Integrated Geospatial and Geostatistical Multi-Criteria Evaluation of Urban Groundwater Quality Using Water Quality Indices
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Water Quality Data
2.2.1. Standardization
- Excellent (<5 μg/L): Below both the WHO and national standards, representing a minimal health risk.
- Good (5–10 μg/L): Meets the WHO standard but below the national limit and is suitable for consumption.
- Permissible (10–50 μg/L): Exceeds the WHO standard but within the national limit; it may require treatment.
- Unsuitable (>50 μg/L): Exceeds both the WHO and national standards, posing significant health risks.
2.2.2. Analysis
2.3. AHP Methodology
2.3.1. Multi-Criteria Decision Analysis
2.3.2. Steps for Calculating Weights
- i
- Conduct pairwise comparisons
- ii
- Calculate the Consistency Index
- iii
- Derive weights using AHP
2.4. Strategies for the Improvement of Groundwater Quality
2.4.1. Mitigate Chemical Contamination by Implementing a Variety of Pollution Control Strategies
- i
- Variations in heavy metal levels
- ii
- Variations in chemical parameters
2.4.2. Implement Water Treatment Processes to Decrease Concentrations of Chemical Contaminants to Levels That Meet or Surpass the World Health Organization (WHO) Standards
- Scenario I (Primary Treatment): In the primary treatment scenario, the goal is to reduce total dissolved solids (TDSs) by up to 60%. It was structured into two variations of treatment that aim to achieve 40% and 60% reductions, respectively.
- Scenario II (Secondary Treatment): In the secondary treatment scenario, two variations aim for substantial reductions: Part A targets a 65% reduction in TDSs and a 45% reduction in hardness using microbial digestion, while Part B increases these rates to 80% and 55%, respectively.
- Scenario III (Tertiary Treatment): In the tertiary treatment scenario, two variations focus on significant arsenic reduction: Part A aims for a 90% reduction, while Part B increases this to 95%, showcasing advanced treatment efficiency.
3. Results
3.1. Assessing Water Quality Parameters
3.2. Groundwater Quality Index
3.3. Mitigation Strategies
- Mitigate chemical contamination by implementing a variety of pollution control strategies.
- Implement water treatment processes to decrease the concentrations of chemical contaminants to levels that meet or surpass the World Health Organization (WHO) standards.
3.3.1. Mitigate Chemical Contamination by Implementing a Variety of Pollution Control Strategies
- i
- Scenario I (Variations in Heavy Metal Parameter)
- (a)
- I: At the 10% reduction level (Figure 6a), minor improvements in index values were observed across all the tehsils. The changes were relatively modest, with the most significant improvement seen in Model Town, with a 4.14% improvement. This suggests that even slight reductions in pollution can lead to noticeable improvements in environmental quality, particularly in areas with initially higher index values.
- (b)
- II: With a 20% reduction (Figure 6b), the index values had a more pronounced impact. Model Town and Shalimar exhibited more substantial improvements, at 4.43% and 6.53%, respectively. This indicates that increased efforts in pollution control can lead to more significant improvements in environmental quality. The differences across the tehsils highlight the variability in the response to the same level of reduction, likely influenced by local conditions and the initial state of contamination.
- (c)
- III: The 30% reduction (Figure 6c) scenario showcased significant improvements in all the tehsils, with Shalimar witnessing the most dramatic change, with a 20.71% improvement. This level of reduction demonstrates the potential for substantial environmental quality enhancements through aggressive pollution control measures. The variation in improvement percentages across the tehsils suggests that areas with higher initial contamination levels or those more responsive to the implemented measures will see more significant benefits.
- ii
- Scenario II (Variations in Chemical Parameters)
- (a)
- I: Figure 7a shows the impact of a 10% reduction on the polluted areas. Lahore Cantt’s index value modestly decreased from 160.31 to 159.02, a change of 0.81%. Lahore City showed a 1.23% reduction, lowering the index from 105.11 to 103.82. Model Town’s index value dropped by 0.78%, from 165.83 to 164.54. Raiwind saw a 1.13% reduction from 113.99 to 112.7, while Shalimar’s index value declined by 0.93% from 138.15 to 136.86.
- (b)
- II: At the 20% reduction level (Figure 7b), Lahore Cantt recorded a further decrease to 157.92, a 1.5% change. Lahore City’s index value was reduced by 2.49% to 102.5. Model Town’s index value saw a cumulative drop of 1.44%, reaching 163.44. In Raiwind, the index was now at 111.60, marking a 2.1% decrease, and Shalimar’s index value was 135.76, reflecting a 1.74% improvement.
- (c)
- III: The impact became more pronounced with a 30% reduction (Figure 7c). Lahore Cantt’s index value was significantly lower at 154.46, showing an overall improvement of 3.66%. Lahore City’s index decreased to 99.38, reflecting a 5.46% reduction, the most substantial improvement across all the tehsils. Model Town showed a 3.53% decrease with an index value of 159.99. Raiwind’s index value was reduced to 109.15, showing a cumulative improvement of 4.24%. Shalimar saw a total reduction of 3.42%, with its index value dropping to 133.42.
3.3.2. Implement Water Treatment Processes to Decrease Concentrations of Chemical Contaminants to Levels That Meet or Surpass WHO Standards
- i
- Scenario I (Primary Treatment)
- Part A exhibited a 40% reduction in the total dissolved solids (TDSs);
- A reduction in pollutants by 60% was achieved in Part B.
- ii
- Scenario II (Secondary Treatment)
- Part A aims for a 65% reduction in the total dissolved solids (TDSs) and a 45% reduction in hardness using the wastewater treatment.
- The Part B treatment aims for a 80% reduction in the total dissolved solids (TDSs) and a 55% reduction in hardness in the wastewater.
- iii
- Scenario III (Tertiary Treatment)
- A 90% reduction in the significant pollutant (arsenic) in Part A.
- Part B aimed for a 95% reduction in arsenic.
4. Discussion
- Implications of Interpolation Uncertainties for Decision-Making
- Feasibility of Proposed Reduction Scenarios
- Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, L.; Wang, L.; Keim, B.D.; Konsoer, K.; Zheng, W. Wavelet Analysis of Dam Injection and Discharge in Three Gorges Dam and Reservoir with Precipitation and River Discharge. Water 2022, 14, 567. [Google Scholar] [CrossRef]
- Umar, M.; Khan, S.N.; Arshad, A.; Aslam, R.A.; Khan, H.M.S.; Rashid, H.; Pham, Q.B.; Nasir, A.; Noor, R.; Khedher, K.M.; et al. A Modified Approach to Quantify Aquifer Vulnerability to Pollution towards Sustainable Groundwater Management in Irrigated Indus Basin. Environ. Sci. Pollut. Res. 2022, 29, 27257–27278. [Google Scholar] [CrossRef]
- Ullah, A.S.; Rashid, H.; Khan, S.N.; Akbar, M.U.; Arshad, A.; Rahman, M.M.; Mustafa, S. A Localized Assessment of Groundwater Quality Status Using GIS-Based Water Quality Index in Industrial Zone of Faisalabad, Pakistan. Water 2022, 14, 3342. [Google Scholar] [CrossRef]
- Shafeeque, M.; Hafeez, M.; Sarwar, A.; Arshad, A.; Khurshid, T.; Asim, M.I.; Ali, S.; Dilawar, A. Quantifying Future Water-Saving Potential under Climate Change and Groundwater Recharge Scenarios in Lower Chenab Canal, Indus River Basin. Theor. Appl. Climatol. 2023, 155, 187–204. [Google Scholar] [CrossRef]
- Rasheed, H.; Jaleel, F.; Nisar, M.F. Analyzing the Status of Heavy Metals in Irrigation Water in Suburban Areas of Bahawalpur City, Pakistan. Am. J. Agric. Environ. Sci. 2014, 14, 732–738. [Google Scholar]
- Karim, M.M. Arsenic in Groundwater and Health Problems in Bangladesh. Water Res. 2000, 34, 304–310. [Google Scholar] [CrossRef]
- Aslam, R.W.; Shu, H.; Yaseen, A.; Sajjad, A.; Abidin, S.Z.U. Identification of Time-Varying Wetlands Neglected in Pakistan through Remote Sensing Techniques. Environ. Sci. Pollut. Res. 2023, 30, 74031–74044. [Google Scholar] [CrossRef]
- Tahir, M.; Ahmad, S.; Aslam, R.; Ahmad, I.; Ullah, H.; Aziz, A.; Zubair, M.H.; Mirza, A. Critical Study of Groundwater Quality of Metropolitan Lahore Using Geo-Spatial Techniques. Int. J. Sustain. Dev. 2020, 2, 89–105. [Google Scholar] [CrossRef]
- Arshad, A.; Mirchi, A.; Vilcaez, J.; Umar Akbar, M.; Madani, K. Reconstructing High-Resolution Groundwater Level Data Using a Hybrid Random Forest Model to Quantify Distributed Groundwater Changes in the Indus Basin. J. Hydrol. 2024, 628, 130535. [Google Scholar] [CrossRef]
- Wang, N.; Naz, I.; Aslam, R.W.; Quddoos, A.; Soufan, W.; Raza, D.; Ishaq, T.; Ahmed, B. Spatio-Temporal Dynamics of Rangeland Transformation Using Machine Learning Algorithms and Remote Sensing Data. Rangel. Ecol. Manag. 2024, 94, 106–118. [Google Scholar] [CrossRef]
- Aslam, R.W.; Shu, H.; Naz, I.; Quddoos, A.; Yaseen, A.; Gulshad, K.; Alarifi, S.S. Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data. Remote Sens. 2024, 16, 928. [Google Scholar] [CrossRef]
- Sajjad, A.; Lu, J.; Aslam, R.W.; Ahmad, M. Flood Disaster Mapping Using Geospatial Techniques: A Case Study of the 2022 Pakistan Floods. Environ. Sci. Proc. 2023, 25, 78. [Google Scholar] [CrossRef]
- Aslam, R.W.; Shu, H.; Tariq, A.; Naz, I.; Ahmad, M.N.; Quddoos, A.; Javid, K.; Mustafa, F.; Aeman, H. Monitoring Landuse Change in Uchhali and Khabeki Wetland Lakes, Pakistan Using Remote Sensing Data. Gondwana Res. 2024, 129, 252–267. [Google Scholar] [CrossRef]
- Rashid, M.; Aslam, R.; Abbas, W.; Arshad, S.; Mirza, A.; Tahir, M.; Burhan, M.; Ullah, H.; Mirza, A.; Hassan Raza, D.-S. Hazardous Effluents and Their Impacts on Human Health: Future of Industrial Boom. Int. J. Innov. Eng. Technol. 2020, 2, 114–125. [Google Scholar] [CrossRef]
- Shahzaman, M.; Zhu, W.; Ullah, I.; Mustafa, F.; Bilal, M.; Ishfaq, S.; Nisar, S.; Arshad, M.; Iqbal, R.; Aslam, R.W. Comparison of Multi-Year Reanalysis, Models, and Satellite Remote Sensing Products for Agricultural Drought Monitoring over South Asian Countries. Remote Sens. 2021, 13, 3294. [Google Scholar] [CrossRef]
- Naz, I.; Ahmad, I.; Aslam, R.W.; Quddoos, A.; Yaseen, A. Integrated Assessment and Geostatistical Evaluation of Groundwater Quality through Water Quality Indices. Water 2023, 16, 63. [Google Scholar] [CrossRef]
- Mehmood, H.; Aslam, R.; Kakar, A.; Abbas, W.; Javid, K.; Burhan, M.; Tahir, M. Health Implications of Arsenic and Qualitative Deterioration of Drinking Water from Underground Water Supply Lines of Lahore, Pakistan. Int. J. Innov. Sci. Technol. 2022, 4, 78–93. [Google Scholar] [CrossRef]
- Aslam, R.W.; Shu, H.; Javid, K.; Pervaiz, S.; Mustafa, F.; Raza, D.; Ahmed, B.; Quddoos, A.; Al-Ahmadi, S.; Hatamleh, W.A. Wetland Identification through Remote Sensing: Insights into Wetness, Greenness, Turbidity, Temperature, and Changing Landscapes. Big Data Res. 2024, 35, 100416. [Google Scholar] [CrossRef]
- He, L.; Valocchi, A.J.; Duarte, C.A. An Adaptive Global–Local Generalized FEM for Multiscale Advection–Diffusion Problems. Comput. Methods Appl. Mech. Eng. 2024, 418, 116548. [Google Scholar] [CrossRef]
- Aslam, R.A.; Shrestha, S.; Usman, M.N.; Khan, S.N.; Ali, S.; Sharif, M.S.; Sarwar, M.W.; Saddique, N.; Sarwar, A.; Ali, M.U.; et al. Integrated SWAT-MODFLOW Modeling-Based Groundwater Adaptation Policy Guidelines for Lahore, Pakistan under Projected Climate Change, and Human Development Scenarios. Atmosphere 2022, 13, 2001. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Nkhuwa, D.C.W.; Okotto-Okotto, J.; Pedley, S.; Stuart, M.E.; Tijani, M.N.; Wright, J. Urban Groundwater Quality in Sub-Saharan Africa: Current Status and Implications for Water Security and Public Health. Hydrogeol. J. 2017, 25, 1093–1116. [Google Scholar] [CrossRef]
- Page, D.; Dillon, P.; Toze, S.; Bixio, D.; Genthe, B.; Jiménez Cisneros, B.E.; Wintgens, T. Valuing the Subsurface Pathogen Treatment Barrier in Water Recycling via Aquifers for Drinking Supplies. Water Res. 2010, 44, 1841–1852. [Google Scholar] [CrossRef]
- Ahmed, K.M.; Bhattacharya, P.; Hasan, M.A.; Akhter, S.H.; Alam, S.M.M.; Bhuyian, M.A.H.; Imam, M.B.; Khan, A.A.; Sracek, O. Arsenic Enrichment in Groundwater of the Alluvial Aquifers in Bangladesh: An Overview. Appl. Geochem. 2004, 19, 181–200. [Google Scholar] [CrossRef]
- US EPA. Guidelines for Human Exposure Assessment: Risk Assessment Forum; U.S. Environmental Protection Agency: Washington, DC, USA, 2019.
- Liu, Z.; Xu, Z.; Zhu, X.; Yin, L.; Yin, Z.; Li, X.; Zheng, W. Calculation of Carbon Emissions in Wastewater Treatment and Its Neutralization Measures: A Review. Sci. Total Environ. 2024, 912, 169356. [Google Scholar] [CrossRef] [PubMed]
- Shah, T. Climate Change and Groundwater: India’s Opportunities for Mitigation and Adaptation. Environ. Res. Lett. 2009, 4, 35005. [Google Scholar] [CrossRef]
- Ross, A. Groundwater Governance in Australia, the European Union and the Western USA. In Integrated Groundwater Management; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–171. [Google Scholar]
- Foster, S.; MacDonald, A. The ‘Water Security’ Dialogue: Why It Needs to Be Better Informed about Groundwater. Hydrogeol. J. 2014, 22, 1489–1492. [Google Scholar] [CrossRef]
- Masood, N.; Batool, S.; Farooqi, A. Groundwater Pollution in Pakistan. In Global Groundwater; Elsevier: Amsterdam, The Netherlands, 2021; pp. 309–322. [Google Scholar]
- Khan, M. Impact of Urbanization on Water Resources of Pakistan: A Review. NUST J. Eng. Sci. 2019, 12, 1–8. [Google Scholar] [CrossRef]
- Al-Rekabi, W.S.; Qiang, H.; Qiang, W.W. Improvements in Wastewater Treatment Technology. Pak. J. Nutr. 2007, 6, 104–110. [Google Scholar] [CrossRef]
- Ayyasamy, P.M.; Shanthi, K.; Lakshmanaperumalsamy, P.; Lee, S.-J.; Choi, N.-C.; Kim, D.-J. Two-Stage Removal of Nitrate from Groundwater Using Biological and Chemical Treatments. J. Biosci. Bioeng. 2007, 104, 129–134. [Google Scholar] [CrossRef]
- Kavurmacı, M.; Karakuş, C.B. Evaluation of Irrigation Water Quality by Data Envelopment Analysis and Analytic Hierarchy Process-Based Water Quality Indices: The Case of Aksaray City, Turkey. Water Air Soil Pollut. 2020, 231, 55. [Google Scholar] [CrossRef]
- Karnena, M.K.; Saritha, V. Evaluation of Spatial Variability in Ground Water Quality Using Remote Sensing. Int. J. Recent Technol. Eng. 2019, 8, 4269–4278. [Google Scholar] [CrossRef]
- Horton, R.K. An Index Number System for Rating Water Quality. J. Water Pollut. Control. Fed. 1965, 3, 292–315. [Google Scholar]
- Hassan, J. A Geostatistical Approach for Mapping Groundwater Quality (Case Study: Tehsil Sheikhupura). Int. J. Sci. Res. 2014, 3, 239–245. [Google Scholar]
- Korngold, E.; Belayev, N.; Aronov, L. Removal of Arsenic from Drinking Water by Anion Exchangers. Desalination 2001, 141, 81–84. [Google Scholar] [CrossRef]
- DeMarco, M.J.; SenGupta, A.K.; Greenleaf, J.E. Arsenic Removal Using a Polymeric/Inorganic Hybrid Sorbent. Water Res. 2003, 37, 164–176. [Google Scholar] [CrossRef]
- Pakistan Bureau of Statistics. Punjab Development Statistics 2018; Pakistan Bureau of Statistics: Lahore, Pakistan, 2018.
- Weerasundara, L.; Ok, Y.-S.; Bundschuh, J. Selective Removal of Arsenic in Water: A Critical Review. Environ. Pollut. 2021, 268, 115668. [Google Scholar] [CrossRef]
- Yadav, A.K.; Yadav, H.K.; Naz, A.; Koul, M.; Chowdhury, A.; Shekhar, S. Arsenic Removal Technologies for Middle- and Low-Income Countries to Achieve the SDG-3 and SDG-6 Targets: A Review. Environ. Adv. 2022, 9, 100262. [Google Scholar] [CrossRef]
- Viero, A.F.; Mazzarollo, A.C.R.; Wada, K.; Tessaro, I.C. Removal of Hardness and COD from Retanning Treated Effluent by Membrane Process. Desalination 2002, 149, 145–149. [Google Scholar] [CrossRef]
- Aslam, R.W.; Naz, I.; Quddoos, A.; Quddusi, M.R. Assessing Climatic Impacts on Land Use and Land Cover Dynamics in Peshawar, Khyber Pakhtunkhwa, Pakistan: A Remote Sensing and GIS Approach. GeoJournal 2024, 89, 202. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, G.; Hong, W.-C.; Xu, Y. Consensus Models for AHP Group Decision Making under Row Geometric Mean Prioritization Method. Decis. Support Syst. 2010, 49, 281–289. [Google Scholar] [CrossRef]
- Mahmood, A.; Mahmoud, A.H.; El-Abedein, A.I.Z.; Ashraf, A.; Almunqedhi, B.M.A. A Comparative Study of Metals Concentration in Agricultural Soil and Vegetables Irrigated by Wastewater and Tube Well Water. J. King Saud Univ. Sci. 2020, 32, 1861–1864. [Google Scholar] [CrossRef]
- Vadde, K.; Wang, J.; Cao, L.; Yuan, T.; McCarthy, A.; Sekar, R. Assessment of Water Quality and Identification of Pollution Risk Locations in Tiaoxi River (Taihu Watershed), China. Water 2018, 10, 183. [Google Scholar] [CrossRef]
- Zhu, Y.; Dai, H.; Yuan, S. The Competition between Heterotrophic Denitrification and DNRA Pathways in Hyporheic Zone and Its Impact on the Fate of Nitrate. J. Hydrol. 2023, 626, 130175. [Google Scholar] [CrossRef]
- Do, H.T.; Lo, S.L.; Phan Thi, L.A. Calculating of River Water Quality Sampling Frequency by the Analytic Hierarchy Process (AHP). Environ. Monit. Assess. 2013, 185, 909–916. [Google Scholar] [CrossRef]
- WWF-Pakistan. Pakistan’s Water at Risk: Water and Health-Related Issues in Pakistan and Key Recommendations: A Special Report; IRC: Lahore, Pakistan, 2007. [Google Scholar]
- Farooq, S.; Hashmi, I.; Qazi, I.A.; Qaiser, S.; Rasheed, S. Monitoring of Coliforms and Chlorine Residual in Water Distribution Network of Rawalpindi, Pakistan. Environ. Monit. Assess. 2008, 140, 339–347. [Google Scholar] [CrossRef]
- USGS. Where Is Earth’s Water? U.S. Geological Survey: Reston, VA, USA, 2016.
- Yin, H.; Shi, Y.; Niu, H.; Xie, D.; Wei, J.; Lefticariu, L.; Xu, S. A GIS-Based Model of Potential Groundwater Yield Zonation for a Sandstone Aquifer in the Juye Coalfield, Shangdong, China. J. Hydrol. 2018, 557, 434–447. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Qian, H.; Zhang, X. Chemical Characteristics and Quality Assessment of Groundwater of Exploited Aquifers in Beijiao Water Source of Yinchuan, China: A Case Study for Drinking, Irrigation, and Industrial Purposes. J. Chem. 2015, 2015, 726340. [Google Scholar] [CrossRef]
- Aeman, H.; Shu, H.; Aisha, H.; Nadeem, I.; Aslam, R.W. Quantifying the Scale of Erosion along Major Coastal Aquifers of Pakistan Using Geospatial and Machine Learning Approaches. Environ. Sci. Pollut. Res. 2024, 31, 32746–32765. [Google Scholar] [CrossRef]
- Qureshi, A.S.; McCornick, P.G.; Sarwar, A.; Sharma, B.R. Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan. Water Resour. Manag. 2010, 24, 1551–1569. [Google Scholar] [CrossRef]
- Muhammad, A.M.; Zhonghua, T.; Dawood, A.S.; Earl, B. Evaluation of Local Groundwater Vulnerability Based on DRASTIC Index Method in Lahore, Pakistan. Geofísica Int. 2015, 54, 67–81. [Google Scholar] [CrossRef]
- Liu, S.; Qiu, Y.; He, Z.; Shi, C.; Xing, B.; Wu, F. Microplastic-Derived Dissolved Organic Matter and Its Biogeochemical Behaviors in Aquatic Environments: A Review. Crit. Rev. Environ. Sci. Technol. 2024, 54, 865–882. [Google Scholar] [CrossRef]
- Morris, B.L.; Lawrence, A.R.L.; Chilton, P.J.C.; Adams, B. Groundwater and It as Susceptibility to Degradation. A Global Assessment of the Problem and Options for Management. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
- Majeed, S.; Javaid, A.; Gul, S.; Farooq, N.; Tahir, M. Geospatial Assessment of Groundwater Quality Using Water Quality Index and Inverse Distance Weighted Techniques. Int. J. Environ. Sci. 2020, 5, 271–284. [Google Scholar]
- Mahmood, K.; Rana, A.; Tariq, S.; Kanwal, S.; Ali, R.; Haidar, A. Groundwater Levels Susceptibility To Degradation in Lahore Metropolitan. Depression 2011, 150, 8.01. [Google Scholar]
- Ladson, A.R.; White, L.J.; Doolan, J.A.; Finlayson, B.L.; Hart, B.T.; Lake, P.S.; Tilleard, J.W. Development and Testing of an Index of Stream Condition for Waterway Management in Australia. Freshw. Biol. 1999, 41, 453–468. [Google Scholar] [CrossRef]
- Bhatti, M.T.; Anwar, A.A.; Aslam, M. Groundwater Monitoring and Management: Status and Options in Pakistan. Comput. Electron. Agric. 2017, 135, 143–153. [Google Scholar] [CrossRef]
- Fang, Y.; Zheng, T.; Zheng, X.; Peng, H.; Wang, H.; Xin, J.; Zhang, B. Assessment of the Hydrodynamics Role for Groundwater Quality Using an Integration of GIS, Water Quality Index and Multivariate Statistical Techniques. J. Environ. Manag. 2020, 273, 111185. [Google Scholar] [CrossRef]
- Dai, Z.; Peng, L.; Qin, S. Experimental and Numerical Investigation on the Mechanism of Ground Collapse Induced by Underground Drainage Pipe Leakage. Environ. Earth Sci. 2024, 83, 32. [Google Scholar] [CrossRef]
- Engel, B.; Lim, K.J. Groundwater Contaminants. In The Handbook of Groundwater Engineering; Delleur, J.W., Ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9780429122095. [Google Scholar]
- El Baba, M.; Kayastha, P.; Huysmans, M.; De Smedt, F. Evaluation of the Groundwater Quality Using the Water Quality Index and Geostatistical Analysis in the Dier Al-Balah Governorate, Gaza Strip, Palestine. Water 2020, 12, 262. [Google Scholar] [CrossRef]
- Chatterjee, R.; Tarafder, G.; Paul, S. Groundwater Quality Assessment of Dhanbad District, Jharkhand, India. Bull. Eng. Geol. Environ. 2010, 69, 137–141. [Google Scholar] [CrossRef]
- Carroll, S.P.; Dawes, L.A.; Goonetilleke, A.; Hargreaves, M. Water Quality Profile of an Urbanising Catchment. In Proceedings of the Eleventh Individual and Small Community Sewage Systems Conference Proceedings, Warwick, RI, USA, 20–24 October 2007; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2007. [Google Scholar]
- Bashir, N.; Saeed, R.; Afzaal, M.; Ahmad, A.; Muhammad, N.; Iqbal, J.; Khan, A.; Maqbool, Y.; Hameed, S. Water Quality Assessment of Lower Jhelum Canal in Pakistan by Using Geographic Information System (GIS). Groundw. Sustain. Dev. 2020, 10, 100357. [Google Scholar] [CrossRef]
- Li, Z.; He, M.-Y.; Li, B.; Wen, X.; Zhou, J.; Cheng, Y.; Zhang, N.; Deng, L. Multi-Isotopic Composition (Li and B Isotopes) and Hydrochemistry Characterization of the Lakko Co Li-Rich Salt Lake in Tibet, China: Origin and Hydrological Processes. J. Hydrol. 2024, 630, 130714. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Keim, B.D.; Konsoer, K.; Yin, Z.; Liu, M.; Zheng, W. Spatial and Wavelet Analysis of Precipitation and River Discharge during Operation of the Three Gorges Dam, China. Ecol. Indic. 2023, 154, 110837. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Yu, Z.; Yang, T.; Xu, J.; Chao, L.; Ni, J.; Wang, L.; Gao, Y.; Hu, Y.; et al. Xin’anjiang Nested Experimental Watershed (XAJ-NEW) for Understanding Multiscale Water Cycle: Scientific Objectives and Experimental Design. Engineering 2022, 18, 207–217. [Google Scholar] [CrossRef]
- Abbas, Z.; Mapoma, H.W.T.; Su, C.; Aziz, S.Z.; Ma, Y.; Abbas, N. Spatial Analysis of Groundwater Suitability for Drinking and Irrigation in Lahore, Pakistan. Environ. Monit. Assess. 2018, 190, 391. [Google Scholar] [CrossRef]
- Basharat, M. Groundwater Environment in Lahore, Pakistan. In Groundwater Environment in Asian Cities; Elsevier: Amsterdam, The Netherlands, 2016; pp. 147–184. [Google Scholar]
- Farooqi, A.; Masuda, H.; Firdous, N. Toxic Fluoride and Arsenic Contaminated Groundwater in the Lahore and Kasur Districts, Punjab, Pakistan and Possible Contaminant Sources. Environ. Pollut. 2007, 145, 839–849. [Google Scholar] [CrossRef]
- Anwar, M.S.; Lateef, S.; Siddiqi, G.M. Bacteriological Quality of Drinking Water in Lahore. Biomedica 2010, 26, 66–69. [Google Scholar]
- Rashid Ahm, S.; Saleem Kha, M.; Quddos Kha, A.; Ghazi, S.; Ali, S. Sewage Water Intrusion in the Groundwater of Lahore, Its Causes and Protections. Pak. J. Nutr. 2012, 11, 484–488. [Google Scholar] [CrossRef]
- Quddoos, A.; Muhmood, K.; Naz, I.; Aslam, R.W.; Usman, S.Y. Geospatial Insights into Groundwater Contamination from Urban and Industrial Effluents in Faisalabad. Discov. Water 2024, 4, 50. [Google Scholar] [CrossRef]
- Basharat, M.; Rizvi, S.A. Groundwater Extraction and Waste Water Disposal Regulation—Is Lahore Aquifer at Stake with as Usual Approach. In World Water Day; Pakistan Engineering Congress: Lahore, Pakistan, 2011; pp. 135–152. [Google Scholar]
- Hu, C.; Dong, B.; Shao, H.; Zhang, J.; Wang, Y. Toward Purifying Defect Feature for Multilabel Sewer Defect Classification. IEEE Trans. Instrum. Meas. 2023, 72, 5008611. [Google Scholar] [CrossRef]
- Foster, S.; Hirata, R.; Gomes, D.; D’Elia, M.; Paris, M. Groundwater Quality Protection: A Guide for Water Utilities, Municipal Authorities, and Environment Agencies; The World Bank Group: Washington, DC, USA, 2002; ISBN 0821349511. [Google Scholar]
- Ashraf, M.; Bilal Khan, M.; Umar, F. Characterization of Ground Water Quality for Irrigation in Tehsil and District Layyah, Punjab Pakistan. World Rural. Obs. 2018, 10, 74–78. [Google Scholar] [CrossRef]
- Yi, X.; Wang, Z.; Zhao, P.; Song, W.; Wang, X. New Insights on Destruction Mechanisms of Waste Activated Sludge during Simultaneous Thickening and Digestion Process via Forward Osmosis Membrane. Water Res. 2024, 254, 121378. [Google Scholar] [CrossRef]
- Seifi, A.; Dehghani, M.; Singh, V.P. Uncertainty Analysis of Water Quality Index (WQI) for Groundwater Quality Evaluation: Application of Monte-Carlo Method for Weight Allocation. Ecol. Indic. 2020, 117, 106653. [Google Scholar] [CrossRef]
- Sahoo, N.; Panigrahi, B.; Das, D.M.; Das, D.P. Simulation of Runoff in Baitarani Basin Using Composite and Distributed Curve Number Approaches in HEC-HMS Model. Mausam 2020, 71, 675–686. [Google Scholar]
- Vijay, R.; Khobragade, P.; Mohapatra, P.K. Assessment of Groundwater Quality in Puri City, India: An Impact of Anthropogenic Activities. Environ. Monit. Assess. 2011, 177, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Di, D.; Li, T.; Fang, H.; Xiao, L.; Du, X.; Sun, B.; Zhang, J.; Wang, N.; Li, B. A CFD-DEM Investigation into Hydraulic Transport and Retardation Response Characteristics of Drainage Pipeline Siltation Using Intelligent Model. Tunn. Undergr. Space Technol. 2024, 152, 105964. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Using the Analytic Hierarchy Process to Identify Parameter Weights for Developing a Water Quality Index. Ecol. Indic. 2017, 75, 220–233. [Google Scholar] [CrossRef]
- Mukherjee, A.; Sen, S.; Paul, S.K. A Deviation from Standard Quality Approach for Characterisation of Surface Water Quality. Int. J. Sustain. Dev. Plan. 2017, 12, 30–41. [Google Scholar] [CrossRef]
- Jhariya, D.C.; Kumar, T.; Dewangan, R.; Pal, D.; Dewangan, P.K. Assessment of Groundwater Quality Index for Drinking Purpose in the Durg District, Chhattisgarh Using Geographical Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) Techniques. J. Geol. Soc. India 2017, 89, 453–459. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Analytic Hierarchy Process and Expert Choice: Benefits and Limitations. OR Insight 2009, 22, 201–220. [Google Scholar] [CrossRef]
- Hyde, K.M.; Maier, H.R.; Colby, C.B. A Distance-Based Uncertainty Analysis Approach to Multi-Criteria Decision Analysis for Water Resource Decision Making. J. Environ. Manag. 2005, 77, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Thungngern, J.; Wijitkosum, S.; Sriburi, T.; Sukhsri, C. A Review of the Analytical Hierarchy Process (AHP): An Approach to Water Resource Management in Thailand. Appl. Environ. Res. 2015, 37, 13–32. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.; Liu, Z.; Ma, J.; Yang, F.; Guo, H.; Fu, Q. How Human Activities Affect Groundwater Storage. Research 2024, 7, 0369. [Google Scholar] [CrossRef]
- Lan, T.; Hu, Y.; Cheng, L.; Chen, L.; Guan, X.; Yang, Y.; Guo, Y.; Pan, J. Floods and Diarrheal Morbidity: Evidence on the Relationship, Effect Modifiers, and Attributable Risk from Sichuan Province, China. J. Glob. Health 2022, 12, 11007. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Shyam Prasad, V.; Kousalya, P. Role of Consistency in Analytic Hierarchy Process—Consistency Improvement Methods. Indian J. Sci. Technol. 2017, 10, 1–5. [Google Scholar] [CrossRef]
- Saaty, R.W. The Analytic Hierarchy Process-What It Is and How It Is Used. Math. Model 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Hashim, M.A.; Mukhopadhyay, S.; Sahu, J.N.; Sengupta, B. Remediation Technologies for Heavy Metal Contaminated Groundwater. J. Environ. Manag. 2011, 92, 2355–2388. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.C.; Tran, L.T.T.; Vu, M.T.; Nguyen, D.; Tran, N.T.V.; Nghiem, L.D. A New Perspective on Small-Scale Treatment Systems for Arsenic Affected Groundwater. Environ. Technol. Innov. 2021, 23, 101780. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of Water Quality in the South-to-North Water Diversion Project of China Using the Water Quality Index (WQI) Method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
Parameter | WHO Standard | NSDWG | Excellent | Good | Permissible | Unsuitable |
---|---|---|---|---|---|---|
pH | 6.5–8.5 | 6.5–8.5 | 7.5–8.5 | >8.5 | 6.0–7.5 | <6 |
Turbidity | <5 NTU | <5 NTU | 0.1–0.3 | ≤1 | 1–2 | ≥5 |
TDS | 1000 mg/L | 1000 mg/L | <100 | 100–500 | 500–1000 | >1000 |
EC | 400 μS/cm | <50 | 50–250 | 250–400 | >400 | |
Hardness | 500 mg/L | 500 mg/L | <50 | 50–250 | 250–500 | >500 |
Calcium | 75 mg/L | 75 mg/L | <1 | 1.0–5.0 | 5.0–10.0 | >10 |
Magnesium | 50 mg/L | 50 mg/L | <1 | 1.0–5.0 | 5.0–10.0 | >10 |
Alkalinity | 120 mg/L | - | ||||
Chloride | 250 mg/L | <250 mg/L | <50 | 50–100 | 100–200 | >250 |
Arsenic | 10 µg/L | 50 µg/L |
Scale | Relative Importance | Scale | Relative Importance |
---|---|---|---|
1 | Equally important | 1 | Equally important |
3 | Moderately more important | 1/3 | Moderately less important |
5 | Significantly more important | 1/5 | Weakly less important |
7 | Very significantly more important | 1/7 | Very weakly less important |
9 | Exceedingly more important | 1/9 | Exceedingly less important |
2, 4, 6, 8 | Intermediate values | 1 | Equally important |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
RI | 0.0 | 0.0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 | 1.48 |
Process | Parameter | Percentage |
---|---|---|
Primary treatment | TDS | 40–60% |
Secondary treatment | TDS | 65–80% |
Hardness | 45–55% | |
Tertiary treatment | Arsenic | >95% |
Chemical Parameter | Unit | Min. | Max. | Mean | Permissible Limit WHO (2011) | Percentage of the Samples with Level Exceeding WHO Permissible Limit |
---|---|---|---|---|---|---|
pH | - | 7 | 8.3 | 7.9 | 6.5–8.5 | 0.0 |
Turbidity | NTU | 0 | 3.81 | 0.7 | 5 | 0.0 |
TDS | mg/L | 188 | 1266 | 450.6 | 1000 | 2 |
EC | µs/cm | 299 | 2010 | 716.0 | 400 | 86 |
Hardness | mg/L | 44 | 1256 | 184.4 | 500 | 2 |
Calcium | mg/L | 11 | 61 | 34.0 | 75 | 0.0 |
Magnesium | mg/L | 4 | 55 | 18.8 | 75 | 0.0 |
Alkalinity | mg/L | 110 | 760 | 313.9 | 500 | 10 |
Chloride | mg/L | 10 | 110 | 36.6 | 250 | 0.0 |
Arsenic | µg/L | 8.0 | 25.7 | 16.4 | 10 | 96 |
Class | Score | Category Rank | Interpretation |
---|---|---|---|
I | 0–50 | Excellent | It can be safely used |
II | 50–100 | Good | Generally safe to use |
III | 100–120 | Medium | It can be used for drinking |
IV | 120–150 | Poor | Proper treatment is required before use |
V | >150 | Very Poor | Unsuitable |
Sr. | Tehsil | Index Value | Groundwater Quality Class | Area in Sq. Km |
---|---|---|---|---|
1 | Lahore Cantt | 160.31 | V | 464.26 |
2 | Lahore City | 105.11 | IV | 203.63 |
3 | Model Town | 165.83 | V | 350.98 |
4 | Raiwind | 113.99 | IV | 454.59 |
5 | Shalimar | 138.15 | IV | 287.98 |
Sr. | Tehsil | Index Value | Index Value (10% Reduction) | Index Value (20% Reduction) | Index Value (30% Reduction) | Improvement Percentage |
---|---|---|---|---|---|---|
1 | Lahore Cantt | 160.31 | 159.80 | 158.20 | 151.00 | 1.05–4.55% |
2 | Lahore City | 105.11 | 104.98 | 104.50 | 101.02 | 0.46–3.33% |
3 | Model Town | 165.83 | 158.98 | 158.49 | 154.00 | 0.3–4.13% |
4 | Raiwind | 113.99 | 113.41 | 112.97 | 105.53 | 0.51–5.55% |
5 | Shalimar | 138.15 | 137.74 | 129.14 | 109.54 | 6.26–15.18 |
Sr. | Tehsil | Index Value | Index Value (10% Reduction) | Index Value (20% Reduction) | Index Value (30% Reduction) | Improvement Percentage |
---|---|---|---|---|---|---|
1 | Lahore Cantt | 160.31 | 160.45 | 159.98 | 159.50 | 0.8–2.1% |
2 | Lahore City | 105.11 | 103.97 | 103.49 | 103.01 | 1.27–3.04% |
3 | Model Town | 165.83 | 158.97 | 158.49 | 158.00 | 0.9–2.55% |
4 | Raiwind | 113.99 | 113.41 | 112.97 | 112.53 | 1.2–2.2% |
5 | Shalimar | 138.15 | 138.73 | 138.13 | 137.53 | 0.7–2.1% |
Sr. | Tehsil | Index Value | Part A | Part B | Improvement Percentage |
---|---|---|---|---|---|
1 | Lahore Cantt | 160.31 | 137.30239 | 125.48776 | 14.35–21.72% |
2 | Lahore City | 105.11 | 89.9909 | 82.75627778 | 14.28–21.27 |
3 | Model Town | 165.83 | 136.0009667 | 124.2683 | 17.99–25.06 |
4 | Raiwind | 113.99 | 97.579 | 89.44304286 | 14.40–21.53 |
5 | Shalimar | 138.15 | 122.19132 | 113.61952 | 11.55–17.76 |
Sr. | Tehsil | Index Value | Part A | Part B | Improvement Percentage |
---|---|---|---|---|---|
1 | Lahore Cantt | 160.31 | 99.45 | 91.77 | 37.96–42.75 |
2 | Lahore City | 105.11 | 63.90 | 58.45 | 39.20–44.39 |
3 | Model Town | 165.83 | 98.98 | 91.83 | 40.31–44.62 |
4 | Raiwind | 113.99 | 70.82 | 65.78 | 37.87–42.29 |
5 | Shalimar | 138.15 | 84.97 | 74.46 | 38.49–46.10 |
Sr. | Tehsil | Index Value | Part A | Part B | Improvement Percentage |
---|---|---|---|---|---|
1 | Lahore Cantt | 160.31 | 92.00 | 91.77 | 42.61–42.75 |
2 | Lahore City | 105.11 | 58.69 | 58.45 | 44.16–44.39 |
3 | Model Town | 165.83 | 92.07 | 91.83 | 44.48–44.62 |
4 | Raiwind | 113.99 | 66.00 | 65.78 | 42.10–42.29 |
5 | Shalimar | 138.15 | 74.76 | 74.46 | 45.88–46.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naz, I.; Fan, H.; Aslam, R.W.; Tariq, A.; Quddoos, A.; Sajjad, A.; Soufan, W.; Almutairi, K.F.; Ali, F. Integrated Geospatial and Geostatistical Multi-Criteria Evaluation of Urban Groundwater Quality Using Water Quality Indices. Water 2024, 16, 2549. https://doi.org/10.3390/w16172549
Naz I, Fan H, Aslam RW, Tariq A, Quddoos A, Sajjad A, Soufan W, Almutairi KF, Ali F. Integrated Geospatial and Geostatistical Multi-Criteria Evaluation of Urban Groundwater Quality Using Water Quality Indices. Water. 2024; 16(17):2549. https://doi.org/10.3390/w16172549
Chicago/Turabian StyleNaz, Iram, Hong Fan, Rana Waqar Aslam, Aqil Tariq, Abdul Quddoos, Asif Sajjad, Walid Soufan, Khalid F. Almutairi, and Farhan Ali. 2024. "Integrated Geospatial and Geostatistical Multi-Criteria Evaluation of Urban Groundwater Quality Using Water Quality Indices" Water 16, no. 17: 2549. https://doi.org/10.3390/w16172549
APA StyleNaz, I., Fan, H., Aslam, R. W., Tariq, A., Quddoos, A., Sajjad, A., Soufan, W., Almutairi, K. F., & Ali, F. (2024). Integrated Geospatial and Geostatistical Multi-Criteria Evaluation of Urban Groundwater Quality Using Water Quality Indices. Water, 16(17), 2549. https://doi.org/10.3390/w16172549