Integrated Drip Irrigation Regulates Soil Water–Salt Movement to Improve Water Use Efficiency and Maize Yield in Saline–Alkali Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sample Collection and Analysis
2.3.1. Soil Sample Collection and Analysis
2.3.2. Plant Sample Collection and Analysis
2.4. Data Analysis
3. Results
3.1. Influence of Integrated Drip Irrigation and Fertilization on Soil Moisture Distribution in Saline–Alkali Soil
3.2. Influence of Integrated Drip Irrigation and Fertilization on Soil Salt Distribution in Saline–Alkali Soil
3.2.1. Differential Distribution of Soil Salt Profiles
3.2.2. Soil Desalination
3.2.3. Soil Ion Distribution Profiles
3.2.4. Distribution of Soil Nutrients
3.3. Impact of Integrated Drip Irrigation and Fertilization on Maize Growth
3.3.1. Maize Growth and Yield
3.3.2. Maize Transpiration and Water Use Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid. Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Faloye, O.T.; Alatise, M.O.; Ajayi, A.E.; Ewulo, B.S. Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation. Agric. Water Manag. 2019, 217, 165–178. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef]
- Ren, D.; Wei, B.; Xu, X.; Engel, B.; Li, G.; Huang, Q.; Xiong, Y.; Huang, G. Analyzing spatiotemporal characteristics of soil salinity in arid irrigated agro-ecosystems using integrated approaches. Geoderma 2019, 356, 113935. [Google Scholar] [CrossRef]
- Dagar, J.; Yadav, R.; Singh, A.; Singh, N. Historical perspectives and dynamics of nature, extent, classification and management of salt-affected soils and waters. In Research Developments in Saline Agriculture; Springer: Singapore, 2019; pp. 3–52. [Google Scholar]
- Kirby, M.; Mainuddin, M.; Khaliq, T.; Cheema, M. Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050. Agric. Water Manag. 2017, 179, 34–46. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abowaly, M.; Elbehiry, F.; Omara, A.E.-D.; Elsakhawy, T.A.; Mohamed, S.; Belal, A.-A.; Elbasiouny, H.; Abdalla, Z.F. Stressful environments and sustainable soil management: A case study of Kafr El-Sheikh, Egypt. Environ. Biodivers. Soil Secur. 2019, 3, 193–213. [Google Scholar] [CrossRef]
- Xiong, S.; Xiong, Z.; Wang, P. Soil salinity in the irrigated area of the Yellow River in Ningxia, China. Arid. Land Res. Manag. 1996, 10, 95–101. [Google Scholar]
- Li, P.; Li, P.; Qian, H.; Qian, H.; Wu, J.; Wu, J. Conjunctive Use of Groundwater And Surface Water To Reduce Soil Salinization in the Yinchuan Plain, North-West China. Int. J. Water Resour. Dev. 2018, 34, 337–353. [Google Scholar] [CrossRef]
- Munns, R.; Gilliham, M. Salinity Tolerance of Crops—What Is the Cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef]
- Minhas, P.S.; Ramos, T.B.; Ben-Gal, A.; Pereira, L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Fu, X.; Wu, X.; Wang, H.; Chen, Y.; Wang, R.; Wang, Y. Effects of fertigation with carboxymethyl cellulose potassium on water conservation, salt suppression, and maize growth in salt-affected soil. Agric. Water Manag. 2023, 287, 108436. [Google Scholar] [CrossRef]
- Gu, Y.-Y.; Zhang, H.-Y.; Liang, X.-Y.; Fu, R.; Li, M.; Chen, C.-J. Effect of different biochar particle sizes together with bio-organic fertilizer on rhizosphere soil microecological environment on saline–alkali land. Front. Environ. Sci. 2022, 10, 949190. [Google Scholar] [CrossRef]
- Yaron, D. Economic Aspects of Irrigation with Saline Water. In Irrigation Management in Developing Countries; Routledge: Oxfordshire, UK, 2019; pp. 217–263. [Google Scholar]
- González-Trinidad, J.; Júnez-Ferreira, H.E.; Bautista-Capetillo, C.; Ávila Dávila, L.; Robles Rovelo, C.O. Improving the water-use efficiency and the agricultural productivity: An application case in a modernized semiarid region in North-Central Mexico. Sustainability 2020, 12, 8122. [Google Scholar] [CrossRef]
- Ma, Y.; Tashpolat, N. Current status and development trend of soil salinity monitoring research in China. Sustainability 2023, 15, 5874. [Google Scholar] [CrossRef]
- Rajak, D.; Manjunatha, M.; Rajkumar, G.; Hebbara, M.; Minhas, P. Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol. Agric. Water Manag. 2006, 83, 30–36. [Google Scholar] [CrossRef]
- Wang, R.; Kang, Y.; Wan, S.; Hu, W.; Liu, S.; Jiang, S.; Liu, S. Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area. Agric. Water Manag. 2012, 110, 109–117. [Google Scholar] [CrossRef]
- Wang, Z.; Bian, Q.; Zhang, J.; Zhou, B. Optimized water and fertilizer management of mature jujube in Xinjiang arid area using drip irrigation. Water 2018, 10, 1467. [Google Scholar] [CrossRef]
- Banhidarah, A.K.; Al-Sumaiti, A.S.; Wescoat, J.L., Jr. Electricity-water usage for sustainable development: An analysis of United Arab Emirates farms. Energy Policy 2020, 147, 111823. [Google Scholar] [CrossRef]
- Jackson, T.; Khan, S.; Hafeez, M. A framework for evaluating the consumption patterns and environmental impacts of irrigation methods: A case study from South-Eastern Australia. WIT Trans. Ecol. Environ. 2008, 112, 245–254. [Google Scholar]
- Wang, Y.; Gao, M.; Chen, H.; Fu, X.; Wang, L.; Wang, R. Soil moisture and salinity dynamics of drip irrigation in saline–alkali soil of Yellow River basin. Front. Environ. Sci. 2023, 11, 1130455. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Chen, H.; Chen, Y.; Wang, L.; Wang, R. Fertigation and carboxymethyl cellulose applications enhance water-use efficiency, improving soil available nutrients and maize yield in salt-affected soil. Sustainability 2023, 15, 9602. [Google Scholar] [CrossRef]
- Robbins, C.; Wiegand, C. Field and Laboratory Measurements; American Society of Civil Engineers: New York, NY, USA, 1990. [Google Scholar]
- He, W.S.; Liu, Y.C.; He, J.Y. Relationships between soluble salt content and electrical conductivity fordifferent types of salt-affected soils in Ningxia. Agric. Arid. Areas 2010, 28, 111–116. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Zhang, T.; Zhan, X.; He, J.; Feng, H. Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production. Agric. Water Manag. 2019, 213, 636–645. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, X.; Lei, Q.; Liu, F. Effects of drip irrigation nitrogen coupling on dry matter accumulation and yield of Summer Maize in arid areas of China. Field Crops Res. 2021, 274, 108321. [Google Scholar] [CrossRef]
- de Clercq, W.; de Witt, M.; Laker, G. Challenges and opportunities for water conservation in irrigated agriculture in South Africa. S. Afr. J. Plant Soil Use Manag. 2021, 38, 238–246. [Google Scholar] [CrossRef]
- Sandhu, O.; Gupta, R.; Thind, H.; Jat, M.; Sidhu, H. Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. Agric. Water Manag. 2019, 219, 19–26. [Google Scholar] [CrossRef]
- Paz, A.M.; Amezketa, E.; Canfora, L.; Castanheira, N.; Falsone, G.; Gonçalves, M.C.; Gould, I.; Hristov, B.; Mastrorilli, M.; Ramos, T. Salt-affected soils: Field-scale strategies for prevention, mitigation, and adaptation to salt accumulation. Ital. J. Agron. 2023, 18, 2166. [Google Scholar] [CrossRef]
- Pu, S.; Li, G.; Tang, G.; Zhang, Y.; Xu, W.; Li, P.; Feng, G.; Ding, F. Effects of biochar on water movement characteristics in sandy soil under drip irrigation. J. Arid. Land 2019, 11, 740–753. [Google Scholar] [CrossRef]
- Abdelzaher, M.; Awad, M.M. Sustainable development goals for the circular economy and the water-food nexus: Full implementation of new drip irrigation technologies in upper Egypt. Sustainability 2022, 14, 13883. [Google Scholar] [CrossRef]
- Hussain, K.; Majeed, A.; Nawaz, K.; Afghan, S.; Ali, K.; Lin, F.; Zafar, Z.; Raza, G. Comparative study of subsurface drip irrigation and flood irrigation systems for quality and yield of sugarcane. Afr. J. Agric. Res. 2010, 5, 3026–3034. [Google Scholar]
- Yadav, S.; Irfan, M.; Ahmad, A.; Hayat, S. Causes of salinity and plant manifestations to salt stress: A review. J. Environ. Biol. 2011, 32, 667. [Google Scholar]
- Dong, S.; Wang, G.; Kang, Y.; Ma, Q.; Wan, S. Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of Yellow River basin. Agric. Water Manag. 2022, 264, 107255. [Google Scholar] [CrossRef]
- Li, X.; Chang, S.X.; Salifu, K.F. Soil texture and layering effects on water and salt dynamics in the presence of a water table: A review. Environ. Rev. 2014, 22, 41–50. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, S.; Zhang, X.; Jiang, Z.; Yang, K.; Jian, D.; Chen, Y.; Li, J.; Chen, Q.; Wang, J. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agric. Water Manag. 2014, 144, 11–19. [Google Scholar] [CrossRef]
- Smith, J.; Fukai, S.; Bell, M. Soil and fertiliser nitrogen performance indicators for irrigated cotton in Australia. Soil Res. 2022, 61, 329–344. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Hu, B.; Biswas, A.; Jiang, Q.; Liu, W.; Wang, N.; Peng, J. Field-scale characterization of spatio-temporal variability of soil salinity in three dimensions. Remote Sens. 2020, 12, 4043. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, J.; Chen, W.; Chen, Y.; Fang, Y.; Qu, F. Transport characteristics of salt ions in soil columns planted with Tamarix chinensis under different groundwater levels. PLoS ONE 2019, 14, e0215138. [Google Scholar] [CrossRef]
- Irmak, S.; Djaman, K.; Rudnick, D.R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrig. Sci. 2016, 34, 271–286. [Google Scholar] [CrossRef]
- Lamm, F.R.; Colaizzi, P.D.; Sorensen, R.B.; Bordovsky, J.P.; Dougherty, M.; Balkcom, K.; Zaccaria, D.; Bali, K.M.; Rudnick, D.R.; Peters, R.T. A 2020 vision of subsurface drip irrigation in the US. Trans. ASABE 2021, 64, 1319–1343. [Google Scholar] [CrossRef]
- Tian, G.; Li, H.F.; Tian, M.; Liu, X.X.; Chen, Q.; Zhu, Z.L.; Jiang, Y.M.; Ge, S.F. Effects of different integration of water and fertilizer modes on the absorption and utilization of nitrogen fertilizer and fruit yield and quality of apple trees. J. Appl. Ecol. 2020, 31, 1867–1874. [Google Scholar] [CrossRef]
- Stanhill, G. Water use efficiency. Adv. Agron. 1986, 39, 53–85. [Google Scholar]
- Osman, K.T. Soil Degradation, Conservation and Remediation; Springer: Berlin/Heidelberg, Germany, 2014; Volume 820. [Google Scholar]
- Li, Z.; Zong, R.; Wang, T.; Wang, Z.; Zhang, J. Adapting root distribution and improving water use efficiency via drip irrigation in a jujube (Zizyphus jujube Mill.) orchard after long-term flood irrigation. Agriculture 2021, 11, 1184. [Google Scholar] [CrossRef]
Soil Layer (cm) | pH Value | Total Salt (g·kg−1) | Ca2+ (g·kg−1) | Mg2+ (g·kg−1) | K+ (g·kg−1) | Na+ (g·kg−1) | CO32− (mg·kg−1) | HCO3− (g·kg−1) | SO42− (g·kg−1) | Cl− (g·kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
0–20 | 8.86 | 9.63 | 0.60 | 1.28 | 0.06 | 0.72 | 1.79 | 0.09 | 0.13 | 0.07 |
20–40 | 8.84 | 8.75 | 0.55 | 1.13 | 0.06 | 0.58 | 1.61 | 0.09 | 0.08 | 0.06 |
40–60 | 8.97 | 8.11 | 0.37 | 1.02 | 0.05 | 0.67 | 1.73 | 0.09 | 0.12 | 0.05 |
60–80 | 9.04 | 7.16 | 0.35 | 0.96 | 0.03 | 0.69 | 1.72 | 0.08 | 0.11 | 0.05 |
80–100 | 8.98 | 6.67 | 0.32 | 0.94 | 0.03 | 0.77 | 1.52 | 0.08 | 0.08 | 0.06 |
Growth Period | Irrigation Water Volume (mm) | Drip Irrigation Fertilizer Application Ratio (%) | |||
---|---|---|---|---|---|
CK | W1 | W2 | W3 | ||
Seedlings (VE) | 0 | 36 | 45 | 54 | 0 |
Seedling stage (V1) | 180 | 43 | 54 | 65 | 22 |
Erupting stage (V4) | 0 | 22 | 27 | 32 | 16 |
Small trumpet period (V6) | 0 | 47 | 59 | 70 | 14 |
Big trumpet period (V12) | 200 | 47 | 59 | 70 | 14 |
Tasseling period (VT) | 0 | 29 | 36 | 43 | 0 |
Flowering period (R1) | 280 | 29 | 36 | 43 | 12 |
Grouting period (R2) | 0 | 50 | 63 | 76 | 12 |
Milk ripening period (R3) | 150 | 36 | 45 | 54 | 10 |
Wax ripening period (R4) | 0 | 22 | 27 | 32 | 0 |
Total | 810 | 361 | 451 | 539 | 100 |
Years | Soil Depth | Treatment | |||
---|---|---|---|---|---|
(cm) | CK | W1 | W2 | W3 | |
2021 | 0–20 | 2.42 ± 2.09a B | 20.44 ± 2.04a A | 17.48 ± 5.60a A | 16.81 ± 7.14a A |
20–40 | 6.46 ± 9.86a A | 7.78 ± 3.22b A | 2.80 ± 3.37b A | −1.44 ± 0.48b A | |
40–60 | 8.05 ± 8.31a A | 2.27 ± 5.95b A | 1.32 ± 5.49b A | 2.47 ± 6.06b A | |
60–80 | 4.34 ± 3.40a A | 1.48 ± 5.17b A | −0.29 ± 5.12b A | 5.76 ± 5.77ab A | |
80–100 | −2.13 ± 2.17a B | 2.61 ± 0.73b A | 0.06 ± 0.31b A B | 2.11 ± 1.02b A | |
Average annual SDR | 3.83 ± 3.66 | 6.92 ± 2.16 | 4.27 ± 2.24 | 5.14 ± 3.10 | |
2022 | 0–20 | 12.78 ± 3.00a B | 23.14 ± 2.56a A | 25.96 ± 2.51a A | 24.96 ± 3.39a A |
20–40 | 7.54 ± 8.89ab A | 12.20 ± 2.67b A | 14.71 ± 1.78b A | 11.67 ± 2.96b A | |
40–60 | 0.02 ± 2.15bc C | 7.86 ± 0.22bc A | 3.61 ± 1.02c B | 0.95 ± 0.13c BC | |
60–80 | 5.29 ± 3.51abc A | 4.40 ± 5.01c A | 4.63 ± 4.66c A | 6.22 ± 4.84c A | |
80–100 | −3.06 ± 2.42c B | 4.24 ± 0.26c A | 5.43 ± 0.09c A | 6.05 ± 0.29bc A | |
Average annual SDR | 4.51 ± 2.79 | 10.37 ± 1.99 | 10.87 ± 1.73 | 9.97 ± 2.05 | |
2023 | 0–20 | 10.54 ± 1.18a B | 27.77 ± 2.24a A | 31.62 ± 1.91a A | 30.51 ± 2.45a A |
20–40 | 2.33 ± 6.78ab B | 20.45 ± 4.11a A | 24.21 ± 4.36b A | 20.93 ± 6.51b A | |
40–60 | −5.60 ± 3.10b B | 6.93 ± 4.53b A | 9.60 ± 0.90c A | 10.14 ± 0.21c A | |
60–80 | 6.11 ± 9.90ab A | −2.13 ± 2.76b A | −0.45 ± 1.39d A | 3.43 ± 0.07c A | |
80–100 | −0.39 ± 1.51ab A | −12.82 ± 3.68c B | −13.72 ± 0.62e B | −9.82 ± 1.68d B | |
Average annual SDR | 2.60 ± 3.75 | 8.04 ± 0.95 | 10.25 ± 1.49 | 11.04 ± 2.62 | |
Three-year average SDR | 3.65 ± 3.21 | 8.44 ± 1.77 | 8.46 ± 1.98 | 8.72 ± 2.59 |
Soil Layer (cm) | Irrigation Mode | Alkaline Hydrolyzable N (mg·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) |
---|---|---|---|---|
0–20 | CK | 36.22 ± 1.94c A | 31.37 ± 5.51b A | 202.81 ± 14.06a A |
W1 | 48.42 ± 1.07a A | 47.49 ± 13.6a A | 195.16 ± 16.94ab A | |
W2 | 43.58 ± 1.22b A | 54.29 ± 5.03a A | 149.44 ± 24.74b A | |
W3 | 46.64 ± 2.36ab A | 61.29 ± 2.27ab A | 198.16 ± 19.72ab A | |
20–40 | CK | 21.23 ± 0.88b B | 10.23 ± 3.75a B | 139.19 ± 21.85a B |
W1 | 33.43 ± 3.15a B | 26.93 ± 21.49a B | 143.11 ± 8.69a B | |
W2 | 37.45 ± 1.75a B | 30.74 ± 5.91a B | 153.49 ± 22.51a A | |
W3 | 34.56 ± 3.76a B | 33.39 ± 6.37a AB | 153.96 ± 7.89a AB | |
40–60 | CK | 15.07 ± 3.63b C | 1.61 ± 0.34b C | 122.20 ± 4.85a B |
W1 | 21.23 ± 1.99a C | 3.67 ± 0.53ab C | 144.12 ± 20.86a B | |
W2 | 22.05 ± 1.21a C | 3.24 ± 1.51ab C | 145.03 ± 7.71a A | |
W3 | 18.55 ± 1.75ab C | 3.9 ± 0.42a B | 143.85 ± 21.87a AB | |
60–80 | CK | 8.58 ± 0.52b D | 1.03 ± 0.21b C | 129.38 ± 2.12a B |
W1 | 19.72 ± 2.14a C | 3.51 ± 0.05a C | 133.63 ± 12.55a B | |
W2 | 21.82 ± 1.13a C | 2.94 ± 0.99ab C | 149.6 ± 10.28a A | |
W3 | 19.08 ± 0.88a C | 3.18 ± 1.09a B | 152.62 ± 14.89a B | |
80–100 | CK | 8.40 ± 1.40b D | 0.53 ± 0.24c C | 131.53 ± 9.76a B |
W1 | 22.75 ± 0.93a C | 1.9 ± 0.59ab C | 155.6 ± 16.63a AB | |
W2 | 21.58 ± 1.73a C | 1.46 ± 0.1bc C | 151.69 ± 23.56a A | |
W3 | 20.65 ± 0.7a C | 2.84 ± 0.54a B | 152.65 ± 38.74a AB |
Years | Irrigation Mode | Plant Height | Stem Diameter | Aboveground Biomass | Grain Yields | Increase in Yield Compared to CK |
---|---|---|---|---|---|---|
(cm) | (mm) | (kg ha−1) | (kg ha−1) | (%) | ||
2021 | CK | 271.1 ± 10.00a | 17.66 ± 1.17a | 54,037 ± 3317a | 9959 ± 65.80b | - |
W1 | 278.3 ± 12.25a | 17.95 ± 2.17a | 57,387 ± 1969a | 11,243 ± 416.5ab | 12.88 ± 3.51ab | |
W2 | 285.0 ± 36.67a | 18.24 ± 0.52a | 58,856 ± 9658a | 10,673 ± 527.8ab | 6.49 ± 5.27b | |
W3 | 319.2 ± 20.50a | 18.76 ± 0.60a | 60,286 ± 1032a | 11,686 ± 1065a | 16.59 ± 10.63a | |
2022 | CK | 276.0 ± 23.74a | 18.74 ± 1.80a | 54,856 ± 1354b | 10,609 ± 1178b | - |
W1 | 286.2 ± 15.05a | 19.81 ± 0.18a | 58,973 ± 1400a | 11,741 ± 406.9ab | 11.55 ± 12.89b | |
W2 | 285.5 ± 23.07a | 19.33 ± 2.11a | 58,613 ± 1888ab | 11,984 ± 137.2ab | 15.98 ± 1.33ab | |
W3 | 324.9 ± 20.07a | 20.01 ± 2.68a | 61,356 ± 1201a | 12,578 ± 692.4a | 21.73 ± 6.70a | |
2023 | CK | 287.8 ± 13.42a | 19.70 ± 0.23a | 57,299 ± 1804b | 10,472 ± 481.8b | - |
W1 | 292.2 ± 3.42a | 19.54 ± 1.05a | 60,274 ± 1477ab | 12,034 ± 147.1a | 15.06 ± 5.13ab | |
W2 | 288.4 ± 23.47a | 20.42 ± 0.51a | 59,216 ± 1961ab | 12,349 ± 356.4a | 12.02 ± 3.23b | |
W3 | 327.1 ± 16.16a | 19.90 ± 1.34a | 61,801 ± 976.0a | 12,975 ± 651.7a | 17.70 ± 5.91a |
Years | Treatment | I | P | ΔΘ | L | E | (L + E) (I + P)−1 | ET | WUE |
---|---|---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (mm) | (%) | (mm) | (kg ha−1 mm−1) | ||
2021 | CK | 810 | 189 | 40.96a | 20.40a | 436.2a | 45.70a | 583.4a | 17.13b |
W1 | 360 | 189 | 38.33a | 10.89b | 140.8b | 27.62b | 435.7c | 25.84a | |
W2 | 450 | 189 | 46.50a | 12.92b | 164.8b | 27.82b | 507.7b | 21.05b | |
W3 | 540 | 189 | 45.65a | 15.30ab | 185.8b | 27.59b | 573.5a | 20.38b | |
2022 | CK | 810 | 192 | 48.77b | 19.58a | 415.8a | 43.45a | 615.4a | 17.33c |
W1 | 360 | 192 | 51.22b | 11.08b | 135.1b | 26.48b | 457.1c | 25.69a | |
W2 | 450 | 192 | 52.99ab | 12.42b | 158.2b | 26.57b | 524.4b | 22.86ab | |
W3 | 540 | 192 | 57.09a | 14.70ab | 180.8b | 26.70b | 593.6a | 21.18b | |
2023 | CK | 810 | 195 | 50.16b | 18.79a | 399.5a | 41.62a | 636.9a | 16.52c |
W1 | 360 | 195 | 54.98ab | 10.63b | 129.7b | 25.28b | 469.7c | 25.63a | |
W2 | 450 | 195 | 57.42a | 11.94b | 151.8b | 25.39b | 538.7b | 22.93b | |
W3 | 540 | 195 | 58.69a | 14.13ab | 173.4b | 25.51b | 606.2a | 21.40b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Wang, R.; Sun, Q.; Li, Y.; Xu, L.; Wang, Y. Integrated Drip Irrigation Regulates Soil Water–Salt Movement to Improve Water Use Efficiency and Maize Yield in Saline–Alkali Soil. Water 2024, 16, 2509. https://doi.org/10.3390/w16172509
Wang M, Wang R, Sun Q, Li Y, Xu L, Wang Y. Integrated Drip Irrigation Regulates Soil Water–Salt Movement to Improve Water Use Efficiency and Maize Yield in Saline–Alkali Soil. Water. 2024; 16(17):2509. https://doi.org/10.3390/w16172509
Chicago/Turabian StyleWang, Mengze, Rui Wang, Quan Sun, Yulong Li, Lizhen Xu, and Yaqi Wang. 2024. "Integrated Drip Irrigation Regulates Soil Water–Salt Movement to Improve Water Use Efficiency and Maize Yield in Saline–Alkali Soil" Water 16, no. 17: 2509. https://doi.org/10.3390/w16172509
APA StyleWang, M., Wang, R., Sun, Q., Li, Y., Xu, L., & Wang, Y. (2024). Integrated Drip Irrigation Regulates Soil Water–Salt Movement to Improve Water Use Efficiency and Maize Yield in Saline–Alkali Soil. Water, 16(17), 2509. https://doi.org/10.3390/w16172509