Estimating Evapotranspiration of Rainfed Winegrapes Combining Remote Sensing and the SIMDualKc Soil Water Balance Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Crop Characterization
2.2. Climate Characterization
2.3. Soil Characterization and Soil Water Content Monitoring
2.4. Modelling Approach
2.4.1. SIMDualKc Modelling Tool
2.4.2. Estimating Kcb Values Using the A&P Approach and Remote Sensing Data
2.4.3. Parameterization, Calibration and Testing Procedures of SIMDualKc Model
2.4.4. Modelling Tool Statistical Accuracy Assessment
3. Results and Discussion
3.1. Performance of the SIMDualKc Model in Calculating Soil Water Content
3.2. Crop Coefficients Dynamics over the Season
3.3. Estimation of the Fraction of Ground Cover from Vegetation Indices
3.4. Comparison between Kcb Obtained with SIMDualKc Model and Predicted with the A&P Approach
3.5. Water Balance and Respective Components
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Symbols, Abbreviations, and Acronyms
aD | Optimization parameter of the deep percolation parametric equation [mm] |
ASW | Available soil water, i.e., depth of water above the wilting point for a given soil depth [mm] |
bD | Optimization parameter of the deep percolation parametric equation [-] |
CN | Curve number [-] |
CR | Capillary rise [mm d−1] |
De | Cumulative depth of evaporation (depletion) from the soil surface layer [mm] |
DP | Deep percolation [mm] |
Dr | Cumulative depth of evapotranspiration (depletion) from the root zone [mm] |
Dw | Depth of groundwater [m] |
Dwc | Critical depth of groundwater [m] |
ETc | Crop evapotranspiration under standard conditions [mm d−1] |
ETc act | Actual crop evapotranspiration, i.e., under non-standard conditions [mm d−1] |
ETo | (Grass) Reference crop evapotranspiration [mm d−1] |
ETm | Potential crop evapotranspiration rate [mm d−1] |
Es | Soil evaporation [mm d−1] |
fc | Fraction of soil surface covered by vegetation (as observed from overhead) [-] |
fc eff | Effective fraction of soil surface covered by vegetation [-] |
few | Fraction of soil that is both exposed and wetted (from which most evaporation occurs) [-] |
Fr | Crop canopy resistance correction factor [-] |
fw | Fraction of soil surface wetted by rain or irrigation [-] |
h | Crop height [m] |
Kc | (Standard) crop coefficient [-] |
Kc act | Actual crop coefficient (under non-standard conditions) [-] |
Kc ini | Crop coefficient during the initial growth stage [-] |
Kc mid | Crop coefficient during the mid-season growth stage [-] |
Kc end | Crop coefficient at end of the late season growth stage [-] |
Kc max | Maximum value of crop coefficient (following rain or irrigation) [-] |
Kc min | Minimum value of crop coefficient (dry soil with no ground cover) [-] |
Kcb | Standard basal crop coefficient [-] |
Kcb act | Actual basal crop coefficient (under non-standard conditions and/or observed) [-] |
Kcb full | Basal crop coefficient during mid-season (at peak plant size or height) for vegetation with full ground cover of LAI > 3 [-] |
Kcb ini | Basal crop coefficient during the initial growth stage [-] |
Kcb mid | Basal crop coefficient during the mid-season growth stage [-] |
Kcb end | Basal crop coefficient at end of the late season growth stage [-] |
Kcb A&P | Basal crop coefficient estimated with the A&P approach [-] |
Kcb SIMDualKc | Basal crop coefficient estimated with the SIMDualKc model [-] |
Kd | Crop density coefficient [-] |
Ke | Soil evaporation coefficient [-] |
kh | Multiplicative factor of crop height [-] |
Kr | Soil evaporation reduction coefficient [-] |
Ks | Water stress coefficient [-] |
ML | Multiplier on fc describing the effect of canopy density [-] |
P | Precipitation [mm] |
p | Evapotranspiration depletion factor [-] |
RAW | Root zone readily available soil water [mm] |
REW | Readily evaporable water from the soil surface layer [mm] |
RH | Relative humidity [%] |
RHmean | Daily mean relative humidity [%] |
RHmin | Daily minimum relative humidity [%] |
RO | Surface runoff [mm] |
Rs | Solar or shortwave radiation [MJ m−2 day−1] |
TAW | Total available soil water of the root zone [mm] |
TEW | Total evaporable water from the soil surface layer [mm] |
Tc | Crop transpiration [mm d−1] |
Tc act | Actual crop transpiration [mm d−1] |
Tmax | Daily maximum air temperature [°C] |
Tmin | Daily minimum air temperature [°C] |
u2 | Wind speed at 2 m above ground surface [m s−1] |
Wa | Actual root zone soil water storage [mm] |
Wc | Critical soil water storage [mm] |
WFC | Soil water storage to maximum root depth (Zr) at field capacity [mm] |
Ws | Steady soil water storage [mm] |
Ze | Depth of the surface soil layer from where soil evaporation occurs [m] |
Zr | Rooting depth or root length [m] |
θFC | Soil water content at field capacity [m3 m−3] |
θWP | Soil water content at the permanent wilting point [m3 m−3] |
ψp | Predawn leaf water potential [MPa] |
Abbreviations and Acronyms | |
A&P | Allen and Pereira [48] approach |
AGC | Active ground cover |
AT | Access tube |
cv. | Cultivar |
DOY | Day of year |
FAO | Food and Agriculture Organization |
FAO56 | Food and Agriculture Organization Irrigation and Drainage Paper 56 (1998) |
fc VI | Fraction of soil surface covered by vegetation estimated from remote sensing [-] |
LAI | Leaf area index |
NDVI | Normalized Difference Vegetation Index |
PTF | Pedotransfer functions |
RS | Remote sensing |
SAVI | Soil Adjusted Vegetation Index |
SIMDualKc | Soil water balance model |
SCA | Sample collection area |
SWB | Soil water balance |
SWC | Soil water content |
TDR | Time domain reflectometry |
VI | Vegetation index |
WTD | Water table depth [m] |
References
- Fernandes-Silva, A.; Oliveira, M.; Paço, T.A.; Ferreira, I. Deficit Irrigation in Mediterranean Fruit Trees and Grapevines: Water Stress Indicators and Crop Responses. In Irrigation in Agroecosystems; Ondrašek, G., Ed.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Ferreira, M.I.; Silvestre, J.; Conceição, N.; Malheiro, A.C. Crop and stress coefficients in rainfed and deficit irrigation vineyards using sap flow techniques. Irrig. Sci. 2012, 30, 433–447. [Google Scholar] [CrossRef]
- Groenveld, T.; Obiero, C.; Yu, Y.; Flury, M.; Keller, M. Predawn leaf water potential of grapevines is not necessarily a good proxy for soil moisture. BMC Plant Biol. 2023, 23, 369. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.J.; Clingeleffer, P.R. Interseasonal effects of regulated deficit irrigation on growth, yield, water use, berry composition and wine attributes of Cabernet Sauvignon grapevines. Aust. J. Grape Wine Res. 2013, 19, 261–276. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines, 1st ed. 2010. Available online: https://shop.elsevier.com/books/the-science-of-grapevines/keller/978-0-12-374881-2 (accessed on 19 June 2023).
- Savi, T.; Petruzzellis, F.; Moretti, E.; Stenni, B.; Zini, L.; Martellos, S.; Lisjak, K.; Nardini, A. Grapevine water relations and rooting depth in karstic soils. Sci. Total Environ. 2019, 692, 669–675. [Google Scholar] [CrossRef]
- Smart, D.R.; Schwass, E.; Lakso, A.; Morano, L. Grapevine Rooting Patterns: A Comprehensive Analysis and a Review. Am. J. Enol. Vitic. 2006, 57, 89–104. [Google Scholar] [CrossRef]
- Celette, F.; Wery, J.; Chantelot, E.; Celette, J.; Gary, C. Belowground Interactions in a Vine (Vitis vinifera L.)-tall Fescue (Festuca arundinacea Shreb.) Intercropping System: Water Relations and Growth. Plant Soil 2005, 276, 205–217. [Google Scholar] [CrossRef]
- Iland, P.; Dry, P.; Proffitt, T.; Tyerman, S. The Grapevine: From the Science to the Practice of Growing Vines for Wine-Patrick Iland Wine Books. 2011. Available online: https://www.piwpwinebooks.com.au/wine-books/the-grapevine-from-the-science-to-the-practice-of-growing-vines-for-wine (accessed on 19 June 2023).
- Valentín, F.; Sánchez, J.M.; Martínez-Moreno, A.; Intrigliolo, D.S.; Buesa, I.; López-Urrea, R. Using on-the-ground surface energy balance to monitor vine water status and evapotranspiration under deficit irrigation and rainfed conditions. Agric. Water Manag. 2023, 281, 108240. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; Souza, C.D.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Costa, J.M.; Oliveira, M.; Egipto, R.J.; Cid, J.F.; Fragoso, R.A.; Lopes, C.M.; Duarte, E.N. Water and wastewater management for sustainable viticulture and oenology in South Portugal—A review. Ciência E Técnica Vitivinícola 2020, 35, 1–15. [Google Scholar] [CrossRef]
- de Souza, C.R.; Maroco, J.P.; dos Santos, T.P.; Rodrigues, M.L.; Lopes, C.; Pereira, J.S.; Chaves, M.M. Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars. Agric. Ecosyst. Environ. 2005, 106, 261–274. [Google Scholar] [CrossRef]
- de Souza, C.R.; Maroco, J.P.; dos Santos, T.P.; Rodrigues, M.L.; Lopes, C.M.; Pereira, J.S.; Chaves, M.M. Impact of deficit irrigation on water use efficiency and carbon isotope composition (δ13C) of field-grown grapevines under Mediterranean climate. J. Exp. Bot. 2005, 56, 2163–2172. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.I.; Conceição, N.; Malheiro, A.C.; Silvestre, J.M.; Silva, R.M. Water stress indicators and stress functions to calculate soil water depletion in deficit irrigated grapevine and kiwi. Acta Hortic. 2017, 119–126. [Google Scholar] [CrossRef]
- MacMillan, P.; Teixeira, G.; Lopes, C.M.; Monteiro, A. The role of grapevine leaf morphoanatomical traits in determining capacity for coping with abiotic stresses: A review. Ciência E Técnica Vitivinícola 2021, 36, 75–88. [Google Scholar] [CrossRef]
- Dinis, L.T.; Correia, C.M.; Ferreira, H.F.; Gonçalves, B.; Gonçalves, I.; Coutinho, J.F.; Ferreira, M.I.; Malheiro, A.C.; Moutinho-Pereira, J. Physiological and biochemical responses of Semillon and Muscat Blanc à Petits Grains winegrapes grown under Mediterranean climate. Sci. Hortic. 2014, 175, 128–138. [Google Scholar] [CrossRef]
- Pacheco, C.M.A. Influência de Técnicas de Não Mobilização e de Mobilização Sobre Aspectos Estruturais e Hídricos de Solos Com Vinha, Bem Como Sobre o Respectivo Sistema Radical. Consequencias das Relações Hídricas Solo-Vinha Na Produção. Tese de doutoramento, Insituto Superior de Agronomia–Universidade Técnica de Lisboa, Lisboa, Portugal, 1989. [Google Scholar]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Dal Santo, S.; Palliotti, A.; Zenoni, S.; Tornielli, G.B.; Fasoli, M.; Paci, P.; Tombesi, S.; Frioni, T.; Silvestroni, O.; Bellincontro, A.; et al. Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars. BMC Genom. 2016, 17, 815. [Google Scholar] [CrossRef]
- Flexas, J.; Carriquí, M.; Nadal, M. Gas exchange and hydraulics during drought in crops: Who drives whom? J. Exp. Bot. 2018, 69, 3791–3795. [Google Scholar] [CrossRef]
- Savi, T.; Petruzzellis, F.; Martellos, S.; Stenni, B.; Dal Borgo, A.; Zini, L.; Lisjak, K.; Nardini, A. Vineyard water relations in a karstic area: Deep roots and irrigation management. Agric. Ecosyst. Environ. 2018, 263, 53–59. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Gonçalves, I.N.; Fernandes-Silva, A.A.; Silvestre, J.C.; Conceição, N.S.; Paço, T.A.; Ferreira, M.I. Relationships between relative transpiration of grapevines and plant and soil water status in Portugal’s Douro wine region. Acta Hortic. 2011, 1, 261–267. [Google Scholar] [CrossRef]
- Pellegrino, A.; Lebon, E.; Voltz, M.; Wery, J. Relationships between plant and soil water status in vine (Vitis vinifera L.). Plant Soil 2004, 266, 129–142. [Google Scholar] [CrossRef]
- Carbonneau, A. Irrigation, vignoble et produits de la vigne. In Traité d’irrigation; Tiercelin, J.R., Ed.; Lavoisier Tec & Doc: Paris, France, 1998; pp. 257–276. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998; Volume 326. [Google Scholar]
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Shad, Z.M. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Rallo, G.; Paço, T.A.; Paredes, P.; Puig-Sirera, À.; Massai, R.; Provenzano, G.; Pereira, L.S. Updated single and dual crop coefficients for tree and vine fruit crops. Agric. Water Manag. 2021, 250, 106645. [Google Scholar] [CrossRef]
- Liu, M.; Shi, H.; Paredes, P.; Ramos, T.B.; Dai, L.; Feng, Z.; Pereira, L.S. Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model. Agric. Water Manag. 2022, 261, 107362. [Google Scholar] [CrossRef]
- Puig-Sirera, À.; Rallo, G.; Paredes, P.; Paço, T.A.; Minacapilli, M.; Provenzano, G.; Pereira, L.S. Transpiration and Water Use of an Irrigated Traditional Olive Grove with Sap-Flow Observations and the FAO56 Dual Crop Coefficient Approach. Water 2021, 13, 2466. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Ciraolo, G.; D’Urso, G.; Kustas, W.P.; La Loggia, G.; Minacapilli, M. Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations. Remote Sens. Environ. 2012, 124, 502–515. [Google Scholar] [CrossRef]
- Conceição, N.; Häusler, M.; Lourenço, S.; Pacheco, C.; Tezza, L.; Ferreira, M.I. Evapotranspiration measured in a traditional rainfed and an irrigated intensive olive orchard during a year of hydrological drought. Acta Hortic. 2017, 281–288. [Google Scholar] [CrossRef]
- Paço, T.A.; Pôças, I.; Cunha, M.; Silvestre, J.C.; Santos, F.L.; Paredes, P.; Pereira, L.S. Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. J. Hydrol. 2014, 519, 2067–2080. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Melton, F.; Johnson, L.; Wang, T.; López-Urrea, R.; Cancela, J.J.; Allen, R.G. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agric. Water Manag. 2020, 241, 106197. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 Dual Crop Coefficient Method for Estimating Evaporation from Soil and Application Extensions. J. Irrig. Drain Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Boulet, G.; Williams, D.G. Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agric. Water Manag. 2010, 97, 1769–1778. [Google Scholar] [CrossRef]
- Paço, T.A.; Paredes, P.; Pereira, L.S.; Silvestre, J.; Santos, F.L. Crop Coefficients and Transpiration of a Super Intensive Arbequina Olive Orchard using the Dual Kc Approach and the Kcb Computation with the Fraction of Ground Cover and Height. Water 2019, 11, 383. [Google Scholar] [CrossRef]
- Rallo, G.; Baiamonte, G.; Juárez, J.M.; Provenzano, G. Improvement of FAO-56 Model to Estimate Transpiration Fluxes of Drought Tolerant Crops under Soil Water Deficit: Application for Olive Groves. J. Irrig. Drain Eng. 2014, 140, A4014001. [Google Scholar] [CrossRef]
- Autovino, D.; Rallo, G.; Provenzano, G. Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agric. Water Manag. 2018, 203, 225–235. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Fernando, R.M.; Alves, I.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software: 2. Model testing. Agric. Water Manag. 2012, 103, 62–77. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Oliveira, A.R.; Farzamian, M.; Monteiro, T.; Castanheira, N.; Paz, A.; Gonçalves, M.C.; Pereira, L.S. Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal. Agric. Water Manag. 2023, 279, 108209. [Google Scholar] [CrossRef]
- Cancela, J.J.; Fandiño, M.; Rey, B.J.; Martínez, E.M. Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía). Agric. Water Manag. 2015, 151, 52–63. [Google Scholar] [CrossRef]
- Fandiño, M.; Cancela, J.J.; Rey, B.J.; Martínez, E.M.; Rosa, R.G.; Pereira, L.S. Using the dual-Kc approach to model evapotranspiration of Albariño vineyards (Vitis vinifera L. cv. Albariño) with consideration of active ground cover. Agric. Water Manag. 2012, 112, 75–87. [Google Scholar] [CrossRef]
- Paço, T.A.; Ferreira, M.I.; Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Conceição, N.; Pacheco, C.A.; Pereira, L.S. The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements. Irrig. Sci. 2012, 30, 115–126. [Google Scholar] [CrossRef]
- Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water 2022, 14, 554. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef]
- Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches. Agric. Water Manag. 2020, 233, 106081. [Google Scholar] [CrossRef]
- Pôças, I.; Paço, T.A.; Paredes, P.; Cunha, M.; Pereira, L.S. Estimation of Actual Crop Coefficients Using Remotely Sensed Vegetation Indices and Soil Water Balance Modelled Data. Remote Sens. 2015, 7, 2373–2400. [Google Scholar] [CrossRef]
- Allen, R.G.; Wright, J.L.; Pruitt, W.O.; Pereira, L.S.; Jensen, M.E. Water requirements. In Design and Operation of Farm Irrigation Systems, 2nd ed.; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2007; pp. 208–288. [Google Scholar]
- Anderson, M.C.; Kustas, W.P.; Alfieri, J.G.; Gao, F.; Hain, C.; Prueger, J.H.; Evett, S.; Colaizzi, P.; Howell, T.; Chávez, J.L. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX’08 field campaign. Adv. Water Resour. 2012, 50, 162–177. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Thorp, K.R. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sens. Environ. 2015, 158, 281–294. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.M.; Calera, A.; Balbontín, C.; González-Piqueras, J. Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Jayanthi, H.; Neale, C.M.U.; Wright, J.L. Development and validation of canopy reflectance-based crop coefficient for potato. Agric. Water Manag. 2007, 88, 235–246. [Google Scholar] [CrossRef]
- Mateos, L.; González-Dugo, M.P.; Testi, L.; Villalobos, F.J. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation. Agric. Water Manag. 2013, 125, 81–91. [Google Scholar] [CrossRef]
- Rouse, W.; Haas, R.; Scheel, J.; Deering, W. Monitoring Vegetation Systems in Great Plains with ERST. In Proceedings of the Third ERTS Symposium, NASA SP-351, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Glenn, E.P.; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems: Vegetation index-based crop coefficients. Hydrol. Process 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of Environment. An Earth Resource Perspective; Prentice Hall, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap Pressure in Vascular Plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. METZ 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Allen, R.G. Assessing Integrity of Weather Data for Reference Evapotranspiration Estimation. J. Irrig. Drain Eng. 1996, 122, 97–106. [Google Scholar] [CrossRef]
- FAO-UNESCO. Soil Map of the World. 1: Legend: [Erläuterungen]; Unesco: Paris, France, 1974. [Google Scholar]
- Paz, A.M.; Cipriano, D.; Gonçalves, M.C.; Pereira, L.S. Funções de pedo-transferência para a curva de retenção da água no solo. Rev. De Ciências Agrárias 2009, 32, 337–343. [Google Scholar]
- Bell, J.P. Neutron Probe Practice; Report No. 19, Second ed; Institute of Hydrology, Wallingford: Oxfordshire, UK, 1976. [Google Scholar]
- Hodnett, M.G. The Neutron Probe for Soil Moisture Measurement. In Advanced Agricultural Instrumentation: Design and Use; Gensler, W.G., Ed.; Springer: Dordrecht, The Netherlands, 1986; pp. 148–192. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Liu, Y.; Pereira, L.S.; Fernando, R.M. Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation. Agric. Water Manag. 2006, 84, 27–40. [Google Scholar] [CrossRef]
- USDA-SCS. Chapter 10—Estimation of Direct Runoff from Storm Rainfall. In National Engineering Handbook; Curve Number (Part 630 Hydrology); USDA-SCS: Washington, DC, USA, 2004; p. 79. [Google Scholar]
- Pereira, L.S.; Paredes, P.; Rodrigues, G.C.; Neves, M. Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models. Agric. Water Manag. 2015, 159, 239–254. [Google Scholar] [CrossRef]
- Rosa, R.D.; Ramos, T.B.; Pereira, L.S. The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model. Agric. Water Manag. 2016, 177, 77–94. [Google Scholar] [CrossRef]
- González-Altozano, P.; Pavel, E.W.; Oncins, J.A.; Doltra, J.; Cohen, M.; Paço, T.; Massai, R.; Castel, J.R. Comparative assessment of five methods of determining sap flow in peach trees. Agric. Water Manag. 2008, 95, 503–515. [Google Scholar] [CrossRef]
- Siqueira, J.M.; Paço, T.A.; Silvestre, J.C.; Santos, F.L.; Falcão, A.O.; Pereira, L.S. Generating fuzzy rules by learning from olive tree transpiration measurement—An algorithm to automatize Granier sap flow data analysis. Comput. Electron. Agric. 2014, 101, 1–10. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q. An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for the MODIS-EOS. IEEE Trans. Geosci. Remote Sens. 1994, 32, 897–905. [Google Scholar] [CrossRef]
- González-Dugo, M.P.; Mateos, L. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agric. Water Manag. 2008, 95, 48–58. [Google Scholar] [CrossRef]
- Comas, L.H.; Bauerle, T.L.; Eissenstat, D.M. Biological and environmental factors controlling root dynamics and function: Effects of root ageing and soil moisture. Aust. J. Grape Wine Res. 2010, 16, 131–137. [Google Scholar] [CrossRef]
- Liu, M.; Paredes, P.; Shi, H.; Ramos, T.B.; Dou, X.; Dai, L.; Pereira, L.S. Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc. Agric. Water Manag. 2022, 273, 107887. [Google Scholar] [CrossRef]
- Paredes, P.; Martins, D.S.; Pereira, L.S.; Cadima, J.; Pires, C. Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes. Agric. Water Manag. 2018, 210, 340–353. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Silva, S.P.; Valín, M.I.; Mendes, S.; Araujo-Paredes, C.; Cancela, J.J. Dual Crop Coefficient Approach in Vitis vinifera L. cv. Loureiro. Agronomy 2021, 11, 2062. [Google Scholar] [CrossRef]
- Silvestre, J.M.C. Evapotranspiração e Funcionamento Hídrico em Vitis vinifera L. Dissertação de Doutoramento, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal, 2003. Volume 222. [Google Scholar]
- Serrano, L.; González-Flor, C.; Gorchs, G. Assessing vineyard water status using the reflectance based Water Index. Agric. Ecosyst. Environ. 2010, 139, 490–499. [Google Scholar] [CrossRef]
- Serrano, L.; González-Flor, C.; Gorchs, G. Assessment of grape yield and composition using the reflectance based Water Index in Mediterranean rainfed vineyards. Remote Sens. Environ. 2012, 118, 249–258. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.M.; Intrigliolo, D.S.; Lorite, I.J.; Moreno, M.A.; Vanella, D.; Ballesteros, R.; Hernández-López, D.; Buesa, I. Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model. Agric. Water Manag. 2023, 281, 108247. [Google Scholar] [CrossRef]
- Ballesteros, R.; Intrigliolo, D.S.; Ortega, J.F.; Ramírez-Cuesta, J.M.; Buesa, I.; Moreno, M.A. Vineyard yield estimation by combining remote sensing, computer vision and artificial neural network techniques. Precis. Agric. 2020, 21, 1242–1262. [Google Scholar] [CrossRef]
- Basile, A.; Albrizio, R.; Autovino, D.; Bonfante, A.; De Mascellis, R.; Terribile, F.; Giorio, P. A modelling approach to discriminate contributions of soil hydrological properties and slope gradient to water stress in Mediterranean vineyards. Agric. Water Manag. 2020, 241, 106338. [Google Scholar] [CrossRef]
- da Silva, A.J.P.; Pinheiro, E.A.R.; de Jong van Lier, Q. Determination of soil hydraulic properties and its implications for mechanistic simulations and irrigation management. Irrig. Sci. 2020, 38, 223–234. [Google Scholar] [CrossRef]
- Galleguillos, M.; Jacob, F.; Prévot, L.; Faúndez, C.; Bsaibes, A. Estimation of actual evapotranspiration over a rainfed vineyard using a 1-D water transfer model: A case study within a Mediterranean watershed. Agric. Water Manag. 2017, 184, 67–76. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, G.; Xia, D.; Ma, J.; Han, T.; Ma, T.; Zhang, K.; Shang, S. The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China. Agric. Water Manag. 2019, 212, 388–398. [Google Scholar] [CrossRef]
- Er-Raki, S.; Rodriguez, J.C.; Garatuza-Payan, J.; Watts, C.J.; Chehbouni, A. Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index. Agric. Water Manag. 2013, 122, 12–19. [Google Scholar] [CrossRef]
- Campos, I.; Villodre, J.; Carrara, A.; Calera, A. Remote sensing-based soil water balance to estimate Mediterranean holm oak savanna (dehesa) evapotranspiration under water stress conditions. J. Hydrol. 2013, 494, 1–9. [Google Scholar] [CrossRef]
- Alfieri, J.G.; Kustas, W.P.; Prueger, J.H.; McKee, L.G.; Hipps, L.E.; Gao, F. A multi-year intercomparison of micrometeorological observations at adjacent vineyards in California’s Central Valley during GRAPEX. Irrig. Sci. 2019, 37, 345–357. [Google Scholar] [CrossRef]
Equations | Conditions | Parameters |
---|---|---|
Capillary rise | ||
(mm) | 1000 | |
(mm) | m | b1 = −0.17 |
m | 1000, i.e., storage above the average between those at field capacity and the wilting point (mm) b2 = −0.27 | |
(m) | mm d−1 | a3 = −1.3 |
(m) | mm d−1 | b3 = 6.7 for clay and silty clay loam soils, decreasing to 6.2 for loamy sands |
(mm d−1) | a4 = 4.6 for silty loam and silty clay loam soils, decreasing to 3 for loamy sands | |
(mm d−1) | b4 = −0.65 for silty loam soils and decreasing to −2.5 for loamy sand soils | |
mm d−1 | ||
mm d−1 | ||
(mm d−1) | ||
(mm d−1) | ||
Parameters | Initial Values * | Calibrated Values | |
---|---|---|---|
Crop characteristics | Kcb ini | 0.15 | 0.15 |
Kcb mid | 0.65 | 0.60 | |
Kcb end | 0.40 | 0.52 | |
p ini | 0.45 | 0.60 | |
p dev | 0.45 | 0.60 | |
p mid | 0.45 | 0.60 | |
p end | 0.45 | 0.60 | |
Soil evaporation | TEW (mm) | 20 | 20 |
REW (mm) | 10 | 10 | |
Ze (m) | 0.10 | 0.10 | |
Runoff and deep percolation | CN | 68 | 68 |
aD | 285 | 275 | |
bD | −0.0173 | −0.0173 | |
Capillary rise | a1 | 260 | 253 |
b1 | −0.17 | −0.17 | |
a2 | 200 | 196 | |
b2 | −0.27 | −0.27 | |
a3 | −1.3 | −1.3 | |
b3 | 6.2 | 6.2 | |
a4 | 3.0 | 3.0 | |
b4 | −2.5 | −2.5 |
Number of Observations | b0 | R2 | RMSE (mm) | NRMSE (%) | AAE (mm) | EF | |
---|---|---|---|---|---|---|---|
Calibration | 10 | 0.97 | 1.00 | 11.1 | 12.8 | 9.5 | 0.98 |
Test | 7 | 0.97 | 1.00 | 11.9 | 11.2 | 10.2 | 0.97 |
DOY | Date | SAVI ± SD | fc VI |
---|---|---|---|
116 | 26 April 1987 | 0.205 ± 0.01 | 0.174 |
148 | 28 May 1987 | 0.279 ± 0.06 | 0.286 |
180 | 29 June 1987 | 0.271 ± 0.06 | 0.275 |
212 | 31 July 1987 | 0.272 ± 0.08 | 0.276 |
260 | 17 September 1987 | 0.228 ± 0.05 | 0.209 |
Date | Kcb SIMDualKc_1D | Kcb A&P | Deviation | Kcb SIMDualKc_2A | Kcb A&P | Deviation |
---|---|---|---|---|---|---|
26 April 1987 | 0.29 | 0.29 | −0.01 | 0.27 | 0.29 | 0.01 |
28 May 1987 | 0.51 | 0.45 | −0.10 | 0.47 | 0.45 | −0.05 |
29 June 1987 | 0.39 | 0.40 | 0.01 | 0.47 | 0.40 | −0.06 |
31 July 1987 | 0.20 | 0.43 | 0.21 | 0.32 | 0.43 | 0.09 |
17 September 1987 | 0.08 | 0.35 | 0.24 | 0.14 | 0.35 | 0.18 |
Initial | Development | Mid-Season | Late Season | Full Year | |
---|---|---|---|---|---|
ETc act (mm) | 68 ± 2 | 89 ± 1 | 143 ± 8 | 55 ± 9 | 354 ± 17 |
Es (mm) | 57 ± 2 | 46 ± 1 | 5 ± 0 | 13 ± 0 | 121 ± 2 |
Tc act (mm) | 10 ± 0 | 43 ± 2 | 139 ± 7 | 41 ± 9 | 234 ± 15 |
Es/ETc act (%) | 83 ± 1 | 43 ± 1 | 3 ± 0 | 16 ± 1 | 36 ± 0 |
Tc act/ETc act (%) | 17 ± 1 | 57 ± 1 | 98 ± 0 | 85 ± 1 | 64 ± 0 |
ETc act/ETc (%) | 100 ± 0 | 100 ± 0 | 87 ± 8 | 46 ± 9 | 83 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, W.S.; Paredes, P.; Basto, J.; Pôças, I.; Pacheco, C.A.; Paço, T.A. Estimating Evapotranspiration of Rainfed Winegrapes Combining Remote Sensing and the SIMDualKc Soil Water Balance Model. Water 2024, 16, 2567. https://doi.org/10.3390/w16182567
Almeida WS, Paredes P, Basto J, Pôças I, Pacheco CA, Paço TA. Estimating Evapotranspiration of Rainfed Winegrapes Combining Remote Sensing and the SIMDualKc Soil Water Balance Model. Water. 2024; 16(18):2567. https://doi.org/10.3390/w16182567
Chicago/Turabian StyleAlmeida, Wilk S., Paula Paredes, José Basto, Isabel Pôças, Carlos A. Pacheco, and Teresa A. Paço. 2024. "Estimating Evapotranspiration of Rainfed Winegrapes Combining Remote Sensing and the SIMDualKc Soil Water Balance Model" Water 16, no. 18: 2567. https://doi.org/10.3390/w16182567
APA StyleAlmeida, W. S., Paredes, P., Basto, J., Pôças, I., Pacheco, C. A., & Paço, T. A. (2024). Estimating Evapotranspiration of Rainfed Winegrapes Combining Remote Sensing and the SIMDualKc Soil Water Balance Model. Water, 16(18), 2567. https://doi.org/10.3390/w16182567