|---|---|---|
Accommodation | 387 | 585 | |
Basic Metals | 2.34 | 2827 | 278 |
Chemicals | 54.5 | 3007 | 1203 |
Coke and Refined Petroleum | 19.1 | 2101 | 762 |
Computer, Electronic, and Optical | 3.71 | 2470 | 580 |
Electrical | 0.37 | 867 | 240 |
Food | 112 | 5438 | 1595 |
Furniture | 5.67 | 2420 | 554 |
Machinery and Equipment | 37.2 | 1763 | 714 |
Non-Metallic | 14.0 | 3234 | 865 |
Paper | 262 | 2900 | 1169 |
Pharmaceutical | 2.31 | 200 | 450 |
Printing | 14.5 | 6000 | 2400 |
Rubber and Plastics | 121 | 5527 | 926 |
Textiles | 0.49 | 1171 | 473 |
Parameter | Unit | COD 800 | COD1400 | COD 2000 | |||
---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | ||
Temperature | °C | 28.6 | 28.6 | 25.8 | 26.8 | 22.1 | 22.7 |
pH | pH Unit | 6.8 | 7 | 7.6 | 8 | 6.8 | 7.2 |
Turbidity | NTU | 117 | 135 | 95 | 145 | 122 | 165 |
TDS | mg/L | 4033 | 6055 | 5430 | 6000 | 7410 | 8455 |
COD | mgO2/L | 302 | 800 | 400 | 1380 | 376 | 1976 |
TSS | mg/L | 93 | 115 | 73.7 | 122 | 110 | 155 |
BOD5 | mgO2/L | 120 | 443.7 | 117.1 | 785 | 110 | 1150 |
EC | mS/cm | 4.52 | 6.29 | 5.64 | 6.22 | 7.82 | 8.57 |
Ammonia | mgN/L | 11.2 | 14 | 9.5 | 22.2 | 8.7 | 39.1 |
TKN | mgN/L | 13.9 | 16.7 | 14.9 | 27.6 | 10.1 | 40.5 |
TP | mgP/L | 5.8 | 5.8 | 4.2 | 5.7 | 3.2 | 8 |
Salinity | mg/L | 3555 | 5055 | 4400 | 5000 | 6214 | 6900 |
Total coliform | MPN/100 mL | 3.9 × 107 | 4.1 × 107 | 1.4 × 107 | 1.6 × 107 | 1.4 × 107 | 1.5 × 107 |
Experimental | COD 800 | COD 1400 | COD 2000 | |
---|---|---|---|---|
Parameter | Unit | |||
Temperature | °C | 23.4 ± 1.5 a | 22.5 ± 1.2 a | 23.3 ± 0.6 a |
COD | mgO2/L | 34.2 ± 12.8 a | 63.3 ± 5.9 b | 76.5 ± 5.4 c |
BOD | mgO2/L | 7.5 ± 1.1 a | 13.8 ± 1.2 b | 16.1 ± 2.57 b |
TSS | mgO/L | 1.84 ± 0.88 a | 1.82 ± 0.79 a | 2.40 ± 0.99 a |
Turbidity | NTU | 0.59 ± 0.24 a | 0.54 ± 0.29 a | 0.65 ± 0.33 a |
Ammonia-N | mgN/L | 0.59 ± 0.24 a | 1.29 ± 0.31 b | 5.4 ± 0.73 c |
Nitrate | mgN/L | 9.75 ± 2.53 a | 9.49 ± 4.49 a | 10.02 ± 3.30 a |
Nitrite | mgN/L | 0.01 ± 0.01 a | 0.01 ± 0.001 a | 0.02 ± 0.01 a |
TKN | mgN/L | 2.7 ± 0.57 a | 2.15 ± 0.21 b | 13.85 ± 0.92 c |
TP * | mg P/L | 0.72 ± 0.16 a | 0.70 ± 0.28 a | 0.20 ± 0.14 b |
Experimental Parameter | COD 800 | COD 1400 | COD 2000 | |
---|---|---|---|---|
Unit | ||||
COD | mgO2/L | 95.7 ± 1.6 a | 95.5 ± 0.4 a | 96.1 ± 0.3 a |
BOD | mgO2/L | 98.3 ± 0.2 a | 99.8 ± 0.1 a | 98.5 ± 0.1 a |
TSS | mgO2/L | 98.4 ± 0.8 a | 98.5 ± 0.6 a | 98.5 ± 0.7 a |
Turbidity | NTU | 99.6 ± 0.2 a | 99.6 ± 0.2 a | 99.6 ± 0.2 a |
Ammonia-N | mg N/L | 96.1 ± 0.5 a | 93.5 ± 1.6 b | 80.2 ± 0.9 c |
TKN | mg N/L | 83.8 ± 3.4 a | 92.2 ± 0.8 b | 65.8 ± 2.3 c |
TP | mg P/L | 87.1 ± 3.7 a | 87.7 ± 5.0 a | 97.5 ± 1.8 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, M.; Refaat, A.; Munshi, F.; El-Said, M.A.; El-Shafai, S.A. Influence of Organic Loading Rates on the Treatment Performance of Membrane Bioreactors Treating Saline Industrial Wastewater. Water 2024, 16, 2629. https://doi.org/10.3390/w16182629
Alotaibi M, Refaat A, Munshi F, El-Said MA, El-Shafai SA. Influence of Organic Loading Rates on the Treatment Performance of Membrane Bioreactors Treating Saline Industrial Wastewater. Water. 2024; 16(18):2629. https://doi.org/10.3390/w16182629
Chicago/Turabian StyleAlotaibi, Majeb, Ashraf Refaat, Faris Munshi, Mohamed Ali El-Said, and Saber A. El-Shafai. 2024. "Influence of Organic Loading Rates on the Treatment Performance of Membrane Bioreactors Treating Saline Industrial Wastewater" Water 16, no. 18: 2629. https://doi.org/10.3390/w16182629
APA StyleAlotaibi, M., Refaat, A., Munshi, F., El-Said, M. A., & El-Shafai, S. A. (2024). Influence of Organic Loading Rates on the Treatment Performance of Membrane Bioreactors Treating Saline Industrial Wastewater. Water, 16(18), 2629. https://doi.org/10.3390/w16182629