A Data-Driven Methodology for Assessing Reuse Potential in Existing Wastewater Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Case Study Prioritisation
- (1)
- Proximity to significant potential users: The presence of substantial water consumers: irrigated agricultural areas, tourism facilities with golf courses and industrial zones within a 5 km radius.
- (2)
- Reuse capability: Facilities that could consistently supply a sufficient volume of water were prioritised to ensure they contribute meaningfully to water reuse goals.
2.3. WWTP-User Adequation
2.3.1. User Volume Requirements
2.3.2. Reuse Potential
2.3.3. Design Flow
2.3.4. Quality Requirements
2.3.5. Treatment System
Treatment System Proposals
2.3.6. Distribution System
2.4. Risk Analysis
2.5. Cost Analysis
2.5.1. Investment Costs
Treatment System Costs
Distribution System Costs
Further CAPEX Considerations
2.5.2. Operational Costs
2.5.3. Unit Costs
2.6. Calculator Tool
3. Results and Discussion
3.1. Regional Characterization of Wastewater Treatment and Reuse
3.2. Case Study Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Advanced Wastewater Treatment Processes
Appendix B. Cost Functions
Appendix C
Case Study | WWTP | Avg. Flow (hm3/yr) | Distance to User (km) | Reclaimed Water Volume (hm3/yr) | Unit Cost (€/m3) per Water Quality Class | CAPEX (M€/yr) per Water Quality Class | OPEX (k€/yr) per Water Quality Class | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | |||||
1 | Charneca | 1.89 | 7–9 | 0.40–1.79 | 0.30–0.66 | 0.19–0.58 | 0.18 | 2.13–2.69 | 1.98–2.52 | 2.35 | 97–276 | 65–189 | 136 |
2 | Turcifal | 0.42 | 5 | 0.16 | - | 0.59–0.65 | 0.58 | - | 0.83–0.91 | 0.83 | - | 33–34 | 32 |
3 | Atouguia da Baleia | 0.92 | 1–3 | 0.05–0.53 | 0.28 | 0.16–0.83 | - | 0.58 | 0.33–0.59 | - | 94 | 12–94 | - |
4 | Rio Maior | 0.92 | 8 | 0.47 | - | 0.40–0.44 | - | - | 1.75–1.78 | - | - | 59–74 | - |
5 | Fervença | 1.26 | 0.2–6 | 0.43–0.53 | - | 0.02–0.23 | - | - | 0.07–0.67 | - | - | 6–58 | - |
Nazaré | 0.91 | 1–2 | - | 0.29–0.57 | - | - | 0.54–1.57 | - | - | 66–117 | - | ||
6 | Vila Franca de Xira | 2.96 | 2–8 | 0.09–3.0 | 1.32–2.5 | 0.21–0.25 | 0.1 | 1.11–1.46 | 3.22–3.29 | 1.06–1.12 | 33–124 | 92–149 | 47–58 |
Alverca | 5.92 | 5–17 | 0.39–1.68 | 0.27–0.32 | - | 3.36–6.45 | 9.12–9.15 | - | 97–634 | 198–308 | - |
References
- WaterEurope. Country Profiles on Urban Wastewater Treatment: Greece. WISE–Freshwater Information System for Europe. Available online: https://water.europa.eu/freshwater/countries/uwwt/greece (accessed on 2 July 2024).
- ERSAR. Relatório Anual dos Serviços de Águas e Resíduos em Portugal (RASARP) 2022. Volume 1. Available online: https://www.ersar.pt/pt/site-publicacoes/Paginas/edicoes-anuais-do-RASARP.aspx#BookID=6331 (accessed on 4 July 2023).
- Re, I.; Daniotti, S.; Ferrini, M.; Gatto, F. Circular Economy in Italy-Market Analysis and Business Opportunities for Dutch Innovative Companies: Clean & Safe Water and Water Resource Recovery; Embassy of the Kingdom of the Netherlands, Consulate-General of the Netherlands in Italy, the Netherlands Enterprise Agency: Rome, Italy, 2020.
- Stathatou, P.M.; Gad, F.; Kampragou, E.; Grigoropoulou, H.; Assimacopoulos, D. Treated Wastewater Reuse Potential: Mitigating Water Scarcity Problems in the Aegean Islands. Desalination Water Treat. 2014, 53, 3272–3282. [Google Scholar] [CrossRef]
- Lima, M.; Araújo, B.; Ayrimoraes, S.; Santos, A.; Vieira, J. Water Reuse Potential for Irrigation in Brazilian Hydrographic Regions. Water Supply 2020, 21, 2799–2810. [Google Scholar] [CrossRef]
- Chu, J.; Chen, J.; Wang, C.; Fu, P. Wastewater Reuse Potential Analysis: Implications for China’s Water Resources Management. Water Res. 2004, 38, 2746–2756. [Google Scholar] [CrossRef] [PubMed]
- Vivaldi, G.A.; Zaccaria, D.; Camposeo, S.; Pasanisi, F.; Salcedo, F.P.; Portoghese, I. Appraising Water and Nutrient Recovery for Perennial Crops Irrigated with Reclaimed Water in Mediterranean Areas Through an Index-Based Approach. Sci. Total Environ. 2022, 820, 152890. [Google Scholar] [CrossRef]
- Paul, M.; Negahban-Azar, M.; Shirmohammadi, A.; Montas, H. Assessment of Agricultural Land Suitability for Irrigation with Reclaimed Water Using Geospatial Multi-Criteria Decision Analysis. Agric. Water Manag. 2020, 231, 105987. [Google Scholar] [CrossRef]
- Expósito, A.; Díaz-Cano, E.; Berbel, J. The Potential Use of Reclaimed Water for Irrigation Purposes: Is It Overestimated? Water Resour. Manag. 2024, 38, 4541–4554. [Google Scholar] [CrossRef]
- Penserini, L.; Moretti, A.; Mainardis, M.; Cantoni, B.; Antonelli, M. Tackling Climate Change Through Wastewater Reuse in Agriculture: A Prioritization Methodology. Sci. Total Environ. 2024, 914, 169862. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Wang, J. Cost Analysis of Reclaimed Water Treatment: A Case Study in Beijing. In Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010. [Google Scholar]
- Gonzalez-Serrano, E.; Rodríguez-Mirasol, J.; Cordero, T.; Koussis, A.; Rodriguez, J.J. Cost of Reclaimed Municipal Wastewater for Applications in Seasonally Stressed Semi-Arid Regions. J. Water Supply Res. Technol. AQUA 2005, 54, 355–369. [Google Scholar] [CrossRef]
- Nogueira, R.; Ferreira, I.; Janknecht, P.; Rodríguez, J.J.; Oliveira, P.; Brito, A.G. Energy-Saving Wastewater Treatment Systems: Formulation of Cost Functions. Water Sci. Technol. 2007, 56, 85–92. [Google Scholar] [CrossRef]
- De Paoli, G.; Mattheiss, V. Deliverable 4.7 Cost, Pricing, and Financing of Water Reuse Against Natural Water Resources; Demoware research project FP7-ENV-2013-WATER-INNO-DEMO; DemoWare: Santa Monica, CA, USA, 2016. [Google Scholar] [CrossRef]
- SUGGEREIX. LL1.1 Bases de Dades de Casos de Reutilització. Available online: https://aiguaregenerada.cat/en/project-publications-2/ (accessed on 3 October 2022).
- Pistocchi, A.; Aloe, A.; Dorati, C.; Alcalde Sanz, L.; Bouraoui, F.; Gawlik, B.; Grizzetti, B.; Pastori, M.; Vigiak, O. The Potential of Water Reuse for Agricultural Irrigation in the EU: A Hydro-Economic Analysis; JRC: Luxembourg, 2017. [Google Scholar]
- Molinos-Senante, M.; Hernández-Sancho, F.; Sala-Garrido, R. Economic Feasibility Study for Wastewater Treatment: A Cost-Benefit Analysis. Sci. Total Environ. 2010, 408, 4396–4402. [Google Scholar] [CrossRef]
- Garcia, X.; Pargament, D. Reusing Wastewater to Cope with Water Scarcity: Economic, Social, and Environmental Considerations for Decision-Making. Resour. Conserv. Recycl. 2015, 101, 154–166. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to Detect Agricultural Drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef]
- APA. Plano das Bacias Hidrográficas das Ribeiras do Oeste, Parte 2—Caraterização e Diagnóstico da Região Hidrográfica: 2010–2015; APA: Lisbon, Portugal, 2016. [Google Scholar]
- APA. Plano de Gestão da Região Hidrográfico do Tejo, Parte 2—Caraterização e Diagnóstico da Região Hidrográfica: 2010–2015; APA: Lisbon, Portugal, 2016. [Google Scholar]
- DGADR. Dotações de Rega de Referência: Quadro 1—Região Sul-Ribatejo, Alentejo e Algarve. Available online: https://www.abroxo.pt/images/Quadro__1.pdf (accessed on 1 July 2023).
- DGADR. Aproveitamentos Hidroagrícolas do Grupo II no Continente–Culturas e Áreas Regadas em 2020. Available online: https://sir.dgadr.gov.pt/pub-leg/publicacoes/summary/8-regadio/416-aproveitamentos-hidroagricolas-do-grupo-ii-no-continente-culturas-e-areas-regadas-em-2020 (accessed on 12 July 2023).
- Almeida, A.; Velosa, V. Análise da Eficiência Hídrica nos Campos de Golfe em Portugal; Turismo de Portugal: Lisbon, Portugal, 2021. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements: FAO Irrigation and Drainage Paper No. 24; FAO: Rome, Italy, 1977. [Google Scholar]
- Gross, P.; Hartwiger, C. How to Develop a Water Budget for Your Golf Course. Green Sect. Rec. 2016, 54, 1–5. [Google Scholar]
- APA. Plano de Gestão de Região Hidrográfica–Tejo e Ribeiras do Oeste (RH5A), Parte 2—Caraterização e Diagnóstico, Volume B, 2022–2027; APA: Lisbon, Portugal, 2022. [Google Scholar]
- Devitt, D.; Morris, R.; Baghzouz, M.; Lockett, M.; Fenstermaker, L. Water Quality Changes in Golf Course Irrigation Ponds Transitioning to Reuse Water. HortScience 2005, 40, 2151–2156. [Google Scholar] [CrossRef]
- Swistock, B. Pond Measurements: Area, Volume, and Residence Time. Available online: https://extension.psu.edu/pond-measurements-area-volume-and-residence-time (accessed on 19 August 2022).
- Selvarajan, S. Cradle-to-Gate LCA of Water Treatment Alternatives: A Case Study Performed for Norrvatten’s Future Waterwork Expansion. Dissertation on KTH, School of Architecture and Built Environment. 2021, p. 156. Available online: https://www.diva-portal.org/smash/get/diva2:1519618/FULLTEXT01.pdf (accessed on 27 August 2024).
- APA. Guia Metodológico para a Definição de Caudais Ecológicos em Aproveitamentos Hidráulicos em Portugal Continental; APA: Lisbon, Portugal, USA, 2022. [Google Scholar]
- Tennant, D. Instream Flow Regimens for Fish, Wildlife, Recreation, and Related Environmental Resources. Fisheries 1975, 1, 4. [Google Scholar] [CrossRef]
- Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Off. J. Eur. Union 2020, L177/32. Available online: http://data.europa.eu/eli/reg/2020/741/oj (accessed on 27 August 2024).
- Presidência do Conselho de Ministros, Decreto-Lei n.º 119/2019 de 21 de agosto, Diário da República n.º 159/2019: Série I de 2019-08-21. pp. 21–44. Available online: https://diariodarepublica.pt/dr/detalhe/decreto-lei/119-2019-124097549 (accessed on 27 August 2024).
- Parveen, N.; Chowdhury, S.; Goel, S. Environmental Impacts of the Widespread Use of Chlorine-Based Disinfectants During the COVID-19 Pandemic. Environ. Sci. Pollut. Res. 2022, 29, 85742–85760. [Google Scholar] [CrossRef]
- Wang, C.; Chang, C.; Lin, W. Efficiency Improvement of a Flow-Through Water Disinfection Reactor Using UV-C Light Emitting Diodes. J. Water Process Eng. 2021, 40, 101819. [Google Scholar] [CrossRef]
- Carré, E.; Pérot, J.; Jauzein, V.; Lopez-Ferber, M. Impact of Suspended Particles on UV Disinfection of Activated-Sludge Effluent with the Aim of Reclamation. J. Water Process Eng. 2018, 22, 87–93. [Google Scholar] [CrossRef]
- Metcalf & Eddy; Asano, T.; Burton, F.; Leverenz, H. Water Reuse: Issues, Technologies, and Applications, 1st ed.; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Metcalf & Eddy; Tchobanoglous, G.; Stensel, H.; Tsuchihashi, R.; Burton, F. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill Professional: New York, NY, USA, 2014. [Google Scholar]
- Kesar, S.; Bhatti, M.S. Chlorination of Secondary Treated Wastewater with Sodium Hypochlorite (NaOCl): An Effective Single Alternative to Other Disinfectants. Heliyon 2022, 8, e11162. [Google Scholar] [CrossRef]
- Valdés, J.; Kahouadji, L.; Matar, O. Current Advances in Liquid–Liquid Mixing in Static Mixers: A Review. Chem. Eng. Res. Des. 2022, 177, 694–731. [Google Scholar] [CrossRef]
- ProMinent. Operating Instructions: Chlorine Dioxide Systems Bello Zon Product Range CDVd. Available online: https://www.prominent.com/resources/OperatingInstructions/English/24082/981555-BA-BEZ-060-07-21-EN-Chlorine-Dioxide-System-BelloZon-CDVd-BA-EN.pdf (accessed on 4 July 2023).
- Anderson, J. Water for Life: Diversification and Water Reuse as Ingredients in Sydney’s Integrated Water Plan. In Milestones in Water Reuse: The Best Success Stories; IWA Publishing: London, UK, 2013; pp. 27–35. [Google Scholar]
- Chalmers, R.; Patel, M. Key to Success of Groundwater Recharge with Recycled Water in California. In Milestones in Water Reuse: The Best Success Stories; IWA Publishing: London, UK, 2013; pp. 297–314. [Google Scholar]
- Lim, M.; Seah, H. NEWater: A Key Element of Singapore’s Water Sustainability. In Milestones in Water Reuse: The Best Success Stories; IWA Publishing: London, UK, 2013; pp. 53–62. [Google Scholar]
- Torkashvand, J.; Farzadkia, M.; Younesi, S.; Gholami, M. A Systematic Review on Membrane Technology for Carwash Wastewater Treatment: Efficiency and Limitations. Desalination Water Treat. 2021, 210, 81–90. [Google Scholar] [CrossRef]
- Bertanza, G.; Canato, M.; Laera, G.; Vaccari, M.; Svanstrom, M.; Heimersson, S. A Comparison Between Two Full-Scale MBR and CAS Municipal Wastewater Treatment Plants: Techno-Economic-Environmental Assessment. Environ. Sci. Pollut. Res. 2017, 24, 17383–17393. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment COM/2022/541/FINAL. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A0541%3AFIN (accessed on 27 August 2024).
- Cowle, M.W.; Webster, G.; Babatunde, A.O.; Bockelmann-Evans, B.N.; Weightman, A.J. Impact of Flow Hydrodynamics and Pipe Material Properties on Biofilm Development Within Drinking Water Systems. Environ. Technol. 2019, 41, 3732–3744. [Google Scholar] [CrossRef]
- Miranda, J.C. Infra-Estruturas de Aducão e Regularização em Perímetros de Rega Coletivos. In Jornadas Técnicas APRH—A Engenharia dos Aproveitamentos Agrícolas; 2011; Available online: https://www.aprh.pt/wp-content/uploads/2011/10/13-15Outubro2011_livro-de-resumos1.pdf (accessed on 27 August 2024).
- Mariano, J. Adutoras Puras e Mistas: Análise Técnico-Económica; Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Civil: Coimbra, Portugal, 2014. [Google Scholar]
- ISO 4427-1:2019; Plastic Piping Systems for Water Supply and for Drainage and Seweage under Pressure—Polyethylene. ISO: Geneva, Switzerland, 2019; Edition 2.
- Fewtrell, L.; Bartram, J. Water Quality: Guidelines, Standards and Health: Assessment of Risk and Risk Management for Water-Related Infectious Diseases; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Guo, T.; Englehardt, J.; Wu, T. Review of Cost Versus Scale: Water and Wastewater Treatment and Reuse Processes. Water Sci. Technol. 2014, 69, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, R.; Simón, P.; Moragas, L.; Arce, A.; Rodriguez-Roda, I. Cost Comparison of Full-Scale Water Reclamation Technologies with an Emphasis on Membrane Bioreactors. Water Sci. Technol. 2017, 75, 2562–2570. [Google Scholar] [CrossRef]
- DeCarolis, J.; Adham, S.; Pearce, W.; Hirani, Z.; Lacy, S.; Stephenson, R. Cost Trends of MBR Systems for Municipal Wastewater Treatment. Proc. Water Environ. Fed. 2007, 15, 3407–3418. [Google Scholar] [CrossRef]
- Covas, D. Custos de Construção de Infraestruturas Associadas ao Ciclo Urbano da Água; Guia Técnico 23; ERSAR: Lisboa, Portugal, 2020. [Google Scholar]
- ADP. Water Infrastructures Construction Costs Estimator (WICCE). Available online: https://wicce.adp.pt/ (accessed on 2 January 2023).
- FFMS. Remuneração Base Média Mensal dos Trabalhadores por Conta de Outrem: Total e por Setor de Atividade Económica. Available online: https://www.pordata.pt/municipios/remuneracao+base+media+mensal+dos+trabalhadores+por+conta+de+outrem+total+e+por+setor+de+atividade+economica-238 (accessed on 4 December 2022).
- FFMS. Taxa de Inflação (Taxa de Variação do Índice de Preços no Consumidor): Total e por Consumo Individual por Objetivo. Available online: https://www.pordata.pt/portugal/taxa+de+inflacao+(taxa+de+variacao+do+indice+de+precos+no+consumidor)+total+e+por+consumo+individual+por+objetivo-2315 (accessed on 4 March 2023).
- Rogers, B.; Dunn, G.; Hammer, K.; Novalia, W.; Haan, F.J.d.; Brown, L.; Brown, R.; Lloyd, S.; Urich, C.; Wong, T.; et al. Water Sensitive Cities Index: A Diagnostic Tool to Assess Water Sensitivity and Guide Management Actions. Water Res. 2020, 186, 116411. [Google Scholar] [CrossRef] [PubMed]
- Orta-Ortiz, M.G.D. What Variables Matter When Designing Nature-Based Solutions for Stormwater Management? A Review of Impacts on Ecosystem Services. Environ. Impact Assess. Rev. 2022, 95, 106802. [Google Scholar] [CrossRef]
- Hofman-Caris, C.; Bäuerlein, P.; Siegers, W.; Ziaie, J.; Tolkamp, H.; Voogt, P. Affinity Adsorption for the Removal of Organic Micropollutants in Drinking Water Sources: Proof of Principle. Water Sci. Technol. Water Supply 2015, 15, 1207–1219. [Google Scholar] [CrossRef]
- Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef]
- Ismail, G.A.; Sakai, H. Review on Effect of Different Types of Dyes on Advanced Oxidation Processes (AOPs) for Textile Color Removal. Chemosphere 2022, 291, 132906. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, M.; Konstantinou, I. AOPs Methods for the Removal of Taste and Odor Compounds. In Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 179–210. [Google Scholar]
- Hajalifard, Z.; Kazemi, S.; Eftekhari, S.; Rezaei, S.; Mousazadeh, M.; Usman, M. Per- and Polyfluoroalkyl Substances Degradation Using Hydroxyl- and Sulfate- Radical-Based Advanced Oxidation from Water Matrices: Which One Is the Best Approach? Int. J. Environ. Anal. Chem. 2023, 1–25. [Google Scholar] [CrossRef]
- Spilsbury, F.; Kisielius, V.; Bester, K.; Backhaus, T. Ecotoxicological Mixture Risk Assessment of 35 Pharmaceuticals in Wastewater Effluents Following Post-Treatment with Ozone and/or Granulated Activated Carbon. Sci. Total Environ. 2024, 906, 167440. [Google Scholar] [CrossRef] [PubMed]
Agricultural Irrigation | Recreational Uses | Industry (a) | ||||
---|---|---|---|---|---|---|
A | B | C | D | |||
E. coli (number/100 mL) | ≤10 | ≤100 | ≤1000 | ≤10,000 | ≤10 | ≤10 |
BOD5 (mg/L) | ≤10 | ≤25 | ≤25 | ≤25 | ≤25 | |
TSS (mg/L) | ≤10 | ≤35 | ≤35 | ≤35 | ||
Turbidity (NTU) | 5 | - | - | - | ≤5 | ≤5 |
Legionella spp. (cfu/L) | ≤1000 (b) | ≤1000 (b) | ≤1000 (b) | ≤1000 (b) | ||
Intestinal nematodes (eggs/L) | ≤1 | ≤1 | ||||
Total Nitrogen (mg NH4/L) | ≤10 (b) | |||||
Total Phosphorus (mg P/L) | ≤15 (b) | ≤2 (b) | ||||
Ammonia (mg NH4/L) | ≤5 (b) | ≤5 |
Scenario | Treatment System | Class | Remarks | Disinfection Dosing per Class | |||
---|---|---|---|---|---|---|---|
A | B | C | Unit | ||||
A—Keep it simple | Disinfection (NaOCl) | C | Byproduct formation may occur with nitrogen and natural organic matter, increasing NaOCl requirements. Not recommended for WWTPs with high levels of TSS and/or ammonia. | - | - | 5 | mg Cl/L |
B—Simple and robust | Filtration + Disinfection (NaOCl) | B or C | Not recommended for WWTPs with high levels of ammonia. | - | 3 | 1.5 | mg Cl/L |
C—Less simple, safer and more robust | Filtration + Disinfection (UV) + Disinfection (NaOCl) | B or C | Not recommended for WWTPs with reported low transmittance. | - | 1 | 0.5 | mJ/cm2 |
D—Safer | Filtration + Disinfection (ClO2) | A or B | Possible chlorate and chlorite production. | 3 | 1 | - | mg ClO2/L |
E—Super safe | Membrane Filtration (UF) + Disinfection (NaOCl) | A | The disinfection technology can be changed for others with greater efficiency, being aware of the cost increase. | 0.5 | - | - | mg Cl/L |
F—All-in-one | Biological Membrane Filtration (MBR) + Disinfection (NaOCl) | A | The residual disinfection technology can be changed for others with greater efficiency, being aware of the cost increase. | 1 | - | - | mg Cl/L |
Equipment | Initial Investment (€) | Parameters |
---|---|---|
Chlorine dioxide generators | y = 11.521x + 16,588 | x = Dose (g/h) |
Disc filtration | y = 148.42x + 82,708 | x = Design flow (m3/h) |
Dosing pump | y = 19.816x + 1384.4 | x = Reagent dose (L/h) |
Static mixers | y = 0.0467x2 + 3.7808x + 640.67 | x = Design flow (m3/h) |
Ultrafiltration | y = 775.51x + 42,653 | x = Design flow (m3/h) |
Closed-vessel UV | y = 99.607x − 6325.6 | x = Design flow (m3/h) |
Operation | Cost |
---|---|
Clearing, excavation and levelling | 3 €/m2 |
Concrete application | 6 €/m2 |
Equipment protection building | 200 €/m2 |
Pumping well | 350 €/m3 active volume |
Contact tank | 400 €/m3 active volume |
Reagent | Price |
---|---|
Sodium hypochlorite (13%) | 0.400 €/kg |
Sodium chlorite (7.5%) | 0.985 €/kg |
Hydrochloric acid (9%) | 0.465 €/kg |
A | B | C–D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | Analysis Cost | <300 m3/day | 300–1500 m3/day | 1500–7500 m3/day | >7500 m3/day | <300 m3/day | 300–1500 m3/day | 1500–7500 m3/day | >7500 m3/day | |
Occasional nutrient monitoring | ||||||||||
BOD5 | 15 € | 52 | 4 | 12 | 12 | 26 | 4 | 12 | 12 | 26 |
TSS | 10 € | 52 | 4 | 12 | 12 | 26 | 4 | 12 | 12 | 26 |
E. coli | 12 € | 52 | 52 | 52 | 52 | 52 | 26 | 26 | 26 | 26 |
Helminth eggs | 15 € | 26 | 26 | 26 | 26 | |||||
Legionella spp. | 55 € | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
Nitrogen | 13 € | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Phosphorus | 18 € | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Ammonia | 9 € | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Total cost (aspersion irrigation) | 3724 € | 2524 € | 2724 € | 2724 € | 3074 € | 2589 € | 2789 € | 2789 € | 3139 € | |
Total cost (other irrigation types) | 2404 € | 1864 € | 2064 € | 2064 € | 2414 € | 1929 € | 2129 € | 2129 € | 2479 € | |
Frequent nutrient monitoring | ||||||||||
BOD5 | 15 € | 52 | 4 | 12 | 12 | 26 | 4 | 12 | 12 | 26 |
TSS | 10 € | 52 | 4 | 12 | 12 | 26 | 4 | 12 | 12 | 26 |
E. coli | 12 € | 52 | 52 | 52 | 52 | 52 | 26 | 26 | 26 | 26 |
Helminth eggs | 15 € | 26 | 26 | 26 | 26 | |||||
Legionella spp. | 55 € | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
Nitrogen | 13 € | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
Phosphorus | 18 € | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
Ammonia | 9 € | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
Total cost (aspersion irrigation) | 4204 € | 3004 € | 3204 € | 3204 € | 3554 € | 3069 € | 3269 € | 3269 € | 3619 € | |
Total cost (other irrigation types) | 2884 € | 2344 € | 2544 € | 2544 € | 2894 € | 2409 € | 2609 € | 2609 € | 2959 € |
Equipment | Estimated Power |
---|---|
Dosing Pump | 15 W/L reagent |
Disc Filters | 3.4 W/m3 reclaimed water |
UV Reactor | 55 W/m3 reclaimed water |
UF Membrane | 500 W/ m3 reclaimed water |
Pump | 75 W/ m3 reclaimed water |
Chlorine Dioxide generator (<600 g/h) | 740 W |
Chlorine dioxide generator (>600 g/h) | 300 W |
Case Study | WWTP | Avg. Flow (hm3/yr) | Distance to User (km) | Reclaimed Water Potential | % Max Reuse WWTP | Unit Cost (€/m3) per Water Quality Class | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max (hm3/yr) | Agriculture (hm3/yr) | Agric. (ha) | Recreative and Urban (hm3/yr) | Recr. (ha) | Industrial (hm3/yr) | A | B | C | |||||
1 | Charneca | 1.89 | 7–9 | 1.79 | 1.79 | 843 | 0.40 | 55 | - | 95 | 0.30–0.66 | 0.19–0.58 | 0.18 |
2 | Turcifal | 0.42 | 5 | 0.16 | - | - | 0.16 | 23 | - | 42 | - | 0.59–0.65 | 0.58 |
3 | Atouguia da Baleia | 0.92 | 1–3 | 0.53 | 0.53 | 259 | 0.05 | 7 | - | 58 | 0.28 | 0.16–0.83 | - |
4 | Rio Maior | 0.92 | 8 | 0.47 | 0.47 | 66 | - | 52 | - | 0.40–0.44 | - | ||
5 (a) | Fervença | 1.26 | 0.2–6 | 0.99 | 0.96 | 313 | - - | - - | - - | 45 | - | 0.02–0.23 | - |
Nazaré | 0.91 | 1–2 | - | 0.29–0.57 | - | ||||||||
6 (a) | Vila Franca de Xira | 2.96 | 2–8 | 5.02 | 4.53 | 456 | 0.46 | 113 | 1.00 | 58 | 1.32–2.51 | 0.21–0.25 | 0.10 |
Alverca | 5.92 | 5–17 | 0.39–1.68 | 0.27–0.32 | - | ||||||||
Total | 8.96 | 7.81 | 1871 | 1.08 | 264 | 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Areosa, I.; Martins, T.A.E.; Lourinho, R.; Batista, M.; Brito, A.G.; Amaral, L. A Data-Driven Methodology for Assessing Reuse Potential in Existing Wastewater Treatment Plants. Water 2024, 16, 2474. https://doi.org/10.3390/w16172474
Areosa I, Martins TAE, Lourinho R, Batista M, Brito AG, Amaral L. A Data-Driven Methodology for Assessing Reuse Potential in Existing Wastewater Treatment Plants. Water. 2024; 16(17):2474. https://doi.org/10.3390/w16172474
Chicago/Turabian StyleAreosa, Inês, Tiago A. E. Martins, Rita Lourinho, Marcos Batista, António G. Brito, and Leonor Amaral. 2024. "A Data-Driven Methodology for Assessing Reuse Potential in Existing Wastewater Treatment Plants" Water 16, no. 17: 2474. https://doi.org/10.3390/w16172474
APA StyleAreosa, I., Martins, T. A. E., Lourinho, R., Batista, M., Brito, A. G., & Amaral, L. (2024). A Data-Driven Methodology for Assessing Reuse Potential in Existing Wastewater Treatment Plants. Water, 16(17), 2474. https://doi.org/10.3390/w16172474