Predicting Coastal Water Quality with Machine Learning, a Case Study of Beibu Gulf, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Analysis
2.3. Prediction Model Establishing
2.3.1. Model Training and Verification
2.3.2. Forecasting Program Input
2.3.3. Early Warning of Water Quality Status
2.4. Model Performance Evaluation
3. Results and Discussion
3.1. Overall Condition of Coastal Water Quality
3.2. Spatiotemporal Changes in the Water Quality
3.3. Terrestrial Impact on Coastal Water Quality
3.4. Accuracy of Water Quality Prediction Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
(GZAR) | Guangxi Zhuang Autonomous Region |
(ASEAN) | Association of Southeast Asian Nations |
(ML) | Machine Learning |
(RF) | Random Forest |
(ANN) | Artificial Neural Networks |
(BRT) | Boosted Regression Trees |
(SVM) | Support Vector Machine |
(GA) | Genetic Algorithms |
(LRMT) | Logistic Regression and Model Trees |
(TN) | Total Nitrogen |
(TP) | Total Phosphorus |
(QZB) | Qinzhou Bay |
(LZB) | Lianzhou Bay |
(TSGB) | Tieshangang Bay |
(WT) | Water Temperature |
(WS) | Water Salinity |
(DO) | Dissolved Oxygen |
(Chl-a) | Chlorophyll-a concentration |
(NO3-N) | Nitrate |
(NO2-N) | Nitrite |
(NH4-N) | Ammonia |
(DIN) | Dissolved Inorganic Nitrogen |
(DIP) | Dissolved Inorganic Phosphate |
(MLB) | Maoling Bridge |
(QJE) | Qinjiang East |
(EWB) | Expressway West Bridge |
(NY) | Nanyu |
(YB) | Ya Bridge |
(XMJ) | Ximenjiang |
(MAPE) | Mean Absolute Percentage Error |
(MLR) | Maoling River |
(QJR) | Qinjiang River |
(MWS) | Maowei Sea |
References
- Liu, L.; Liu, R.; Ma, G.; Feng, S.; Mu, Y.; Meng, D.; Wang, S.; Cai, E. Online Monitoring of Seawater Carbon Dioxide Based on an Infrared Rear Beam Splitter. Sensors 2023, 23, 6273. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lao, Y.; Wang, J.; Du, J.; Liang, M.; Yang, B. Submarine Groundwater-Borne Nutrients in a Tropical Bay (Maowei Sea, China) and Their Impacts on the Oyster Aquaculture. Geochem. Geophys. Geosystems 2018, 19, 932–951. [Google Scholar] [CrossRef]
- Ward, N.D.; Megonigal, J.P.; Bond-Lamberty, B.; Bailey, V.L.; Butman, D.; Canuel, E.A.; Diefenderfer, H.; Ganju, N.K.; Goñi, M.A.; Graham, E.B.; et al. Representing the function and sensitivity of coastal interfaces in Earth system models. Nat. Commun. 2020, 11, 2458. [Google Scholar] [CrossRef]
- Schutte, C.A.; Ahmerkamp, S.; Wu, C.S.; Seidel, M.; de Beer, D.; Cook, P.L.M.; Joye, S.B. Chapter 12—Biogeochemical Dynamics of Coastal Tidal Flats. In Coastal Wetlands, 2nd ed.; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S., Eds.; US EPA: Washington, DC, USA, 2019; pp. 407–440. [Google Scholar] [CrossRef]
- Mohseni, F.; Saba, F.; Mirmazloumi, S.M.; Amani, M.; Mokhtarzade, M.; Jamali, S.; Mahdavi, S. Ocean water quality monitoring using remote sensing techniques: A review. Mar. Environ. Res. 2022, 180, 105701. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Zhang, C.; Shang, S. The early assessment of harmful algal bloom risk in the East China Sea. Mar. Pollut. Bull. 2022, 178, 113567. [Google Scholar] [CrossRef]
- Park, Y.; Cho, K.H.; Park, J.; Cha, S.M.; Kim, J.H. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Sci. Total. Environ. 2015, 502, 31–41. [Google Scholar] [CrossRef]
- Deng, T.; Chau, K.; Duan, H. Machine learning based marine water quality prediction for coastal hydro-environment management. J. Environ. Manag. 2021, 284, 112051. [Google Scholar] [CrossRef]
- Yu, R.; Lü, S.; Liang, Y. Harmful Algal Blooms in the Coastal Waters of China. In Global Ecology and Oceanography of Harmful Algal Blooms, Ecological Studies; Glibert, P.M., Berdalet, E., Burford, M.A., Pitcher, G.C., Zhou, M., Eds.; Springer: Berlin, Germany, 2018; pp. 309–316. [Google Scholar] [CrossRef]
- Deng, T.; Duan, H.; Keramat, A. Spatiotemporal characterization and forecasting of coastal water quality in the semi-enclosed Tolo Harbour based on machine learning and EKC analysis. Eng. Appl. Comput. Fluid Mech. 2022, 16, 694–712. [Google Scholar] [CrossRef]
- Qiao, Y.; Feng, J.; Cui, S.; Zhu, L. Long-term changes in nutrients, chlorophyll a and their relationships in a semi-enclosed eutrophic ecosystem, Bohai Bay, China. Mar. Pollut. Bull. 2017, 117, 222–228. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency of United States). Climate Change and Harmful Algal Blooms. 2016. Available online: https://www.epa.gov/habs/climate-change-and-freshwater-harmful-algal-blooms (accessed on 9 April 2024).
- Nwankwegu, A.S.; Li, Y.; Huang, Y.; Wei, J.; Norgbey, E.; Sarpong, L.; Lai, Q.; Wang, K. Harmful algal blooms under changing climate and constantly increasing anthropogenic actions: The review of management implications. 3 Biotech 2019, 9, 449. [Google Scholar] [CrossRef]
- Zohdi, E.; Abbaspour, M. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction. Int. J. Environ. Sci. Technol. 2019, 16, 1789–1806. [Google Scholar] [CrossRef]
- Griffith, A.W.; Gobler, C.J. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 2019, 91, 101590. [Google Scholar] [CrossRef] [PubMed]
- Young, N.; Sharpe, R.A.; Barciela, R.; Nichols, G.; Davidson, K.; Berdalet, E.; Fleming, L.E. Marine harmful algal blooms and human health: A systematic scoping review. Harmful Algae 2020, 98, 101901. [Google Scholar] [CrossRef] [PubMed]
- Heil, C.A.; Muni-Morgan, A.L. Florida’s Harmful Algal Bloom (HAB) Problem: Escalating Risks to Human, Environmental and Economic Health with Climate Change. Front. Ecol. Evol. 2021, 9, 646080. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Luo, Y.; Shang, C. Spatial-temporal process simulation and prediction of chlorophyll-a concentration in Dianchi Lake based on wavelet analysis and long-short term memory network. J. Hydrol. 2020, 582, 124488. [Google Scholar] [CrossRef]
- Han, Y.; Wei, F.; Ye, G.; Yang, S.; Ma, P.; Hu, W. A study on evaluation the marine carrying capacity in Guangxi Province, China. Mar. Policy 2018, 91, 66–74. [Google Scholar] [CrossRef]
- Wang, C.; Lin, A.; Liu, C. Marine ecological security assessment from the perspective of emergency ecological footprint. Front. Mar. Sci. 2023, 9, 1090965. [Google Scholar] [CrossRef]
- Rajaee, T.; Khani, S.; Ravansalar, M. Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemom. Intell. Lab. Syst. 2020, 200, 103978. [Google Scholar] [CrossRef]
- Alizadeh, M.J.; Kavianpour, M.R.; Danesh, M.; Adolf, J.; Shamshirband, S.; Chau, K. Effect of river flow on the quality of estuarine and coastal waters using machine learning models. Eng. Appl. Comput. Fluid Mech. 2018, 12, 810–823. [Google Scholar] [CrossRef]
- Sakizadeh, M. Artificial intelligence for the prediction of water quality index in groundwater systems. Model. Earth Syst. Environ. 2015, 2, 8. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Z.; Kuang, J.; Lin, C.; Xiao, L.; Huang, X.; Zhang, Y. An Alternative to Laboratory Testing: Random Forest-Based Water Quality Prediction Framework for Inland and Nearshore Water Bodies. Water 2021, 13, 3262. [Google Scholar] [CrossRef]
- Bhavsar, P.; Safro, I.; Bouaynaya, N.; Polikar, R.; Dera, D. Chapter 12—Machine Learning in Transportation Data Analytics. Data Analytics for Intelligent Transportation Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 283–307. [Google Scholar] [CrossRef]
- Segura, A.M.; Piccini, C.; Nogueira, L.; Alcántara, I.; Calliari, D.; Kruk, C. Increased sampled volume improves Microcystis aeruginosa complex (MAC) colonies detection and prediction using Random Forests. Ecol. Indic. 2017, 79, 347–354. [Google Scholar] [CrossRef]
- Mamun, M.; Kim, J.; Alam, M.A.; An, K.G. Prediction of Algal Chlorophyll-a and Water Clarity in Monsoon-Region Reservoir Using Machine Learning Approaches. Water 2019, 12, 30. [Google Scholar] [CrossRef]
- Alnahit, A.O.; Mishra, A.K.; Khan, A.A. Stream water quality prediction using boosted regression tree and random forest models. Stoch. Environ. Res. Risk Assess. 2022, 36, 2661–2680. [Google Scholar] [CrossRef]
- Tian, W.; Liao, Z.; Zhang, J. An optimization of artificial neural network model for predicting chlorophyll dynamics. Ecol. Model. 2017, 364, 42–52. [Google Scholar] [CrossRef]
- Szomolányi, O.; Clement, A. Use of random forest for assessing the effect of water quality parameters on the biological status of surface waters. Int. J. Geomath. 2023, 14, 20. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, T.; Hong, S.; Lee, S.; Lee, E.; Hong, S.; Lee, C.; Kim, T.; Park, M.S.; Park, J.; et al. Prediction of Chlorophyll-a Concentrations in the Nakdong River Using Machine Learning Methods. Water 2020, 12, 1822. [Google Scholar] [CrossRef]
- Chen, K.; Chen, H.; Zhou, C.; Huang, Y.; Qi, X.; Shen, R.; Liu, F.; Zuo, M.; Zou, X.; Wang, J.; et al. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res. 2020, 171, 115454. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.; Kansal, A.; Alshaltone, O.; Barneih, F.; Sameer, M.; Shanableh, A.; Al-Shamma’a, A. Water quality classification using machine learning algorithms. J. Water Process Eng. 2022, 48, 102920. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, H.; Guan, Y.; Zhang, L.; Sun, P.; Zhang, Q. Spatial and seasonal characteristics of dissolved heavy metals in the seawater of Beibu Gulf, the Northern South China Sea. Front. Mar. Sci. 2022, 9, 996202. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Shi, H.; Lv, X. Spatio-temporal changes and driving forces of reclamation based on remote sensing: A case study of the Guangxi Beibu Gulf. Front. Mar. Sci. 2023, 10, 1112487. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Lu, S.Y.; Tan, X.; Chen, K.; Zhao, S.; Huang, R. A new model for evaluating sustainable utilization of coastline integrating economic output and ecological impact: A case study of coastal areas in Beibu Gulf, China. J. Clean. Prod. 2020, 271, 122423. [Google Scholar] [CrossRef]
- Lyu, H.; Song, D.; Zhang, S.; Wu, W.; Bao, X. Compound effect of land reclamation and land-based pollutant input on water quality in Qinzhou Bay, China. Sci. Total Environ. 2022, 826, 154183. [Google Scholar] [CrossRef]
- Cai, S.; Lao, Q.; Jin, G.; Chen, C.; Zhou, X.; Zhu, Q.; Lu, X. Sources of nitrate in a heavily nitrogen pollution bay in Beibu Gulf, as identified using stable isotopes. Front. Mar. Sci. 2022, 9, 956474. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Sattari, M.T.; Falsafian, K.; Irvem, A.; Shahab, S.; Qasem, S.N. Potential of kernel and tree-based machine-learning models for estimating missing data of rainfall. Eng. Appl. Comput. Fluid Mech. 2020, 14, 1078–1094. [Google Scholar] [CrossRef]
- Fang, X.; Li, X.; Zhang, Y.; Zhao, Y.; Qian, J.; Hao, C.; Zhou, J.; Wu, Y. Random forest-based understanding and predicting of the impacts of anthropogenic nutrient inputs on the water quality of a tropical lagoon. Environ. Res. Lett. 2021, 16, 055003. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, Y.; Zhao, H.; Sun, M.; Li, X. Comparison of models for predicting the changes in phytoplankton community composition in the receiving water system of an inter-basin water transfer project. Environ. Pollut. 2017, 223, 676–684. [Google Scholar] [CrossRef]
- Cho, H.; Choi, U.; Park, H. Deep Learning Application to Time Series Prediction of Daily Chlorophyll-a Concentration. WIT Trans. Ecol. Environ. 2018, 215, 157–163. [Google Scholar]
- GB 3097-1997; Sea Water Quality Standard. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 1998.
- Guo, C.; Zhang, G.; Sun, J.; Leng, X.; Xu, W.; Wu, C.; Li, X.; Pujari, L. Seasonal responses of nutrient to hydrology and biology in the southern Yellow Sea. Cont. Shelf Res. 2020, 206, 104207. [Google Scholar] [CrossRef]
- Ding, X.; Guo, X.; Gao, H.; Gao, J.; Shi, J.; Yu, X.; Wu, Z. Seasonal variations of nutrient concentrations and their ratios in the central Bohai Sea. Sci. Total Environ. 2021, 799, 149416. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lu, Y.; Sun, B.; Zhang, M.; Wang, C.; Xiu, C.; Johnson, A.C.; Wang, P. Ecological and human health risks of antibiotics in marine species through mass transfer from sea to land in a coastal area: A case study in Qinzhou Bay, the South China sea. Environ. Pollut. 2023, 316, 120502. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhang, D.; Zhu, W.; Felix, D.S.; Yang, B.; Kang, Z.; Yu, K. Sources and long-term variation characteristics of dissolved nutrients in Maowei Sea, Beibu Gulf, China. J. Hydrol. 2022, 615, 128576. [Google Scholar] [CrossRef]
- Al-Mutairi, N.; Abahussain, A.; El-Battay, A. Spatial and temporal characterizations of water quality in Kuwait Bay. Mar. Pollut. Bull. 2014, 83, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.G.; Saurel, C.; Lencart e Silva, J.D.; Nunes, J.P.; Vazquez, F. Modelling of interactions between inshore and offshore aquaculture. Aquaculture 2014, 426–427, 154–164. [Google Scholar] [CrossRef]
- Lai, J.; Jiang, F.; Ke, K.; Xu, M.; Lei, F.; Chen, B. Nutrients distribution and trophic status assessment in the northern Beibu Gulf, China. Chin. J. Ocean. Limnol. 2014, 32, 1128–1144. [Google Scholar] [CrossRef]
- Liang, D.; Huang, X.; Yang, B.; Dan, S.; Kang, Z.; Zhou, J.; Lao, Y.; Zhong, Q.; Wu, H. Composition and Distributions of Nitrogen and Phosphorus and Assessment of Eutrophication Status in the Maowei Sea. J. Ocean. Univ. China (Ocean. Coast. Sea Res.) 2021, 20, 361–371. [Google Scholar] [CrossRef]
- Lao, Q.; Liu, G.; Shen, Y.; Su, Q.; Lei, X. Biogeochemical processes and eutrophication status of nutrients in the northern Beibu Gulf, South China. J. Earth Syst. Sci. 2021, 130, 199. [Google Scholar] [CrossRef]
City | Bay | Basic Information | Parameters | Data Time | ||
---|---|---|---|---|---|---|
Station | Longitude | Latitude | ||||
Qinzhou city | Qinzhou Bay (QZB) | GX01 | 108°32′53.0″ | 21°47′57.0″ | WT, Salinity, DO, pH, Chl-a, NO3-N, NO2-N, NH4-N, DIP, DIN | 1 January 2018–31 December 2022 |
GX02 | 108°34′06.3″ | 21°43′31.2″ | WT, Salinity, DO, pH, Chl-a | 1 January 2018–31 December 2022 | ||
GX03 | 108°36′56.9″ | 21°39′46.0″ | WT, Salinity, DO, pH, Chl-a, NO3-N, NO2-N, NH4-N, DIP, DIN | 1 January 2018–31 December 2022 | ||
GX04 | 108°45′34.6″ | 21°35′02.9″ | WT, Salinity, DO, pH, Chl-a | 1 January 2018–31 December 2022 | ||
Beihai City | Lianzhou Bay (LZB) | GX05 | 108°54′16.0″ | 21°33′08.0″ | WT, Salinity, DO, pH, Chl-a, NO3-N, NO2-N, NH4-N, DIP, DIN | Conventional parameters: 1 January 2018–31 December 2022 Nutrient parameters: 25 June 2021–31 December 2022 |
GX06 | 109°02′05.0″ | 21°30′20.0″ | WT, Salinity, DO, pH, Chl-a, NO3-N, NO2-N, NH4-N, DIP, DIN | 1 January 2018–31 December 2022 | ||
GX07 | 109°02′20.0″ | 21°28′54.0″ | WT, Salinity, DO, pH, Chl-a, NO3-N, NO2-N, NH4-N, DIP, DIN | 1 January 2018–31 December 2022 | ||
Tieshangang Bay (TSGB) | GX08 | 109°33′15.0″ | 21°26′50.0″ | WT, Salinity, DO, pH, Chl-a, NO3-N, NO2-N, NH4-N, DIP, DIN | Conventional parameters: 1 January 2018–31 December 2022 Nutrient parameters: 6 July 2021–31 December 2022 | |
GX09 | 109°34′27.0″ | 21°37′45.0″ | WT, Salinity, DO, pH, Chl-a, NO3-N, NO2-N, NH4-N, DIP, DIN | Conventional parameters: 1 January 2018–31 December 2022 Nutrient parameters: 18 June 2021–31 December 2022 | ||
GX10 | 109°41′07.0″ | 21°25′03.0″ | WT, Salinity, DO, pH, Chl-a, NO3-N, NO2-N, NH4-N, DIP, DIN | Conventional parameters: 1 January 2018–31 December 2022 Nutrient parameters: 6 July 2021–31 December 2022 |
Parameters | Hourly Parameters Value Forecast Model | Daily Parameters Value Forecast Model | ||||
---|---|---|---|---|---|---|
Model | Error Rate | Error | Model | Error Rate | Error | |
WT (°C) | 5p_hour_recent_tide | 1.8% | 0.535 | 5p_week_recent | 1.1% | 0.337 |
WS (‰) | 10p_hour | 21.3% | 1.285 | 10p_week_line | 27.9% | 1.243 |
DO (mg/L) | 5p_hour_recent_no_tide | 7.6% | 0.385 | 5p_week_all_line | 6.2% | 0.321 |
pH | 5p_hour_recent_tide_line | 1.3% | 0.095 | 10p_week_line | 0.7% | 0.048 |
Chl-a (μg/L) | 5p_hour_recent_tide | 20.2% | 0.431 | 5p_week_recent | 21.9% | 0.653 |
NO3-N (mg/L) | 10p_hour | 28.2% | 0.089 | 10p_week | 13.2% | 0.047 |
NO2-N (mg/L) | 10p_hour | 21.5% | 0.353 | 10p_week | 27.1% | 0.061 |
NH4-N (mg/L) | 10p_hour | 28.4% | 0.011 | 10p_week | 24.6% | 0.008 |
DIP (mg/L) | 10p_hour | 8.7% | 0.004 | 10p_week_line | 15.7% | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Xu, Z.; Lan, W.; Peng, X.; Deng, Y.; Chen, Z.; Xu, H.; Wang, Z.; Xu, H.; Chen, X.; et al. Predicting Coastal Water Quality with Machine Learning, a Case Study of Beibu Gulf, China. Water 2024, 16, 2253. https://doi.org/10.3390/w16162253
Bai Y, Xu Z, Lan W, Peng X, Deng Y, Chen Z, Xu H, Wang Z, Xu H, Chen X, et al. Predicting Coastal Water Quality with Machine Learning, a Case Study of Beibu Gulf, China. Water. 2024; 16(16):2253. https://doi.org/10.3390/w16162253
Chicago/Turabian StyleBai, Yucai, Zhefeng Xu, Wenlu Lan, Xiaoyan Peng, Yan Deng, Zhibiao Chen, Hao Xu, Zhijian Wang, Hui Xu, Xinglong Chen, and et al. 2024. "Predicting Coastal Water Quality with Machine Learning, a Case Study of Beibu Gulf, China" Water 16, no. 16: 2253. https://doi.org/10.3390/w16162253
APA StyleBai, Y., Xu, Z., Lan, W., Peng, X., Deng, Y., Chen, Z., Xu, H., Wang, Z., Xu, H., Chen, X., & Cheng, J. (2024). Predicting Coastal Water Quality with Machine Learning, a Case Study of Beibu Gulf, China. Water, 16(16), 2253. https://doi.org/10.3390/w16162253