Effects of Nano-Titanium Dioxide on the Horizontal Transfer of Antibiotic Resistance Genes in Microplastic Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Microplastics
2.2. Bacterial Culture
2.3. Effects of Nano-Titanium Dioxide on Conjugation Transfer of ARGs
2.4. mRNA Expression Analysis
2.5. Other Analytical Methods and Data Analysis
3. Results and Discussion
3.1. Effects of Nano-Titanium Dioxide on Conjugation of ARGs in Microplastic Biofilms
3.2. Effects of Nano-Titanium Dioxide on ROS
3.3. Effects of Nano-Titanium Dioxide on Oxidative Stress
3.4. Effects of Nano-Titanium Dioxide on Outer Membrane Proteins and Cell Membrane Permeability
3.5. Mechanism of Microplastic Biofilms Promoting Conjugation of ARGs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Hu, Z.; Xie, H.; Wu, H.; Wang, Y.; Xu, H.; Liang, S.; Zhang, J. Size-dependent promotion of micro(nano)plastics on the horizontal gene transfer of antibiotic resistance genes in constructed wetlands. Water Res. 2023, 244, 120520. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Gao, H.; Li, R.; Lou, Y.; Li, B.; Cheng, G.; Na, G. Occurrence and distribution of antibiotics and antibiotic resistance genes from the land to ocean in Daliao River-Liaodong Bay, China. Mar. Environ. Res. 2024, 197, 106470. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Mai, Z.; Qiu, C.; Long, L.; Hu, A.; Huang, S. Dissemination of antibiotic resistance genes from the Pearl River Estuary to adjacent coastal areas. Mar. Environ. Res. 2023, 188, 105978. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Huang, X.; Xie, Z.; Ding, Z.; Wei, H.; Jin, Q. A review focusing on mechanisms and ecological risks of enrichment and propagation of antibiotic resistance genes and mobile genetic elements by microplastic biofilms. Environ. Res. 2024, 251 Pt 2, 118737. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Dai, X.; Chen, Z.; Wu, L.; Wei, W.; Xu, Q.; Ni, B.-J. Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. Water Res. 2023, 228 Pt A, 119356. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-P.; Yang, Y.; Lu, D.-P.; Niu, Z.-S.; Feng, J.-N.; Chen, Y.-R.; Tou, F.-Y.; Garner, E.; Xu, J.; Liu, M.; et al. Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Res. 2018, 129, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, X.; Wang, C.; Hakizimana, I.; Crittenden, J.C.; Laghari, A.A. Electrochemical flow-through disinfection reduces antibiotic resistance genes and horizontal transfer risk across bacterial species. Water Res. 2022, 212, 118090. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yan, H.; Zhu, X.; Liu, C.; Chu, C.; Zhu, X.; Chen, B. Biochar Effectively Inhibits the Horizontal Transfer of Antibiotic Resistance Genes via Restraining the Energy Supply for Conjugative Plasmid Transfer. Environ. Sci. Technol. 2022, 56, 12573–12583. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016.
- Martinez, J.L. Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K.H. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Jin, W.; Yang, G.; Zhang, H.; Li, P.; Huang, W.; Feng, Z. A case study on microplastics pollution characteristics in fouling organisms in typical aquaculture bay, China. Mar. Environ. Res. 2024, 193, 106286. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Guo, H.; Chen, H.; Wang, S.; Sun, X.; Zou, Q.; Zhang, Y.; Lin, H.; Cai, S.; Huang, J. Microplastics in the Northwestern Pacific: Abundance, distribution, and characteristics. Sci. Total Environ. 2019, 650, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- Purayil, N.C.; Thomas, B.; Tom, R.T. Microplastics—A major contaminant in marine macro algal population: Review. Mar. Environ. Res. 2024, 193, 106281. [Google Scholar] [CrossRef]
- Curren, E.; Leong, S.C.Y. Plankton assemblages from microplastics of tropical coastal environments reveal high diversity and evidence of toxic species. Mar. Environ. Res. 2024, 193, 106251. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, L.; Xue, B.; Wang, Y. Abundance and characteristics of microplastics in the mangrove sediment of the semi-enclosed Maowei Sea of the south China sea: New implications for location, rhizosphere, and sediment compositions. Environ. Pollut. 2019, 244, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Dar, A.; Chen, Z.; Sardar, M.F.; An, C. Navigating the Nexus: Coastal Climate, Microplastics, and the Uncharted Waters of Coastal Pollution. Environ. Res. 2024, 252, 118971. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.R.M.T.; Hasan, M.; Sadia, M.R.; Mubin, A.-N.; Ali, M.M.; Senapathi, V.; Idris, A.M.; Malafaia, G. Unveiling microplastics pollution in a subtropical rural recreational lake: A novel insight. Environ. Res. 2024, 250, 118543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, J.; Li, W. Conjugative antibiotic-resistant plasmids promote bacterial colonization of microplastics in water environments. J. Hazard. Mater. 2022, 430, 128443. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.Z.; Wang, P.F.; Hou, J.; Yao, Y.; Liu, Z.L.; Liu, S.Q.; Li, T.F. Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci. Total Environ. 2019, 650, 2395–2402. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Liu, G.H.; Song, W.J.; Ye, C.; Lin, H.; Li, Z.; Liu, W.Z. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ. Int. 2019, 123, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gunawan, C.; Barraud, N.; Rice, S.A.; Harry, E.J.; Amal, R. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. Environ. Sci. Technol. 2016, 50, 8954–8976. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, J.; Zhang, M.; Wang, X.; Zhang, D.; Pan, X. Persistent versus transient, and conventional plastic versus biodegradable plastic?—Two key questions about microplastic-water exchange of antibiotic resistance genes. Water Res. 2022, 222, 8954–8976. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Qiu, X.; Wu, X.; Lu, S. Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite. J. Hazard. Mater. 2021, 408, 124883. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Y.; Jin, M.; Yuan, Z.; Bond, P.; Guo, J. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Res. 2020, 169, 115229. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Feng, K.; Wang, Z.; Zhang, Y.; Yang, M.; Zhu, Y.-G.; Virta, M.P.J.; Deng, Y. High-Throughput Single-Cell Technology Reveals the Contribution of Horizontal Gene Transfer to Typical Antibiotic Resistance Gene Dissemination in Wastewater Treatment Plants. Environ. Sci. Technol. 2021, 55, 11824–11834. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.-T.; Tian, X.-B. Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation. J. Hazard. Mater. 2019, 380, 120877. [Google Scholar] [PubMed]
- Zhang, J.; Buhe, C.; Yu, D.; Zhong, H.; Wei, Y. Ammonia stress reduces antibiotic efflux but enriches horizontal gene transfer of antibiotic resistance genes in anaerobic digestion. Bioresour. Technol. 2020, 295, 122191. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Ma, X.-L.; Han, X.; Wu, L.-J.; Liu, C.; Yu, H.-Q. TiO2 photoexcitation promoted horizontal transfer of resistance genes mediated by phage transduction. Sci. Total Environ. 2021, 760, 144040. [Google Scholar] [CrossRef] [PubMed]
- Malakootian, M.; Nasiri, A.; Gharaghani, M.A. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem. Eng. Commun. 2020, 207, 56–72. [Google Scholar] [CrossRef]
- Han, X.; Lv, P.; Wang, L.-G.; Long, F.; Ma, X.-L.; Liu, C.; Feng, Y.-J.; Yang, M.-F.; Xiao, X. Impact of nano-TiO2 on horizontal transfer of resistance genes mediated by filamentous phage transduction. Environ. Sci.-Nano 2020, 7, 1214–1224. [Google Scholar] [CrossRef]
- Qiu, Z.; Yu, Y.; Chen, Z.; Jin, M.; Yang, D.; Zhao, Z.; Wang, J.; Shen, Z.; Wang, X.; Qian, D.; et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc. Natl. Acad. Sci. USA 2012, 109, 4944–4949. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ. Res. 2022, 212, 113267. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, X.; Zhou, H.; Niu, Y.; Li, J.; Fu, X.; Wang, S.; Xue, B.; Li, C.; Zhao, C.; et al. Bisphenols Promote the Pheromone-Responsive Plasmid-Mediated Conjugative Transfer of Antibiotic Resistance Genes in Enterococcus faecalis. Environ. Sci. Technol. 2022, 56, 17653–17662. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yu, Z.; Ding, P.; Guo, J. Triclosan Promotes Conjugative Transfer of Antibiotic Resistance Genes to Opportunistic Pathogens in Environmental Microbiome. Environ. Sci. Technol. 2022, 56, 15108–15119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yu, P.; Wang, Z.; Alvarez, P.J.J. Hormetic Promotion of Biofilm Growth by Polyvalent Bacteriophages at Low Concentrations. Environ. Sci. Technol. 2020, 54, 12358–12365. [Google Scholar] [CrossRef] [PubMed]
- Arias-Andres, M.; Klumper, U.; Rojas-Jimenez, K.; Grossart, H.P. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ. Pollut. 2018, 237, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Chen, X.; Li, G.; Wang, W.; Wong, P.K.; An, T. Can photocatalytic technology facilitate conjugative transfer of ARGs in bacteria at the interface of natural sphalerite under different light irradiation? Appl. Catal. B-Environ. 2021, 287, 119977. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, D.; Luo, Y. Ionic Liquid Facilitates the Conjugative Transfer of Antibiotic Resistance Genes Mediated by Plasmid RP4. Environ. Sci. Technol. 2015, 49, 8731–8740. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.-T.; Yuan, Q.-B.; Yang, J. Distinguishing Effects of Ultraviolet Exposure and Chlorination on the Horizontal Transfer of Antibiotic Resistance Genes in Municipal Wastewater. Environ. Sci. Technol. 2015, 49, 5771–5778. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liao, J.; Zheng, X.; Chen, Y.; Ren, H. Low-level free nitrous acid efficiently inhibits the conjugative transfer of antibiotic resistance by altering intracellular ions and disabling transfer apparatus. Water Res. 2019, 158, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Stepanovic, S.; Cirkovic, I.; Ranin, L.; Svabic-Vlahovic, M. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol. 2004, 38, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Liu, L.; Wang, D.-N.; Yang, D.; Liu, W.-L.; Yin, J.; Yang, Z.-W.; Wang, H.-R.; Qiu, Z.-G.; Shen, Z.-Q.; et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. ISME J. 2020, 14, 1847–1856. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Li, X.; Zhang, Q.; Yan, Z.; Ding, W.; Huang, X.; Ge, Z.; Tian, B.; Yin, Q. Elevated salinity and inundation will facilitate the spread of invasive Spartina alterniflora in the Yangtze River Estuary, China. J. Exp. Mar. Biol. Ecol. 2018, 506, 144–154. [Google Scholar] [CrossRef]
- Li, R.; Wang, H.; Yan, J.; Fu, R.; Wang, B.; Jiang, C.; Wang, Y.; Xu, T. A cascade electro-dehydration process for simultaneous extraction and enrichment of uranium from simulated seawater. Water Res. 2023, 240, 120079. [Google Scholar] [CrossRef] [PubMed]
- Abayomi, O.A.; Range, P.; Al-Ghouti, M.A.; Obbard, J.P.; Almeer, S.H.; Ben-Hamadou, R. Microplastics in coastal environments of the Arabian Gulf. Mar. Pollut. Bull. 2017, 124, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.K.; Hong, S.H.; Eo, S.; Jang, M.; Han, G.M.; Isobe, A.; Shim, W.J. Horizontal and Vertical Distribution of Microplastics in Korean Coastal Waters. Environ. Sci. Technol. 2018, 52, 12188–12197. [Google Scholar] [CrossRef]
- Lusher, A.L.; Tirelli, V.; O’Connor, I.; Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 2015, 5, 14947. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, Y.; Zhang, X.; Zhao, Z.; He, J.; Li, W.; Ma, Y.; Niu, Z. Occurrence and distribution of microplastics in the surface water and sediment of two typical estuaries in Bohai Bay, China. Environ. Sci. -Process. Impacts 2019, 21, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, J.; Cao, W.; Liu, X.; Jiang, F.; Ding, J.; Yin, X.; Sun, C. Distribution characteristics of microplastics in the seawater and sediment: A case study in Jiaozhou Bay, China. Sci. Total Environ. 2019, 674, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, A.L.d.F.; Rodrigues, L.d.S.; van Sebille, E.; Rodrigues, F.L.; Ribeiro, L.; Secchi, E.R.; Kessler, F.; Proietti, M.C. Plastics in sea surface waters around the Antarctic Peninsula. Sci. Rep. 2019, 9, 3977. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.; Webber, M. Characterization of microplastics in the surface waters of Kingston Harbour. Sci. Total Environ. 2019, 664, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Qu, L.; Jin, F.; Zhang, S.; Fang, C.; Ma, X.; Zhang, W.; Huo, C.; Cong, Y.; Wang, J. Abundance and distribution of microplastics in the surface sediments from the northern Bering and Chukchi Seas. Environ. Pollut. 2019, 245, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ndungu, A.W.; Li, Z.; Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 2017, 575, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Sadri, S.S.; Thompson, R.C. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Mar. Pollut. Bull. 2014, 81, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Lahens, L.; Strady, E.; Kieu-Le, T.-C.; Dris, R.; Boukerma, K.; Rinnert, E.; Gasperi, J.; Tassin, B. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environ. Pollut. 2018, 236, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Jiang, C.; Wen, X.; Du, C.; Zhong, W.; Feng, Z.; Long, Y.; Ma, Y. Microplastic Pollution in Surface Water of Urban Lakes in Changsha, China. Int. J. Environ. Res. Public Health 2019, 16, 1650. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yuan, W.; Chen, Y.; Wang, J. Microplastics in surface waters of Dongting Lake and Hong Lake, China. Sci. Total Environ. 2018, 633, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [Google Scholar] [CrossRef]
- Eo, S.; Hong, S.H.; Song, Y.K.; Han, G.M.; Shim, W.J. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Res. 2019, 160, 228–237. [Google Scholar] [CrossRef]
- Di, M.; Wang, J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Sci. Total Environ. 2018, 616, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Chen, X.; Yin, H.; Wang, W.; Wong, P.K.; An, T. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes. Environ. Int. 2020, 136, 105497. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhang, G.; Zhang, D.; Li, W.; Zhu, N.; Bo, J.; Meng, X.; Chen, Y.; Qin, Y.; Liu, H. Effects of Nano-Titanium Dioxide on the Horizontal Transfer of Antibiotic Resistance Genes in Microplastic Biofilms. Water 2024, 16, 2155. https://doi.org/10.3390/w16152155
Zhou Y, Zhang G, Zhang D, Li W, Zhu N, Bo J, Meng X, Chen Y, Qin Y, Liu H. Effects of Nano-Titanium Dioxide on the Horizontal Transfer of Antibiotic Resistance Genes in Microplastic Biofilms. Water. 2024; 16(15):2155. https://doi.org/10.3390/w16152155
Chicago/Turabian StyleZhou, Yangyuan, Guosheng Zhang, Dawei Zhang, Weiying Li, Ningzheng Zhu, Jinpei Bo, Xiangzhou Meng, Yao Chen, Yu Qin, and Huajie Liu. 2024. "Effects of Nano-Titanium Dioxide on the Horizontal Transfer of Antibiotic Resistance Genes in Microplastic Biofilms" Water 16, no. 15: 2155. https://doi.org/10.3390/w16152155
APA StyleZhou, Y., Zhang, G., Zhang, D., Li, W., Zhu, N., Bo, J., Meng, X., Chen, Y., Qin, Y., & Liu, H. (2024). Effects of Nano-Titanium Dioxide on the Horizontal Transfer of Antibiotic Resistance Genes in Microplastic Biofilms. Water, 16(15), 2155. https://doi.org/10.3390/w16152155