Disinfection Efficacy and Eventual Harmful Effect of Chemical Peracetic Acid (PAA) and Probiotic Phaeobacter inhibens Tested on Isochrisys galbana (var. T-ISO) Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory PAA Trial
2.2. Probiotic Trial on a Laboratory Scale
2.3. Photobioreactor Trial
2.4. Statistical Analysis
- N0 = measured number of cells/mL at time T0.
- Nn = measured number of cells/mL at time Tn.
- T0 = time of the first measurement after the beginning of the test.
- Tn = time of the nth measurement after the beginning of the test.
3. Results
3.1. Peracetic Acid Trial
3.2. P. inhibens Trial
3.3. Photobioreactor Trial
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2024, FAO: Rome, Italy, 2024. [CrossRef]
- Zannella, C.; Mosca, F.; Mariani, F.; Franci, G.; Folliero, V.; Galdiero, M.; Tiscar, P.G.; Galdiero, M. Microbial Diseases of Bivalve Mollusks: Infections, Immunology and Antimicrobial Defense. Mar. Drugs. 2017, 15, 182. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.; Christley, R.; Lupo, C.; Moore, H.; Service, M.; Campbell, K. Preventing and Mitigating Farmed Bivalve Disease: A Northern Ireland Case Study. Aquac. Int. 2020, 28, 2397–2417. [Google Scholar] [CrossRef]
- Baldry, M.G.C. The Bactericidal, Fungicidal and Sporicidal Properties of Hydrogen Peroxide and Peracetic Acid. J. Appl. Bacteriol. 1983, 54, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Kitis, M. Disinfection of Wastewater with Peracetic Acid: A Review. Environ. Int. 2004, 30, 47–55. [Google Scholar] [CrossRef]
- Pedersen, L.F.; Pedersen, P.B.; Nielsen, J.L.; Nielsen, P.H. Peracetic Acid Degradation and Effects on Nitrification in Recirculating Aquaculture Systems. Aquaculture 2009, 296, 246–254. [Google Scholar] [CrossRef]
- Liu, D.; Straus, D.L.; Pedersen, L.F.; Meinelt, T. Pulse versus Continuous Peracetic Acid Applications: Effects on Rainbow Trout Performance, Biofilm Formation and Water Quality. Aquac. Eng. 2017, 77, 72–79. [Google Scholar] [CrossRef]
- Blancheton, J.P.; Attramadal, K.J.K.; Michaud, L.; d’Orbcastel, E.R.; Vadstein, O. Insight into Bacterial Population in Aquaculture Systems and Its Implication. Aquac. Eng. 2013, 53, 30–39. [Google Scholar] [CrossRef]
- Vine, N.G.; Leukes, W.D.; Kaiser, H. Probiotics in Marine Larviculture. FEMS Microbiol. Rev. 2006, 30, 404–427. [Google Scholar] [CrossRef]
- Tinh, N.T.N.; Dierckens, K.; Sorgeloos, P.; Bossier, P. A Review of the Functionality of Probiotics in the Larviculture Food Chain. Mar. Biotechnol. 2008, 10, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.B.; Li, J.R.; Lin, J. Probiotics in Aquaculture: Challenges and Outlook. Aquaculture 2008, 281, 1–4. [Google Scholar] [CrossRef]
- Ramasamy, P.; Velayutham, R.; Samy, R.; Rajinikanth, T.; Ramasamy, P.; Ravi, V. Efficacy of Probiotics, Growth Promotors and Disinfectants in Shrimp Grow out Farms. World J. Fish. Mar. Sci. 2010, 2, 208–215. [Google Scholar]
- Moriarty, D.J.W. The Role of Microorganisms in Aquaculture Ponds. Aquaculture 1997, 151, 333–349. [Google Scholar] [CrossRef]
- Fukami, K.; Nishijima, T.; Ishida, Y. Stimulative and Inhibitory Effects of Bacteria on the Growth of Microalgae. Hydrobiology 1997, 358, 185–191. [Google Scholar] [CrossRef]
- Thole, S.; Kalhoefer, D.; Voget, S.; Berger, M.; Engelhardt, T.; Liesegang, H.; Wollherr, A.; Kjelleberg, S.; Daniel, R.; Simon, M.; et al. Phaeobacter Gallaeciensis Genomes from Globally Opposite Locations Reveal High Similarity of Adaptation to Surface Life. ISME J. 2012, 6, 2229–2244. [Google Scholar] [CrossRef] [PubMed]
- Sonnenschein, E.C.; Jimenez, G.; Castex, M.; Gram, L. The Roseobacter-Group Bacterium Phaeobacter as a Safe Probiotic Solution for Aquaculture. Environ. Microbiol. 2021, 87, e02581-20. [Google Scholar] [CrossRef] [PubMed]
- Brinkhoff, T.; Bach, G.; Heidorn, T.; Liang, L.; Schlingloff, A.; Simon, M. Antibiotic Production by a Roseobacter Clade-Affiliated Species from the German Wadden Sea and Its Antagonistic Effects on Indigenous Isolates. Appl. Environ. Microbiol. 2004, 70, 2560–2565. [Google Scholar] [CrossRef] [PubMed]
- D’Alvise, P.W.; Lillebø, S.; Prol-Garcia, M.J.; Wergeland, H.I.; Nielsen, K.F.; Bergh, Ø.; Gram, L. Phaeobacter Gallaeciensis Reduces Vibrio Anguillarum in Cultures of Microalgae and Rotifers, and Prevents Vibriosis in Cod Larvae. PLoS ONE 2012, 7, e43996. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ponte, C.; Cilia, V.; Lambertl, C.; Nicolasl, J.L. Roseobacter Gallaeciensis Sp. Nov., a New Marine Bacterium Isolated from Rearings and Collectors of the Scallop Pecten Maximus. Int. J. Syst. Evol. Microbiol. 1998, 48, 537–542. [Google Scholar] [CrossRef]
- Helm, M.M.; Bourne, N.; Lovatelli, A. Hatchery Culture of Bivalves. A Practical Manual; FAO: Rome, Italy, 2004; Volume 471. [Google Scholar]
- Le Roux, F.; Blokesch, M. Eco-Evolutionary Dynamics Linked to Horizontal Gene Transfer in Vibrios. Annu. Rev. Microbiol. 2018, 72, 89–110. [Google Scholar] [CrossRef]
- Liu, D.; Behrens, S.; Pedersen, L.F.; Straus, D.L.; Meinelt, T. Peracetic Acid Is a Suitable Disinfectant for Recirculating Fish-Microalgae Integrated Multi-Trophic Aquaculture Systems. Aquac. Rep. 2016, 4, 136–142. [Google Scholar] [CrossRef]
- Muller-Fuega, A. Microalgae for Aquaculture: The Current Global Situation and Future Trends. Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Marchetti, J.; Bougaran, G.; Le Dean, L.; Mégrier, C.; Lukomska, E.; Kaas, R.; Olivo, E.; Baron, R.; Robert, R.; Cadoret, J.P. Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries. Aquaculture 2012, 326, 106–115. [Google Scholar] [CrossRef]
- Baldry, M.G.C.; French, M.S.; Slater, D. The Activity of Peracetic Acid on Sewage Indicator Bacteria and Viruses. Water Sci. Technol. 1991, 24, 353–357. [Google Scholar] [CrossRef]
- Liberti, L.; Notarnicola, M. Advanced Treatment and Disinfection for Municipal Wastewater Reuse in Agriculture. Water Sci. Technol. 1999, 40, 235–245. [Google Scholar] [CrossRef]
- Pedersen, L.F.; Lazado, C.C. Decay of Peracetic Acid in Seawater and Implications for Its Chemotherapeutic Potential in Aquaculture. Aquac. Environ. Interact. 2020, 12, 153–165. [Google Scholar] [CrossRef]
- Ippoliti, D.; Gómez, C.; del Mar Morales-Amaral, M.; Pistocchi, R.; Fernández-Sevilla, J.M.; Acién, F.G. Modeling of Photosynthesis and Respiration Rate for Isochrysis Galbana (T-Iso) and Its Influence on the Production of This Strain. Bioresour. Technol. 2016, 203, 71–79. [Google Scholar] [CrossRef]
- Oyarzabal, O.A. Reduction of Campylobacter Spp. by Commercial Antimicrobials Applied during the Processing of Broiler Chickens: A Review from the United States Perspective. J. Food Prot. 2005, 68, 1752–1760. [Google Scholar] [CrossRef]
- Sauvage, J.; Wikfors, G.H.; Dixon, M.S.; Kapareiko, D.; Sabbe, K.; Li, X.; Joyce, A. Bacterial Exudates as Growth-Promoting Agents for the Cultivation of Commercially Relevant Marine Microalgal Strains. J. World. Aquac. Soc. 2022, 53, 1101–1119. [Google Scholar] [CrossRef]
- Meseck, S.L.; Smith, B.C.; Wikfors, G.H.; Alix, J.H.; Kapareiko, D. Nutrient Interactions between Phytoplankton and Bacterioplankton under Different Carbon Dioxide Regimes. J. Appl. Phycol. 2007, 19, 229–237. [Google Scholar] [CrossRef]
- Azam, F.; Malfatti, F. Microbial Structuring of Marine Ecosystems. Nat. Rev. Microbiol. 2007, 5, 782–791. [Google Scholar] [CrossRef]
- Rao, D.; Webb, J.S.; Kjelleberg, S. Microbial Colonization and Competition on the Marine Alga Ulva Australis. Appl. Environ. Microbiol. 2006, 72, 5547–5555. [Google Scholar] [CrossRef]
- Wilson, M.Z.; Wang, R.; Gitai, Z.; Seyedsayamdost, M.R. Mode of Action and Resistance Studies Unveil New Roles for Tropodithietic Acid as an Anticancer Agent γ-Glutamyl Cycle as a Proton Sink. Proc. Natl. Acad. Sci. USA 2016, 113, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Porsby, C.H.; Webber, M.A.; Nielsen, K.F.; Piddock, L.J.V.; Gram, L. Resistance and Tolerance to Tropodithietic Acid, an Antimicrobial in Aquaculture, Is Hard to Select. Antimicrob. Agents. Chemother. 2011, 55, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.B.; Grotkjær, T.; D’Alvise, P.W.; Yin, G.; Zhang, F.; Bunk, B.; Spröer, C.; Bentzon-Tilia, M.; Gram, L. Vibrio Anguillarum Is Genetically and Phenotypically Unaffected by Long-Term Continuous Exposure to the Antibacterial Compound Tropodithietic Acid. Appl. Environ. Microbiol. 2016, 82, 4802–4810. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Dao, C.; Karim, M.; Gomez-Chiarri, M.; Rowley, D.; Nelson, D.R. Contributions of Tropodithietic Acid and Biofilm Formation to the Probiotic Activity of Phaeobacter Inhibens. BMC Microbiol. 2016, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Neumann, A.; Schulz, S.; Simon, M.; Brinkhoff, T. Tropodithietic Acid Production in Phaeobacter Gallaeciensis Is Regulated by N-Acyl Homoserine Lactone-Mediated Quorum Sensing. J. Bacteriol. 2011, 193, 6576–6585. [Google Scholar] [CrossRef] [PubMed]
- Dubert, J.; Barja, J.L.; Romalde, J.L. New Insights into Pathogenic Vibrios Affecting Bivalves in Hatcheries: Present and Future Prospects. Front. Microbiol. 2017, 8, 762. [Google Scholar] [CrossRef]
- Kokou, F.; Makridis, P.; Kentouri, M.; Divanach, P. Antibacterial activity in microalgae cultures. Aquac. Res. 2012, 43, 1520–1527. [Google Scholar] [CrossRef]
- Molina-Cárdenas, C.A.; Sánchez-Saavedra, M.D.P.; Lizárraga-Partida, M.L. Inhibition of pathogenic Vibrio by the microalgae Isochrysis galbana. J. Appl. Phycol. 2014, 26, 2347–2355. [Google Scholar] [CrossRef]
- Molina-Cárdenas, C.A.; Licea-Navarro, A.F.; del Pilar Sánchez-Saavedra, M. Effects of Vibrio cholerae on fatty acid profiles in Isochrysis galbana. Algal. Res. 2020, 46, 101802. [Google Scholar] [CrossRef]
- Suurnäkki, S.; Pulkkinen, J.T.; Lindholm-Lehto, P.C.; Tiirola, M.; Aalto, S.L. The Effect of Peracetic Acid on Microbial Community, Water Quality, Nitrification and Rainbow Trout (Oncorhynchus Mykiss) Performance in Recirculating Aquaculture Systems. Aquaculture 2020, 516, 734534. [Google Scholar] [CrossRef]
- Viegas, C.; Esteves, L.; Faria, T.; Pombo, A.; Caetano, L.A.; Quintal-Gomes, A.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Viegas, S. Fungal Diversity and Mycotoxin Distribution in Echinoderm Aquaculture. Mycotoxin Res. 2019, 35, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Stefi Raju, V.; Kuppusamy, G.; Rahman, M.A.; Elumalai, P.; Harikrishnan, R.; Arshad, A.; Arockiaraj, J. Pathogenic Fungi Affecting Fishes through Their Virulence Molecules. Aquaculture 2022, 548, 737553. [Google Scholar] [CrossRef]
Tukey’s HSD Test Results for Treatments Pairwise Comparison | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trial | PAA | P. inhibens | PBR | ||||||||||
Treatment | CTRL | 7.5 µg/L | 10 µg/L | 20 µg/L | 30 µg/L | 40 µg/L | 60 µg/L | CTRL | 104 cfu/mL | CTRL | 60 µg/L | 104 cfu/mL | |
PAA | CTRL | 0.999 | 0.997 | 0.999 | 0.988 | 0.999 | 0.961 | ||||||
7.5 µg/L | 0.999 | 0.993 | 0.999 | 0.978 | 0.999 | 0.976 | |||||||
10 µg/L | 0.993 | 0.973 | 0.999 | 0.999 | 0.999 | 0.741 | |||||||
20 µg/L | 0.930 | 0.851 | 0.999 | 0.997 | 0.999 | 0.921 | |||||||
30 µg/L | 0.663 | 0.663 | 0.984 | 0.999 | 0.996 | 0.648 | |||||||
40 µg/L | 0.999 | 0.995 | 0.999 | 0.993 | 0.941 | 0.926 | |||||||
60 µg/L | 0.999 | 0.999 | 0.930 | 0.758 | 0.549 | 0.979 | |||||||
P. inhibens | CTRL | 0.130 | |||||||||||
104 cfu/mL | 0.135 | ||||||||||||
PBR | CTRL | 0.736 | 0.003 * | ||||||||||
60 µg/L | 0.022 * | 0.007 * | |||||||||||
104 cfu/mL | 0.055 | 0.731 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casoni, E.; Contis, G.; Aguiari, L.; Mistri, M.; Munari, C. Disinfection Efficacy and Eventual Harmful Effect of Chemical Peracetic Acid (PAA) and Probiotic Phaeobacter inhibens Tested on Isochrisys galbana (var. T-ISO) Cultures. Water 2024, 16, 2257. https://doi.org/10.3390/w16162257
Casoni E, Contis G, Aguiari L, Mistri M, Munari C. Disinfection Efficacy and Eventual Harmful Effect of Chemical Peracetic Acid (PAA) and Probiotic Phaeobacter inhibens Tested on Isochrisys galbana (var. T-ISO) Cultures. Water. 2024; 16(16):2257. https://doi.org/10.3390/w16162257
Chicago/Turabian StyleCasoni, Elia, Gloria Contis, Leonardo Aguiari, Michele Mistri, and Cristina Munari. 2024. "Disinfection Efficacy and Eventual Harmful Effect of Chemical Peracetic Acid (PAA) and Probiotic Phaeobacter inhibens Tested on Isochrisys galbana (var. T-ISO) Cultures" Water 16, no. 16: 2257. https://doi.org/10.3390/w16162257
APA StyleCasoni, E., Contis, G., Aguiari, L., Mistri, M., & Munari, C. (2024). Disinfection Efficacy and Eventual Harmful Effect of Chemical Peracetic Acid (PAA) and Probiotic Phaeobacter inhibens Tested on Isochrisys galbana (var. T-ISO) Cultures. Water, 16(16), 2257. https://doi.org/10.3390/w16162257