Land Use Cover and Flow Condition Affect the Spatial Distribution Characteristics of Fluorescent Dissolved Organic Matter in the Yongding River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Fluorescence EEM Measurements, FRI Analysis, and Index Calculations
2.3. EEM-PARAFAC Analysis
3. Results and Discussion
3.1. EEM-FRI Analysis of DOM
3.2. Evolution of Fluorescence Index of DOM
3.3. EEM-PARAFAC Analysis of DOM
3.4. Relationships between Fluorescence Indices and Humification Degree of DOM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, F.C.; Tanoue, E.; Liu, C.Q. Fluorecence and Amino Acid Characteristics of Molecular Size Fractions of DOM in the Waters of Lake Biwa. Biogeochemistry 2003, 65, 245–257. [Google Scholar] [CrossRef]
- Catalán, N.; Marcé, R.; Kothawala, D.N.; Tranvik, L.J. Organic Arbon Decomposition Rates Controlled by Water Retention Time Across Inland Waters. Nat. Geosci. 2016, 9, 501–504. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Y.; Kong, F.; Zhang, J.; Xi, M. Source, Structural Characteristics and Ecological Indication of Dissolved Organic Matter Extracted From Sediments in the Primary Tributaries of the Dagu River. Ecol. Indic. 2020, 109, 105776. [Google Scholar] [CrossRef]
- Chen, M.; Price, R.M.; Yamashita, Y.; Jaffé, R. Comparative Study of Dissolved Organic Matter From Groundwater and Surface Water in the Florida Coastal Everglades Using Multi-dimensional Spectrofluorometry Combined With Multivariate Statistics. Appl. Geochem. 2010, 25, 872–880. [Google Scholar] [CrossRef]
- Kamjunke, N.; von Tümpling, W.; Hertkorn, N.; Harir, M.; Schmitt-Kopplin, P.; Norf, H.; Weitere, M.; Herzsprung, P. A New Approach for Evaluating Transformations of Dissolved Organic Matter (DOM) via High-Resolution Mass Spectrometry and Relating it to Bacterial Activity. Water Res. 2017, 123, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Kothawala, D.N.; Stedmon, C.A.; Müller, R.A.; Weyhenmeyer, G.A.; Köhler, S.J.; Tranvik, L.J. Controls of Dissolved Organic Matter Quality: Evidence From a Large-Scale Boreal Lake Survey. Glob. Chang. Biol. 2014, 20, 1101–1114. [Google Scholar] [CrossRef]
- Tanaka, K.; Kuma, K.; Hamasaki, K.; Yamashita, Y. Accumulation of Humic-like Fluorescent Dissolved Organic Matter in the Japan Sea. Sci. Rep. 2014, 4, 5292. [Google Scholar] [CrossRef]
- Dong, Q.; Li, P.; Huang, Q.; Abdelhafez, A.A.; Chen, L. Occurrence, Polarity and Bioavailability of Dissolved Organic Matter in the Huangpu River, China. J. Environ. Sci. 2014, 26, 1843–1850. [Google Scholar] [CrossRef]
- Lønborg, C.; Carreira, C.; Jickells, T.; Álvarez-Salgado, X.A. Impacts of Global Change on Ocean Dissolved Organic Carbon (DOC) Cycling. Front. Mar. Sci. 2020, 7, 466. [Google Scholar] [CrossRef]
- Fasching, C.; Wilson, H.F.; D’Amario, S.C.; Xenopoulos, M.A. Natural Land Cover in Agricultural Catchments Alters Flood Effects on DOM Composition and Decreases Nutrient Levels in Streams. Ecosystems 2019, 22, 1530–1545. [Google Scholar] [CrossRef]
- Li, S.; Hou, X.; Shi, Y.; Huang, T.; Yang, H.; Huang, C. Rapid Photodegradation of Terrestrial Soil Dissolved Organic Matter (DOM) With Abundant Humic-Like Substances Under Simulated Ultraviolet Radiation. Environ. Monit. Assess. 2020, 192, 103. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Wang, T. Effects of Land Use on the Characteristics and Composition of Fluvial Chromophoric Dissolved Organic Matter (CDOM) in the Yiluo River Watershed, China. Ecol. Indic. 2020, 114, 106332. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Yang, C.; Wang, Q.; Jiang, D. Variations of DOM Quantity and Compositions Along WWTPs-River-Lake Continuum: Implications for Watershed Environmental Management. Chemosphere 2019, 218, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, L.; Jiji, J.; Kong, Q.; Ni, Z.; Yan, L.; Pan, C. River Ecosystem Health Assessment Using a Combination Weighting Method: A Case Study of Beijing Section of Yongding River in China. Int. J. Environ. Res. Public Health 2022, 19, 14433. [Google Scholar] [CrossRef]
- He, X.-S.; Xi, B.-D.; Gao, R.-T.; Wang, L.; Ma, Y.; Cui, D.-Y.; Tan, W.-B. Using Fluorescence Spectroscopy Coupled With Chemometric Analysis to Investigate the Origin, Composition, and Dynamics of Dissolved Organic Matter in Leachate-Polluted Groundwater. Environ. Sci. Pollut. Res. 2014, 22, 8499–8506. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Y.; Feng, L.; Zhu, G.; Shi, Z.; Liu, X.; Zhang, Y. Characterizing Chromophoric Dissolved Organic Matter in Lake Tianmuhu and its Catchment Basin Using Excitation-Emission Matrix Fluorescence and Parallel Factor Analysis. Water Res. 2011, 45, 5110–5122. [Google Scholar] [CrossRef]
- Song, F.; Wu, F.; Feng, W.; Liu, S.; He, J.; Li, T.; Zhang, J.; Wu, A.; Amarasiriwardena, D.; Xing, B.; et al. Depth-Dependent Variations of Dissolved Organic Matter Composition and Humification in a Plateau Lake Using Fluorescence Spectroscopy. Chemosphere 2019, 225, 507–516. [Google Scholar] [CrossRef]
- Ye, L.; Wu, X.; Liu, B.; Yan, D.; Kong, F. Dynamics and Sources of Dissolved Organic Carbon During Phytoplankton Bloom in Hypereutrophic Lake Taihu (China). Limnologica 2015, 54, 5–13. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, Y.; Zhang, Y.; Wen, X.; Xi, B.; Zhao, X.; Zhang, X.; Wei, Z. Roles of Composts in Soil Based on the Assessment of Humification Degree of Fulvic Acids. Ecol. Indic. 2017, 72, 473–480. [Google Scholar] [CrossRef]
- Noda, I. Two-Dimensional Correlation Spectroscopy (2DCOS) Analysis of Polynomials. J. Mol. Struct. 2016, 1124, 53–60. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, Y.; Bai, S.; Zhou, H.; Chen, X.; Wei, Z. New Insights into the Variation of Dissolved Organic Matter Components in Different Latitudinal Lakes of Northeast China. Limnol. Oceanogr. 2019, 65, 471–481. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Fu, J.; Li, T.; Wang, J.; Fu, Y. Insights into the Interaction Between Carbamazepine and Natural Dissolved Organic Matter in the Yangtze Estuary Using Fluorescence Excitation–Emission Matrix Spectra Coupled With Parallel Factor Analysis. Environ. Sci. Pollut. Res. 2016, 23, 19887–19896. [Google Scholar] [CrossRef]
- Song, F.; Wu, F.; Feng, W.; Tang, Z.; Giesy, J.P.; Guo, F.; Shi, D.; Liu, X.; Qin, N.; Xing, B.; et al. Fluorescence Regional Integration and Differential Fluorescence Spectroscopy for Analysis of Structural Characteristics and Proton Binding Properties of Fulvic Acid Sub-Fractions. J. Environ. Sci. 2018, 74, 116–125. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, S.; Mu, E.; Zhao, Y.; Cheng, L.; Zhu, Y.; Yuan, Y.; Wang, Y.; Ding, A. Characterizing the Spatiotemporal Distribution of Dissolved Organic Matter (DOM) in the Yongding River Basin: Insights from flow regulation. J. Environ. Manag. 2023, 325, 116476. [Google Scholar] [CrossRef] [PubMed]
- Fellman, J.B.; Spencer, R.G.M.; Hernes, P.J.; Edwards, R.T.; D’Amore, D.V.; Hood, E. The Impact of Glacier Runoff on the Biodegradability and Biochemical Composition of Terrigenous Dissolved Organic Matter in Near-Shore Marine Ecosystems. Mar. Chem. 2010, 121, 112–122. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Ohno, T. Fluorescence Inner-Filtering Correction for Determining the Humification Index of Dissolved Organic Matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef]
- Korak, J.A.; Dotson, A.D.; Summers, R.S.; Rosario-Ortiz, F.L. Critical Analysis of Commonly Used Fluorescence Metrics to Characterize Dissolved Organic Matter. Water Res. 2014, 49, 327–338. [Google Scholar] [CrossRef]
- He, X.-S.; Xi, B.-D.; Wei, Z.-M.; Jiang, Y.-H.; Yang, Y.; An, D.; Cao, J.-L.; Liu, H.-L. Fluorescence Excitation–Emission Matrix Spectroscopy With Regional Integration Analysis for Characterizing Composition and Transformation of Dissolved Organic Matter in Landfill Leachates. J. Hazard. Mater. 2011, 190, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Rochelle-Newall, E.J.; Fisher, T.R. Production of Chromophoric Dissolved Organic Matter Fluorescence in Marine and Estuarine Environments: An Investigation into the Role of Phytoplankton. Mar. Chem. 2002, 77, 7–21. [Google Scholar] [CrossRef]
- Bilal, M.; Jaffrezic, A.; Dudal, Y.; Le Guillou, C.; Menasseri, S.; Walter, C. Discrimination of Farm Waste Contamination by Fluorescence Spectroscopy Coupled with Multivariate Analysis during a Biodegradation Study. J. Agric. Food Chem. 2010, 58, 3093–3100. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Nunes, L.M.; Liu, Y.-R.; Zhong, H.; Pan, K. Mechanisms of Algal Biomass Input Enhanced Microbial Hg Methylation in Lake Sediments. Environ. Int. 2019, 126, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Gong, Y.; Zeng, Z.; Chen, S.; Ye, J.; Wang, Z.; Dionysiou, D.D. Dissolved Organic Matter Promotes Photocatalytic Degradation of Refractory Organic Pollutants in Water by Forming Hydrogen Bonding with Photocatalyst. Water Res. 2023, 242, 120297. [Google Scholar] [CrossRef]
- Birdwell, J.E.; Engel, A.S. Characterization of Dissolved Organic Matter in Cave and Spring Waters Using UV–Vis Absorbance and Fluorescence Spectroscopy. Org. Geochem. 2010, 41, 270–280. [Google Scholar] [CrossRef]
- Retelletti Brogi, S.; Balestra, C.; Casotti, R.; Cossarini, G.; Galletti, Y.; Gonnelli, M.; Vestri, S.; Santinelli, C. Time Resolved Data Unveils the Complex DOM Dynamics in a Mediterranean River. Sci. Total Environ. 2020, 733, 139212. [Google Scholar] [CrossRef]
- Harjung, A.; Perujo, N.; Butturini, A.; Romaní, A.M.; Sabater, F. Responses of Microbial Activity in Hyporheic Pore Water to Biogeochemical Changes in a Drying Headwater Stream. Freshwater Biol. 2019, 64, 735–749. [Google Scholar] [CrossRef]
- Song, F.; Wu, F.; Guo, F.; Wang, H.; Feng, W.; Zhou, M.; Deng, Y.; Bai, Y.; Xing, B.; Giesy, J.P. Interactions Between Stepwise-Eluted Sub-Fractions of Fulvic Acids and Protons Revealed by Fluorescence Titration Combined With EEM-PARAFAC. Sci. Total Environ. 2017, 605–606, 58–65. [Google Scholar] [CrossRef]
- Logozzo, L.A.; Hosen, J.D.; McArthur, J.; Raymond, P.A. Distinct Drivers of Two Size Fractions of Operationally Dissolved Iron in a Temperate River. Limnol. Oceanogr. 2023, 68, 1185–1200. [Google Scholar] [CrossRef]
- Vines, M.; Terry, L.G. Evaluation of the Biodegradability of Fluorescent Dissolved Organic Matter Via Biological Filtration. AWWA Water Sci. 2020, 2, e1201. [Google Scholar] [CrossRef]
- Wünsch, U.J.; Murphy, K.R.; Stedmon, C.A. The One-Sample PARAFAC Approach Reveals Molecular Size Distributions of Fluorescent Components in Dissolved Organic Matter. Environ. Sci. Technol. 2017, 51, 11900–11908. [Google Scholar] [CrossRef] [PubMed]
- Stedmon, C.A.; Markager, S. Resolving the Variability in Dissolved Organic Matter Fluorescence in a Temperate Estuary and its Catchment Using PARAFAC Analysis. Limnol. Oceanogr. 2005, 50, 686–697. [Google Scholar] [CrossRef]
- Lambert, T.; Bouillon, S.; Darchambeau, F.; Morana, C.; Roland, F.A.E.; Descy, J.-P.; Borges, A.V. Effects of Human Land Use on the Terrestrial and Aquatic Sources of Fluvial Organic Matter in a Temperate River Basin (The Meuse River, Belgium). Biogeochemistry 2017, 136, 191–211. [Google Scholar] [CrossRef]
- Wheeler, K.I.; Levia, D.F.; Hudson, J.E. Tracking Senescence-Induced Patterns in Leaf Litter Leachate Using Parallel Factor Analysis (PARAFAC) Modeling and Self-Organizing Maps. J. Geophys. Res. Biogeosci. 2017, 122, 2233–2250. [Google Scholar] [CrossRef]
- Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.; Khan, S.J. Organic Matter Fluorescence in Municipal Water Recycling Schemes: Toward a Unified PARAFAC Model. Environ. Sci. Technol. 2011, 45, 2909–2916. [Google Scholar] [CrossRef]
- Retelletti Brogi, S.; Jung, J.Y.; Ha, S.-Y.; Hur, J. Seasonal Differences in Dissolved Organic Matter Properties and Sources in an Arctic Fjord: Implications for Future Conditions. Sci. Total Environ. 2019, 694, 133740. [Google Scholar] [CrossRef]
- Jaffé, R.; McKnight, D.; Maie, N.; Cory, R.; McDowell, W.H.; Campbell, J.L. Spatial and Temporal Variations in DOM Composition in Ecosystems: The Importance of Long-Term Monitoring of Optical Properties. J. Geophys. Res. Biogeosci. 2008, 113, G04032. [Google Scholar] [CrossRef]
- Lavonen, E.E.; Kothawala, D.N.; Tranvik, L.J.; Gonsior, M.; Schmitt-Kopplin, P.; Köhler, S.J. Tracking Changes in the Optical Properties and Molecular Composition of Dissolved Organic Matter During Drinking Water Production. Water Res. 2015, 85, 286–294. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.J.; Li, S. Source and Quality of Dissolved Organic Matter in Streams are Reflective to Land Use/Land Cover, Climate Seasonality and pCO2. Environ. Res. 2023, 216, 114608. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, S.; Wang, K.; Ruan, M.; Song, F.; Xu, M. Land Use Cover and Flow Condition Affect the Spatial Distribution Characteristics of Fluorescent Dissolved Organic Matter in the Yongding River. Water 2024, 16, 2391. https://doi.org/10.3390/w16172391
Gu S, Wang K, Ruan M, Song F, Xu M. Land Use Cover and Flow Condition Affect the Spatial Distribution Characteristics of Fluorescent Dissolved Organic Matter in the Yongding River. Water. 2024; 16(17):2391. https://doi.org/10.3390/w16172391
Chicago/Turabian StyleGu, Siyi, Kai Wang, Mingqi Ruan, Fanhao Song, and Meiling Xu. 2024. "Land Use Cover and Flow Condition Affect the Spatial Distribution Characteristics of Fluorescent Dissolved Organic Matter in the Yongding River" Water 16, no. 17: 2391. https://doi.org/10.3390/w16172391
APA StyleGu, S., Wang, K., Ruan, M., Song, F., & Xu, M. (2024). Land Use Cover and Flow Condition Affect the Spatial Distribution Characteristics of Fluorescent Dissolved Organic Matter in the Yongding River. Water, 16(17), 2391. https://doi.org/10.3390/w16172391