Evaluation of Water Contamination Caused by Cemeteries in Central Ecuador—A Warning for the Authorities
Abstract
:1. Introduction
- Unsuitable: the site contributes significantly to environmental contamination due to the geographic and environmental conditions of the cemetery. High probability of contamination in water and soil.
- Slightly suitable: the site has a considerable impact on environmental contamination of water and soil.
- Moderately suitable: the site has a moderate impact on environmental pollution. Medium probability of contamination in water and soil.
- Highly suitable: the site has a low impact on environmental pollution of water and soil.
- Fully suitable: the site minimizes or completely eliminates environmental contamination. Minimal likelihood of contamination in water and soil.
2. Materials and Methods
2.1. Calculation of the Representative Sample
- N is the population size
- z is the z-score
- e is the margin of error
- p is the standard deviation
2.2. Verification of Accessibility to a River
2.3. Water Sampling during Dry and Rainy Periods
2.4. Analysis of Physicochemical Parameters
2.5. Comparison of Results with International Regulations
2.6. Statistical Analysis
3. Results
3.1. Statistical Analysis of the Results
3.1.1. Analysis between Sampling Periods
3.1.2. Analysis between Sampling Sections
3.1.3. Analysis between Categories
3.2. Comparison of Results with EPA Regulations
4. Discussion
5. Conclusions
6. Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mordhorst, A.; Zimmermann, I.; Fleige, H.; Horn, R. Environmental risk of (heavy) metal release from urns into cemetery soils. Sci. Total Environ. 2022, 817, 152952. [Google Scholar] [CrossRef]
- Toscan, P.C.; Neckel, A.; Maculan, L.S.; Korcelski, C.; Oliveira, M.L.; Bodah, E.T.; Bodah, B.W.; Kujawa, H.A.; Gonçalves, A.C. Use of geospatial tools to predict the risk of contamination by SARS-CoV-2 in urban cemeteries. Geosci. Front. 2022, 13, 101310. [Google Scholar] [CrossRef]
- Nguyen, X.L.; Chou, T.Y.; Van Hoang, T.; Fang, Y.M.; Nguyen, Q.H. Research on Optimal Cemetery Location Selection using Approach of Fuzzy Set Theory and Analytic Hierarchy Process in Environment of Geographic Information System: A Case Study in Hung Ha District, Thai Binh province, Vietnam. Int. J. Res. Innov. Earth Sci. 2019, 6, 20–28. [Google Scholar]
- Richardson, P.; Tillewein, H.; Antonangelo, J.; Frederick, D. The Impact on Environmental Health from Cemetery Waste in Middle Tennessee. Int. J. Environ. Res. Public Health 2024, 21, 267. [Google Scholar] [CrossRef]
- Pawlett, M.; Girkin, N.T.; Deeks, L.; Evans, D.L.; Sakrabani, R.; Masters, P.; Garnett, K.; Márquez-Grant, N. The contribution of natural burials to soil ecosystem services: Review and emergent research questions. Appl. Soil Ecol. 2024, 194, 105200. [Google Scholar] [CrossRef]
- Nesheim, S.; Yu, Z.; Tuttle, S.; Klein, J.; Wen, T. Assessing impacts of cemeteries on water quality in an urban headwater watershed with mixed human-built infrastructure. Hydrol. Process. 2024, 38, e15128. [Google Scholar] [CrossRef]
- Cockle, D.L.; Bell, L.S. Human decomposition and the reliability of a ‘Universal’ model for post mortem interval estimations. Forensic Sci. Int. 2015, 253, 136.e1–136.e9. [Google Scholar] [CrossRef]
- Julca, G.M. Descomposición Cadavérica y Determinación del Intervalo Post-Mortem. Rev. Skopein 2016, 12, 55–63. [Google Scholar]
- Singh, B.; Minick, K.J.; Strickland, M.S.; Wickings, K.G.; Crippen, T.L.; Tarone, A.M.; Benbow, M.E.; Sufrin, N.; Tomberlin, J.K.; Pechal, J.L. Temporal and spatial impact of human cadaver decomposition on soil bacterial and arthropod community structure and function. Front. Microbiol. 2018, 8, 2616. [Google Scholar] [CrossRef]
- Ortigoza, C. Bioquímica en la Descomposición Cadavérica (Putrescina y Cadaverina); Academia: San Francisco, CA, USA, 2019. [Google Scholar]
- Zhou, W.; Han, G.; Liu, M.; Li, X. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ 2019, 2019, e7880. [Google Scholar] [CrossRef]
- Ioan, B.; Manea, C.; Hanganu, B.; Statescu, L.; Solovastru, L.G.; Manoilescu, I. The Chemistry Decomposition in Human Corpses. Chimie 2017, 68, 1450–1454. [Google Scholar] [CrossRef]
- Fancher, J.P.; Aitkenhead-Peterson, J.A.; Farris, T.; Mix, K.; Schwab, A.P.; Wescott, D.J.; Hamilton, M.D. An evaluation of soil chemistry in human cadaver decomposition islands: Potential for estimating postmortem interval (PMI). Forensic Sci. Int. 2017, 279, 130–139. [Google Scholar] [CrossRef]
- Balta, J.Y.; Blom, G.; Davidson, A.; Perrault, K.; Cryan, J.F.; O’Mahony, S.M.; Cassella, J.P. Developing a quantitative method to assess the decomposition of embalmed human cadavers. Forensic Chem. 2020, 18, 100235. [Google Scholar] [CrossRef]
- Junkins, E.N.; Carter, D.O. Relationships between Human Remains, Graves and the Depositional Environment. In Taphonomy of Human Remains: Forensic Analysis of the Dead and the Depositional Environment; Wiley: Hoboken, NJ, USA, 2017; pp. 143–154. [Google Scholar] [CrossRef]
- Zychowski, J.; Bryndal, T. Impact of cemeteries on groundwater contamination by bacteria and viruses—A review. J. Water Health 2015, 13, 285–301. [Google Scholar] [CrossRef]
- Kleywegt, S.; Payne, M.; Raby, M.; Filippi, D.; Ng, C.F.; Fletcher, T. The final discharge: Quantifying contaminants in embalming process effluents discharged to sewers in ontario, Canada. Environ. Pollut. 2019, 252, 1476–1482. [Google Scholar] [CrossRef]
- Neckel, A.; Junior, A.C.G.; Ribeiro, L.A.; Oliveira, C.; Silva, A.; Cardoso, G.T. Stricto Sensu Post-Graduation Program in Architecture and Urbanism. J. Eng. Res. Appl. 2016, 6, 30–35. Available online: www.ijera.com (accessed on 27 January 2024).
- Javan, G.T.; Finley, S.J.; Tuomisto, S.; Hall, A.; Benbow, M.E.; Mills, D.E. An interdisciplinary review of the thanatomicrobiome in human decomposition. Forensic Sci. Med. Pathol. 2019, 15, 75–83. [Google Scholar] [CrossRef]
- Petio, M.K. Reflections on urbanisation, land supply and the Ghanaian physical planning system towards sustaining cemetery land use in Greater Kumasi Metropolitan Area. Land Use Policy 2023, 125, 106476. [Google Scholar] [CrossRef]
- Miller, S.; Wherry, L.R.; Mazumder, B. Estimated Mortality Increases During The COVID-19 Pandemic By Socioeconomic Status, Race, And Ethnicity. Health Aff. 2021, 40, 1252–1260. [Google Scholar] [CrossRef]
- Neckel, A.; Korcelski, C.; Kujawa, H.A.; da Silva, I.S.; Prezoto, F.; Amorin, A.L.W.; Maculan, L.S.; Goncalves, A.C.; Bodah, E.T.; Bodah, B.W.; et al. Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 2021, 262, 128248. [Google Scholar] [CrossRef]
- Quinton, J.M.; Duinker, P.N.; Steenberg, J.W.N.; Charles, J.D. The living among the dead: Cemeteries as urban forests, now and in the future. Urban For. Urban Green. 2020, 48, 126564. [Google Scholar] [CrossRef]
- Neckel, A.; Costa, C.; Mario, D.N.; Sabadin, C.E.S.; Bodah, E.T. Environmental damage and public health threat caused by cemeteries: A proposal of ideal cemeteries for the growing urban sprawl. Urbe. Rev. Bras. Gest. Urbana 2017, 9, 216–230. [Google Scholar] [CrossRef]
- Kumar, M.; Das, N.; Goswami, R.; Sarma, K.P.; Bhattacharya, P.; Ramanathan, A.L. Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system. Chemosphere 2016, 164, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.S.; Georgin, J.; Campo, L.A.V.; Mayoral, M.A.; Goenaga, J.O.; Fruto, C.M.; Neckel, A.; Oliveira, M.L.; Ramos, C.G. The environmental pollution caused by cemeteries and cremations: A review. Chemosphere 2022, 307, 136025. [Google Scholar] [CrossRef]
- Rajan, R.; Robin, D.T.; Vandanarani, M. Biomedical waste management in Ayurveda hospitals—Current practices and future prospectives. J. Ayurveda Integr. Med. 2019, 10, 214–221. [Google Scholar] [CrossRef]
- Neckel, A.; Korcelski, C.; Silva, L.F.; Kujawa, H.A.; Bodah, B.W.; Figueiredo, A.M.R.; Maculan, L.S.; Gonçalves, A.C.; Bodah, E.T.; Moro, L.D. Metals in the soil of urban cemeteries in Carazinho (South Brazil) in view of the increase in deaths from COVID-19: Projects for cemeteries to mitigate environmental impacts. Environ. Dev. Sustain. 2022, 24, 10728–10751. [Google Scholar] [CrossRef]
- Fernandes, G. Necroleachate Analysis in Different Hydrogeological Means Occupied by Cemeteries; Universidad Federal de Santa Maria: Santa Maria, Brazil, 2022. [Google Scholar]
- Granzioli, R.; Silva, R. Princípios da compostagem animal como a garantia de alternativas seguras, naturais e ecológicas em enterros e funerais. Braz. J. Health Rev. 2023, 6, 10111–10127. [Google Scholar] [CrossRef]
- Evaldt, N. Investigation of Contamination by Necrochorume in a Rural Area in the Municipality of Três Cachoeiras-RS; Universidade Federal Do Pampa: Bagé, Brazil, 2023. [Google Scholar]
- Huo, L.; Liu, G.; Yang, X.; Ahmad, Z.; Zhong, H. Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures. Chemosphere 2020, 252, 126620. [Google Scholar] [CrossRef]
- Fiedler, S.; Dame, T.; Graw, M. Do cemeteries emit drugs? A case study from southern Germany. Environ. Sci. Pollut. Res. 2018, 25, 5393–5400. [Google Scholar] [CrossRef]
- de Azevedo, A.P.C.B.; Cardoso, T.A.D.O.; Cohen, S.C. Could Necroleachate Be the Cemetery’s Sewage? A Panorama from Brazilian Legislation. Int. J. Environ. Res. Public Health 2023, 20, 6898. [Google Scholar] [CrossRef]
- Baum, C.A.; Becegato, V.A.; Vilela, P.B.; Lavnitcki, L.; Becegato, V.R.; Paulino, A.T. Contamination of groundwater by necro-leachate and the influence of the intervening factors in cemeteries of the municipality of Lages—Brazil. Eng. Sanit. Ambient. 2022, 27, 683–692. [Google Scholar] [CrossRef]
- Taylor, L.S.; Gonzalez, A.; Essington, M.E.; Lenaghan, S.C.; Stewart, C.N.; Mundorff, A.Z.; Steadman, D.W.; DeBruyn, J.M. Soil elemental changes during human decomposition. PLoS ONE 2023, 18, e0287094. [Google Scholar] [CrossRef] [PubMed]
- Aharoni, I.; Siebner, H.; Yogev, U.; Dahan, O. Holistic approach for evaluation of landfill leachate pollution potential—From the waste to the aquifer. Sci. Total Environ. 2020, 741, 140367. [Google Scholar] [CrossRef] [PubMed]
- Crisanto-Perrazo, T.; Arcos-Yanez, E.; Sinde-Gonzalez, I.; Mayorga-Llerena, E.; Vizuete-Freire, D.; Toulkeridis, T. Land Use Evaluation of Cemeteries in Central Ecuador. In Recent Advances in Electrical Engineering, Electronics and Energy, Proceedings of the the XVI International Congress of Science and Technology (CIT 2020), Quito, Ecuador, 14–18 June 2021, Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2022; Volume 932, pp. 153–168. [Google Scholar] [CrossRef]
- Carrasco, M. Diseño del Nuevo Cementerio Municipal para el cantón San Pedro de Pelileo; UCE: Quito, Ecuador, 2020. [Google Scholar]
- Flores Gómez, G.; Crisanto-Perrazo, T.; Toulkeridis, T.; Fierro-Naranjo, G.; Guevara-García, P.; Mayorga-Llerena, E.; Vizuete-Freire, D.; Salazar, E.; Sinde-Gonzalez, I. Proposal of an Initial Environmental Management and Land Use for Critical Cemeteries in Central Ecuador. Sustainability 2022, 14, 1577. [Google Scholar] [CrossRef]
- Saaty, T. Decision making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Ponce-Arguello, M.; Abad-Sarango, V.; Crisanto-Perrazo, T.; Toulkeridis, T. Removal of METH through Tertiary or Advanced Treatment in a WWTP. Water 2022, 14, 1807. [Google Scholar] [CrossRef]
- Afangideh, C.; Udokpoh, U.U. Environmental impact assessment of groundwater pollution within cemetery surroundings. Indian J. Eng. 2022, 19, 100–115. [Google Scholar]
- Gollasch, S.; David, M. Ballast water sampling and sample analysis for compliance control. In Global Maritime Transport and Ballast Water Management: Issues and Solutions; Springer: Berlin/Heidelberg, Germany, 2015; pp. 171–223. [Google Scholar] [CrossRef]
- Moshoeshoe, M.N.; Obuseng, V. Simultaneous determination of nitrate, nitrite and phosphate in environmental samples by high performance liquid chromatography with UV detection. S. Afr. J. Chem. 2018, 71, 79–85. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Water Quality Standards Handbook Chapter 3—Water Quality Criteria. Office of Water. [Online]. Available online: https://www.epa.gov/sites/default/files/2014-10/documents/handbook-chapter3.pdf (accessed on 5 October 2023).
- Vasistha, P.; Ganguly, R. Water quality assessment of natural lakes and its importance: An overview. Mater. Today Proc. 2020, 32, 544–552. [Google Scholar] [CrossRef]
- Rojas, J.A.R. Calidad del Agua, 1st ed.; Escuela Colombiana de Ingeniería: Bogotá, Colombia, 2002; pp. 318–356. [Google Scholar]
- Rahimi, M.H.; Kalantari, N.; Sharifidoost, M.; Kazemi, M. Quality assessment of treated wastewater to be reused in agriculture case study. Glob. J. Environ. Sci. Manag. 2018, 4, 217–230. [Google Scholar] [CrossRef]
- Colt, J. Water quality requirements for reuse systems. Aquac. Eng. 2006, 34, 143–156. [Google Scholar] [CrossRef]
- Badamasi, H.; Yaro, M.N.; Ibrahim, A.; Bashir, I.A. Impacts of Phosphates on Water Quality and Aquatic Life. Chem. Res. J. 2019, 4, 124–133. [Google Scholar]
- Psaradakis, Z.; Vávra, M. Normality tests for dependent data: Large-sample and bootstrap approaches. Commun. Stat. Simul. Comput. 2020, 49, 283–304. [Google Scholar] [CrossRef]
- de Souza, R.R.; Toebe, M.; Mello, A.C.; Bittencourt, K.C. Sample size and Shapiro-Wilk test: An analysis for soybean grain yield. Eur. J. Agron. 2023, 142, 126666. [Google Scholar] [CrossRef]
- González-Estrada, E.; Cosmes, W. Shapiro–Wilk test for skew normal distributions based on data transformations. J. Stat. Comput. Simul. 2019, 89, 3258–3272. [Google Scholar] [CrossRef]
- Nordstokke, D. A New Nonparametric Levene Test for Equal variances. Psicológica 2010, 31, 401–430. [Google Scholar]
- Shear, B.R.; Nordstokke, D.W.; Zumbo, B.D. A Note on Using the Nonparametric Levene Test When Population Means Are Unequal. Pract. Assess. Res. Eval. 2019, 23, 13. [Google Scholar] [CrossRef]
- Yang, Y.; Mathew, T. The simultaneous assessment of normality and homoscedasticity in linear fixed effects models. J. Stat. Theory Pract. 2018, 12, 66–81. [Google Scholar] [CrossRef]
- Katsileros, A.; Antonetsis, N.; Mouzaidis, P.; Tani, E.; Bebeli, P.J.; Karagrigoriou, A. A comparison of tests for homoscedasticity using simulation and empirical data. Commun. Stat. Appl. Methods 2024, 31, 1–35. [Google Scholar] [CrossRef]
- Chan, B.K.C. Data Analysis Using R Programming. Adv. Exp. Med. Biol. 2018, 1082, 47–122. [Google Scholar] [CrossRef]
- Adeniran, A.; Olilima, J.; Akano, R. Analysis of Variance: The Fundamental Concepts and Application with R. Int. J. Math. Comput. Res. 2021, 9, 2408–2422. [Google Scholar] [CrossRef]
- Kaya, E.; Agca, M.; Adiguzel, F.; Cetin, M. Spatial data analysis with R programming for environment. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1521–1530. [Google Scholar] [CrossRef]
- Nwobi, F.; Akanno, F. Power comparison of ANOVA and Kruskal–Wallis tests when error assumptions are violated. Metod. Zv. 2021, 18, 53–71. [Google Scholar] [CrossRef]
Uses | Quality Criteria | Cemeteries | ||||||
---|---|---|---|---|---|---|---|---|
DO | pH | EC | PO4 | NO3 | BOD5 | COD | ||
Agricultural water | - | 6.5–8.4 [48] | <700 µS/cm [48] | 10 mg/L [49] | <30 mg/L [46] | 30 mg/L [49] | 120 mg/L [49] | Libertad de Chillogallo (LC) |
Calacalí (CL) | ||||||||
Nanegal (NA) | ||||||||
Amaguaña (AM) | ||||||||
Environmental water | >5 mg/L [50] | 6.5–8 | - | 0.1 mg/L [51] | 10 mg/L [50] | 10 mg/L | - | Chillogallo (CH) |
Colinas de Paz (CP) | ||||||||
Puembo (PM) | ||||||||
Jardines del Valle (JV) | ||||||||
Nono (CN) | ||||||||
Tumbaco (TB) |
Parameter | Mean | X2 | p-Value | |
---|---|---|---|---|
Dry Period | Rainy Period | |||
DO (mg/L) | 6.58 | 6.75 | 0.78 | 0.37 |
pH | 7.26 | 8.00 | 17.69 | 2.592 × 10−5 |
EC (µS/cm) | 711.83 | 295.88 | 14.13 | 0.0001 |
PO4 (mg/L) | 1.42 | 1.01 | 3.59 | 0.06 |
NO3 (mg/L) | 7.75 | 6.55 | 0.21 | 0.65 |
BOD5 (mg/L) | 6.84 | 4.90 | 0.42 | 0.52 |
COD (mg/L) | 31.91 | 24.29 | 3.36 | 0.07 |
Parameter | Mean | X2 | p-Value | ||
---|---|---|---|---|---|
Upstream (U) | Parallel (P) | Downstream (D) | |||
DO (mg/L) | 6.60 | 6.7 | 6.43 | 0.46 | 0.79 |
pH | 7.11 | 7.38 | 7.31 | 1.65 | 0.44 |
EC (µS/cm) | 683.68 | 634.82 | 828.67 | 1.21 | 0.55 |
PO4 (mg/L) | 0.97 | 1.56 | 1.76 | 3.35 | 0.19 |
NO3 (mg/L) | 9.85 | 6.88 | 6.38 | 0.09 | 0.96 |
BOD5 (mg/L) | 4.80 | 5.52 | 10.57 | 0.19 | 0.91 |
COD (mg/L) | 28.48 | 28.79 | 39.19 | 0.18 | 0.90 |
Parameter | Mean | X2 | p-Value | ||||
---|---|---|---|---|---|---|---|
Not Suitable | Slightly Adequate | Moderately Suitable | Very Suitable | Completely Adequate | |||
DO (mg/L) | 6.43 | 7.08 | 6.36 | 6.30 | 6.21 | 16.41 | 0.002 |
pH | 7.47 | 7.16 | 7.08 | 7.71 | 7.01 | 8.83 | 0.07 |
EC (µS/cm) | 524.35 | 903.11 | 847.70 | 991.50 | 242.23 | 13.58 | 0.009 |
PO4 (mg/L) | 1.85 | 1.45 | 1.39 | 0.90 | 0.47 | 10.54 | 0.03 |
NO3 (mg/L) | 7.03 | 9.39 | 6.27 | 12.3 | <5 | 7.92 | 0.09 |
BOD5 (mg/L) | 14.80 | 3.18 | 6.02 | <0.1 | <0.1 | 13.98 | 0.007 |
COD (mg/L) | 46.99 | 36.99 | 17.3 | 16 | 11.27 | 9.31 | 0.053 |
Category | Cemetery | Section | River | Field Parameters | Laboratory Parameters | |||||
---|---|---|---|---|---|---|---|---|---|---|
DO (mg/L) | pH | EC (µS/cm) | PO4 (mg/L) | NO3 (mg/L) | BOD5 (mg/L) | COD (mg/L) | ||||
Not suitable | CH | U | Grande | 5.2 | 7.75 | 794 | 1.04 * | 8.8 | 3.5 | 20 |
P | 4.8 * | 7.36 | 426 | 2.94 * | 9.4 | 21.6 * | 38 | |||
D | 5.1 | 7.68 | 566 | 3.36 * | 9.8 | 20.8 * | 48 | |||
LC | U | Rundobalin | 6.4 | 6.64 | 171.02 | 0.83 | <5 | 17.1 | 79 | |
P | 7.4 | 7.54 | 494 | 3.22 | 9.3 | 20.1 | 56 | |||
D | 5.7 | 7.24 | 310 | 3.65 | 6.4 | 49.8 * | 147 * | |||
NA | U | Alambi | 7.7 | 7.59 | 152.1 | 0.25 | <5 | <0.1 | 12 | |
P | 7.6 | 7.79 | 981 * | 0.76 | <5 | <0.1 | 13 | |||
D | 7.5 | 7.66 | 825 * | 0.6 | <5 | <0.1 | <10 | |||
Slightly adequate | JV | U | Pita | 7.8 | 5.87 * | 1658 | 0.55 * | <5 | 0.4 | 22 |
P | 7.4 | 6.35 * | 1321 | 0.47 * | 6 | 1.5 | 22 | |||
D | 7.5 | 6.11 * | 1477 | 0.59 * | 5.4 | 0.8 | <10 | |||
CP | U | Unnamed | 7.0 | 7.59 | 293 | 2.26 * | 5.4 | 9 | 54 | |
P | 7.1 | 7.61 | 307 | 1.60 * | <5 | 2.6 | 58 | |||
D | 6.3 | 7.53 | 1128 | 1.83 * | <5 | 12.1 * | 61 | |||
AM | U | San Pedro | 6.8 | 7.61 | 655 | 1.41 | 33.9 * | 2 | 29 | |
P | 6.9 | 7.9 | 643 | 2.31 | 11.2 | <0.1 | 38 | |||
D | 6.7 | 7.87 | 646 | 1.99 | 7.9 | <0.1 | 39 | |||
Moderately suitable | TB | U | Quebrada | 6.1 | 6.08 * | 1512 | 1.57 * | 6.2 | 13 * | 36 |
P | 6.3 | 6.57 | 908 | 1.62 * | 7.1 | 5.2 | 20 | |||
D | 5.4 | 6.17 | 1434 | 1.85 * | 7.9 | 9 | 14 | |||
PM | U | Guambi | 7.1 | 7.46 | 198.7 | 0.79 * | <5 | 2.7 | <10 | |
P | 6.3 | 7.93 | 201.5 | 0.9 * | 6.2 | 3.8 | 14 | |||
D | 7.0 | 8.27 * | 832 | 1.6 * | 5.3 | 2.4 | <10 | |||
Very suitable | CL | U | Unnamed | 5.8 | 7.52 | 1108 * | 0.35 | 19.7 | <0.1 | 13 |
P | 6.8 | 7.9 | 875 * | 1.44 | <5 | <0.1 | 19 | |||
Completely adequate | CN | U | Charguayacu | 6.1 | 6.95 | 295 | 0.63 * | <5 | <0.1 | <10 |
P | 6.2 | 6.85 | 191.7 | 0.36 * | <5 | <0.1 | <10 | |||
D | 6.3 | 7.23 | 240 | 0.41 * | <5 | <0.1 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce Arguello, M.; Crisanto-Perrazo, T.; Vizuete, D.; Ocaña Garzón, E.; Guevara Garcia, P.; Aldás, M.B.; Jaramillo, S.; Toulkeridis, T. Evaluation of Water Contamination Caused by Cemeteries in Central Ecuador—A Warning for the Authorities. Water 2024, 16, 2310. https://doi.org/10.3390/w16162310
Ponce Arguello M, Crisanto-Perrazo T, Vizuete D, Ocaña Garzón E, Guevara Garcia P, Aldás MB, Jaramillo S, Toulkeridis T. Evaluation of Water Contamination Caused by Cemeteries in Central Ecuador—A Warning for the Authorities. Water. 2024; 16(16):2310. https://doi.org/10.3390/w16162310
Chicago/Turabian StylePonce Arguello, Mariuxi, Tania Crisanto-Perrazo, Diego Vizuete, Edwin Ocaña Garzón, Paulina Guevara Garcia, María Belén Aldás, Stephany Jaramillo, and Theofilos Toulkeridis. 2024. "Evaluation of Water Contamination Caused by Cemeteries in Central Ecuador—A Warning for the Authorities" Water 16, no. 16: 2310. https://doi.org/10.3390/w16162310
APA StylePonce Arguello, M., Crisanto-Perrazo, T., Vizuete, D., Ocaña Garzón, E., Guevara Garcia, P., Aldás, M. B., Jaramillo, S., & Toulkeridis, T. (2024). Evaluation of Water Contamination Caused by Cemeteries in Central Ecuador—A Warning for the Authorities. Water, 16(16), 2310. https://doi.org/10.3390/w16162310