Prediction of Physico-Chemical Parameters of Surface Waters Using Autoregressive Moving Average Models: A Case Study of Kis-Balaton Water Protection System, Hungary
Abstract
:1. Introduction
- Water quality observation in the wetland region of Kis-Balaton that holds international significance from a waterfowl habitat preservation point of view;
- The development and comparison of a multitude of autoregressive models for water quality estimation in the region.
2. Materials and Methods
2.1. Studied Area
2.2. Introduction of the Sampling Sites and the Continuous Online Water Quality Monitoring Systems
- Hídvégi Pond, with a surface area of 18 km2, has a mean depth of 1.1 m.
- Fenéki Pond is a typical wetland with a surface area of 16 km2.
- Parameters: temperature (°C), pH, redox potential (mV), electrical conductivity (EC), dissolved oxygen (DO), and turbidity (NTU).
- A routine maintenance and cleaning process was performed on the sensors every two weeks, while the calibration was done every two months. The “smart” sensors store calibration data and measurement history within the internal memory sensors. Signal drift was not observed in the data set.
- Measurement frequency: 15 min.
- Energy supply: batteries and solar panel.
- The pH range is 7.5–8.5;
- The electrical conductivity range is <700 µS/cm;
- The dissolved oxygen range is 7.5–10.5 mg/L and the oxygen saturation range is 70–120%;
- The turbidity value does not have a limit value (based on regular measurements carried out by the Western Transdanubia Water Directorate (Hungary), and has an average value of < 45 NTU).
2.3. Autoregressive Time Series Modelling Techniques
- Model structure selection.
- Model parameter estimation.
- Statistical model validation.
3. Results
3.1. Preprocessing of Data Measured by a Continuous Water Quality Monitoring System
3.2. General Scheme for the Development of ARIMA Models: Example of Dissolved Oxygen and Saturation
- The resulting model should have minimal MSE with regard to the validation data;
- The model should not be biased and, as such, have a minimal value of the Akaike information criterion;
- The residuals of the model prediction to the training data should pass the Ljung–Box test to ensure that the trend of the time series has been captured.
3.3. Time Series Regression Models for Other Measured Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanham, D.; Hoekstra, A.Y.; Wada, Y.; Bouraoui, F.; De Roo, A.; Mekonnen, M.M.; Van De Bund, W.; Batelaan, O.; Pavelic, P.; Bastiaanssen, W.G.; et al. Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4. 2 “Level of water stress”. Sci. Total Environ. 2018, 613, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Garaba, S.P.; Zielinski, O. An assessment of water quality monitoring tools in an estuarine system. Remote Sens. Appl. Soc. Environ. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Ejigu, M.T. Overview of water quality modeling. Cogent Eng. 2021, 8, 1891711. [Google Scholar] [CrossRef]
- Liu, J.; Wang, P.; Jiang, D.; Nan, J.; Zhu, W. An integrated data-driven framework for surface water quality anomaly detection and early warning. J. Clean. Prod. 2020, 251, 119145. [Google Scholar] [CrossRef]
- Jaddi, N.S.; Abdullah, S. A cooperative-competitive master-slave global-best harmony search for ANN optimization and water-quality prediction. Appl. Soft Comput. 2017, 51, 209–224. [Google Scholar] [CrossRef]
- Liu, S.; Tai, H.; Ding, Q.; Li, D.; Xu, L.; Wei, Y. A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Math. Comput. Model. 2013, 58, 458–465. [Google Scholar] [CrossRef]
- Ghaemi, E.; Tabesh, M.; Nazif, S. Improving the ARIMA Model Prediction for Water Quality Parameters of Urban Water Distribution Networks (Case Study: CANARY Dataset). Int. J. Environ. Res. 2022, 16, 98. [Google Scholar] [CrossRef]
- Deng, W.; Wang, G.; Zhang, X.; Guo, Y.; Li, G. Water quality prediction based on a novel hybrid model of ARIMA and RBF neural network. In Proceedings of the 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, Shenzhen & Hong Kong, China, 27–29 November 2014; IEEE: New York, NY, USA, 2014; pp. 33–40. [Google Scholar]
- Bi, J.; Lin, Y.; Dong, Q.; Yuan, H.; Zhou, M. Large-scale water quality prediction with integrated deep neural network. Inf. Sci. 2021, 571, 191–205. [Google Scholar] [CrossRef]
- Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A review of the artificial neural network models for water quality prediction. Appl. Sci. 2020, 10, 5776. [Google Scholar] [CrossRef]
- Kaur, J.; Parmar, K.S.; Singh, S. Autoregressive models in environmental forecasting time series: A theoretical and application review. Environ. Sci. Pollut. Res. 2023, 30, 19617–19641. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, W.; Liao, Z. Statistical comparison between SARIMA and ANN’s performance for surface water quality time series prediction. Environ. Sci. Pollut. Res. 2021, 28, 33531–33544. [Google Scholar] [CrossRef]
- Zhou, S.; Song, C.; Zhang, J.; Chang, W.; Hou, W.; Yang, L. A hybrid prediction framework for water quality with integrated W-ARIMA-GRU and LightGBM methods. Water 2022, 14, 1322. [Google Scholar] [CrossRef]
- Xu, R.; Xiong, Q.; Yi, H.; Wu, C.; Ye, J. Research on water quality prediction based on SARIMA-LSTM: A case study of Beilun Estuary. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019; IEEE: New York, NY, USA, 2019; pp. 2183–2188. [Google Scholar]
- Faruk, D.Ö. A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 2010, 23, 586–594. [Google Scholar] [CrossRef]
- Lola, M.S.; Zainuddin, N.H.; Abdullah, M.; Ponniah, V.; Ramlee, M.; Zakariya, R.; Idris, M.; Khalili, I. Improving the performance of ann-arima models for predicting water quality in the offshore area of kuala terengganu, terengganu, malaysia. J. Sustain. Sci. Manag. 2018, 13, 27–37. [Google Scholar]
- Qie, J.; Yuan, J.; Wang, G.; Zhang, X.; Zhou, B.; Deng, W. Water Quality Prediction Based on an Improved ARIMA-RBF Model Facilitated by Remote Sensing Applications. In Proceedings of the Rough Sets and Knowledge Technology: 10th International Conference, RSKT 2015, Held as Part of the International Joint Conference on Rough Sets, IJCRS 2015, Tianjin, China, 20–23 November 2015; Proceedings 10. Springer: Berlin/Heidelberg, Germany, 2015; pp. 470–481. [Google Scholar]
- Dastorani, M.; Mirzavand, M.; Dastorani, M.T.; Khosravi, H. Simulation and prediction of surface water quality using stochastic models. Sustain. Water Resour. Manag. 2020, 6, 74. [Google Scholar] [CrossRef]
- Parmar, K.S.; Bhardwaj, R. Water quality management using statistical analysis and time-series prediction model. Appl. Water Sci. 2014, 4, 425–434. [Google Scholar] [CrossRef]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Psilovikos, A.; Al-Amri, N. Time series analysis of remotely sensed water quality parameters in arid environments, Saudi Arabia. Environ. Dev. Sustain. 2021, 23, 1392–1410. [Google Scholar] [CrossRef]
- Katimon, A.; Shahid, S.; Mohsenipour, M. Modeling water quality and hydrological variables using ARIMA: A case study of Johor River, Malaysia. Sustain. Water Resour. Manag. 2018, 4, 991–998. [Google Scholar] [CrossRef]
- Stroud, D.A.; Davidson, N.C. Fifty years of criteria development for selecting wetlands of international importance. Mar. Freshw. Res. 2021, 73, 1134–1148. [Google Scholar] [CrossRef]
- Farkas, M.; Kaszab, E.; Radó, J.; Háhn, J.; Tóth, G.; Harkai, P.; Ferincz, Á.; Lovász, Z.; Táncsics, A.; Vörös, L.; et al. Planktonic and benthic bacterial communities of the largest central European shallow lake, Lake Balaton and its main inflow Zala River. Curr. Microbiol. 2020, 77, 4016–4028. [Google Scholar] [CrossRef] [PubMed]
- Kovács, J.; Korponai, J.; Kovács, I.S.; Hatvani, I.G. Introducing sampling frequency estimation using variograms in water research with the example of nutrient loads in the Kis-Balaton Water Protection System (W Hungary). Ecol. Eng. 2012, 42, 237–243. [Google Scholar] [CrossRef]
- Rédey, Á.; Husvéth, F.; Kovács, Z.; Utasi, A.; Domokos, E. Relation Between Global Environmental Issues and Surface Water Quality. Egypt. J. Phycol. 2010, 11, 121–129. [Google Scholar] [CrossRef]
- Rizk, R.; Juzsakova, T.; Cretescu, I.; Rawash, M.; Sebestyén, V.; Le Phuoc, C.; Kovács, Z.; Domokos, E.; Rédey, Á.; Shafik, H. Environmental assessment of physical-chemical features of Lake Nasser, Egypt. Environ. Sci. Pollut. Res. 2020, 27, 20136–20148. [Google Scholar] [CrossRef]
- Honti, M.; Gao, C.; Istvánovics, V.; Clement, A. Lessons learnt from the long-term management of a large (re) constructed wetland, the Kis-Balaton protection system (Hungary). Water 2020, 12, 659. [Google Scholar] [CrossRef]
- Rostási, Á.; Rácz, K.; Fodor, M.A.; Topa, B.; Molnár, Z.; Weiszburg, T.G.; Pósfai, M. Pathways of carbonate sediment accumulation in a large, shallow lake. Front. Earth Sci. 2022, 10, 1067105. [Google Scholar] [CrossRef]
- No, G.D. 10/2010. (VIII. 18.) of Ministry of Rural Development (VM) on Defining the Rules for Establishment and Use of Water Pollution Limits of Surface Water. Available online: https://net.jogtar.hu/jogszabaly?docid=A1000010.VM&searchUrl=/gyorskereso?keyword%3D10/2010 (accessed on 8 August 2024).
- Shumway, R.H.; Stoffer, D.S.; Shumway, R.H.; Stoffer, D.S. ARIMA models. In Time Series Analysis and Its Applications: With R Examples; Springer: Cham, Switzerland, 2017; pp. 75–163. [Google Scholar]
- Stellwagen, E.; Tashman, L. ARIMA: The Models of Box and Jenkins. Foresight Int. J. Appl. Forecast. 2013, 30, 28–33. [Google Scholar]
- Cheung, Y.W.; Lai, K.S. Lag order and critical values of the augmented Dickey–Fuller test. J. Bus. Econ. Stat. 1995, 13, 277–280. [Google Scholar]
- KosicKA, E.; KozłowsKi, E.; MAzurKiEwicz, D. The use of stationary tests for analysis of monitored residual processes. Eksploat. Niezawodn. 2015, 17, 604–609. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Ishiguro, M.; Kitagawa, G. Akaike Information Criterion Statistics; D. Reidel: Dordrecht, The Netherlands, 1986; Volume 81, p. 26853. [Google Scholar]
- Hassani, H.; Yeganegi, M.R. Selecting optimal lag order in Ljung–Box test. Phys. A Stat. Mech. Its Appl. 2020, 541, 123700. [Google Scholar] [CrossRef]
- Cerqueira, V.; Torgo, L.; Mozetič, I. Evaluating time series forecasting models: An empirical study on performance estimation methods. Mach. Learn. 2020, 109, 1997–2028. [Google Scholar] [CrossRef]
- Singh, K.; Upadhyaya, S. Outlier detection: Applications and techniques. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 307. [Google Scholar]
Water Quality Parameter | Model Structure | AICc | Ljung–Box Q Test (0.05 Significance Level) |
---|---|---|---|
Dissolved oxygen saturation | ARMA (9,3) | 3718 | Approved |
pH | ARMA (9,8) | −774 | Approved |
Redox potential | ARIMA (6,1,7) | 4087 | Approved |
Electrical conductivity | ARMA (5,5) | 5733 | Approved |
Turbidity | ARMA (5,7) | 6940 | Approved |
Water Quality Parameter | Mean Residual | Standard Deviation |
---|---|---|
Dissolved oxygen saturation [%] | 2.3 | 17.6 |
pH [-] | −0.17 | 0.09 |
Redox potential [mV] | −10.8 | 8.2 |
Electrical conductivity [μScm−1] | 15.3 | 20.8 |
Turbidity [NTU] | 12.8 | 56.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, Z.; Tarcsay, B.L.; Tóth, P.; Juhász, C.J.; Németh, S.; Shahrokhi, A. Prediction of Physico-Chemical Parameters of Surface Waters Using Autoregressive Moving Average Models: A Case Study of Kis-Balaton Water Protection System, Hungary. Water 2024, 16, 2314. https://doi.org/10.3390/w16162314
Kovács Z, Tarcsay BL, Tóth P, Juhász CJ, Németh S, Shahrokhi A. Prediction of Physico-Chemical Parameters of Surface Waters Using Autoregressive Moving Average Models: A Case Study of Kis-Balaton Water Protection System, Hungary. Water. 2024; 16(16):2314. https://doi.org/10.3390/w16162314
Chicago/Turabian StyleKovács, Zsófia, Bálint Levente Tarcsay, Piroska Tóth, Csenge Judit Juhász, Sándor Németh, and Amin Shahrokhi. 2024. "Prediction of Physico-Chemical Parameters of Surface Waters Using Autoregressive Moving Average Models: A Case Study of Kis-Balaton Water Protection System, Hungary" Water 16, no. 16: 2314. https://doi.org/10.3390/w16162314
APA StyleKovács, Z., Tarcsay, B. L., Tóth, P., Juhász, C. J., Németh, S., & Shahrokhi, A. (2024). Prediction of Physico-Chemical Parameters of Surface Waters Using Autoregressive Moving Average Models: A Case Study of Kis-Balaton Water Protection System, Hungary. Water, 16(16), 2314. https://doi.org/10.3390/w16162314