A Study on Chemical Oxygen Demand (COD) Concentration Distribution and Its Hydrodynamic Mechanisms in Liaodong Bay, China
Abstract
:1. Introduction
2. Numerical Model and Monitoring Data
2.1. Numerical Model
2.2. Eulerian and Lagrangian Residual Currents
2.3. Particle Tracking Model
2.4. Shoreline, Water Depth, and COD Data
3. Results
3.1. COD Concentration Monitoring Results
3.2. MIKE21 Model Verification
3.3. Liaodong Bay Tidal Current
3.4. Euler Residual Current
3.5. Lagrangian Residual Current
3.6. Particle Tracking
4. Discussion
4.1. COD and Euler Residual Current
4.2. Lagrangian Residual Current and COD
4.3. Particle Tracking and COD Transport
5. Conclusions
- (1)
- COD in Liaodong Bay has highest concentration in the estuary of the Liao River and the Daliao River and the surrounding areas, and the concentration gradually decreases from the two estuaries to the sea. The distribution of the area with >1.5 mg/L COD in the east coast and west coast differs. Overall, the west coast has more area with >1.5 mg/L COD than the east coast, but there is also a local high concentration area between Dalian and Yingkou in this area;
- (2)
- The COD enrichment area between the Liao River and the Daliao River and on the east coast is consistent with the distribution of the ERC circulation, the recirculation of COD within this area results in a lower diffusion rate compared to the surrounding sea areas, making it easy to form COD hotspots, with concentrations higher than the background level;
- (3)
- The LRC mainly influences the overall long-distance transportation of COD and plays a dominant role in the transportation of COD with a concentration that is higher than the background value in the center of the bay, but less than the peak concentration in the estuarine regions. The direction of COD transportation, indicated by the 1.5 mg/L~2 mg/L COD contour pattern, is consistent with the flow velocity and direction of the LRC field in the same region;
- (4)
- The displacement of the particles from the initial and final position can be used as a scalar to indicate the transportation capacity of different regions of the bay. The end position and distribution density of the particles can indicate the distribution characteristics of COD after leaving the estuarine regions. The final position of the particles is mainly concentrated in the central and west side of the bay, which is consistent with the common knowledge on COD transportation from the estuary to the sea and the main transportation direction analyzed in this paper.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, H.; Sun, J.; Moll, A.; Zhao, L. Phytoplankton dynamics in the Bohai Sea—Observations and modelling. J. Mar. Syst. 2004, 44, 233–251. [Google Scholar] [CrossRef]
- Li, K.; Ma, Y.; Dai, A.; Wang, X. Degradation dynamics and bioavailability of land-based dissolved organic nitrogen in the Bohai Sea: Linking experiment with modeling. Mar. Pollut. Bull. 2017, 124, 856–870. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liang, J.; Yang, G.; Sun, W. Spatio-temporal distribution of harmful algal blooms and their correlations with marine hydrological elements in offshore areas, China. Ocean Coast. Manag. 2023, 238, 106554. [Google Scholar] [CrossRef]
- Yang, H.F.; Zhu, Q.Y.; Liu, J.A.; Zhang, Z.L.; Yang, S.L.; Shi, B.W.; Zhang, W.X.; Wang, Y.P. Historic changes in nutrient fluxes from the Yangtze River to the sea: Recent response to catchment regulation and potential linkage to maritime red tides. J. Hydrol. 2023, 617, 129024. [Google Scholar] [CrossRef]
- Gajardo, G.; Morón-López, J.; Vergara, K.; Ueki, S.; Guzmán, L.; Espinoza-González, O.; Sandoval, A.; Fuenzalida, G.; Murillo, A.A.; Riquelme, C.; et al. The holobiome of marine harmful algal blooms (HABs): A novel ecosystem-based approach for implementing predictive capabilities and managing decisions. Environ. Sci. Policy 2023, 143, 44–54. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Q.; Jian, H.; Gao, Z.; Yao, Q. Variations in the nutrient concentration and composition in Liaodong Bay under long-term human activities. Mar. Pollut. Bull. 2022, 182, 114016. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Ye, S. The impact of water temperature on water quality indexes in north of Liaodong Bay. Mar. Pollut. Bull. 2014, 80, 245–249. [Google Scholar] [CrossRef]
- Dai, A.; Li, K.; Ding, D.; Li, Y.; Liang, S.; Li, Y.; Su, Y.; Wang, X. Total maximum allocated load calculation of nitrogen pollutants by linking a 3D biogeochemical–hydrodynamic model with a programming model in Bohai Sea. Cont. Shelf Res. 2015, 111, 197–210. [Google Scholar] [CrossRef]
- Yang, F.; Su, R.; Jian, H.; Yao, Q. Using algal biomass to evaluate numeric nutrient criteria in an estuary: A case study of Daliaohe Estuary in China. Ecol. Indic. 2016, 70, 373–381. [Google Scholar] [CrossRef]
- Ghaemi, M.; Mohammadpour, G.; Hamzei, S.; Gholamipour, S. Spatial and temporal characterizations of seawater quality on marine waters area of the Persian Gulf. Reg. Stud. Mar. Sci. 2022, 53, 102407. [Google Scholar] [CrossRef]
- Lega, M.; Kosmatka, J.; Casazza, M.; De Maio, L.; Severino, D.; Teta, R. Environmental monitoring and assessment: A multi-scale and multiparameter case study in Campania Region (S Italy) on the recreational seawater quality evaluation. Reg. Stud. Mar. Sci. 2020, 39, 101465. [Google Scholar] [CrossRef]
- Li, X.; Lei, G.; Li, Y.; Wang, Y.; Tan, Z. Assessing hydrodynamic effects of ecological restoration scenarios for a tidal-dominated wetland in Liaodong Bay (China). Sci. Total Environ. 2021, 752, 142339. [Google Scholar] [CrossRef]
- Wei, H.; Hainbucher, D.; Pohlmann, T.; Feng, S.; Suendermann, J. Tidal-induced Lagrangian and Eulerian mean circulation in the Bohai Sea. J. Mar. Syst. 2004, 44, 141–151. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Ye, S.; Mackenzie, L.; Yuan, H.; He, L.; Zhao, G.; Pei, S.; Ding, X. Pollen distribution and transportation patterns in surface sediments of Liaodong Bay, China. Sci. Total Environ. 2021, 771, 144883. [Google Scholar] [CrossRef]
- Zhang, C.; Lei, M.; Liu, X.; Zhou, Z.; Liu, M.; Chen, H.; Yang, W.; Wang, X. Presence and inputs of legacy and novel per- and polyfluoroalkyl substances from rivers and drainage outlets to Liaodong Bay, China. Reg. Stud. Mar. Sci. 2022, 56, 102684. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Tian, J.; Wang, K.; Li, A.; Li, N.; Song, L.; Song, G. Comparison of nutrients status in Liaodong Bay and Northern Yellow Sea, China: Controlling factors and nutrient budgets. Mar. Environ. Res. 2024, 194, 106338. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, H.; Li, R.; Lou, Y.; Li, B.; Cheng, G.; Na, G. Occurrence and distribution of antibiotics and antibiotic resistance genes from the land to ocean in Daliao River-Liaodong Bay, China. Mar. Environ. Res. 2024, 197, 106470. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, A.; Teng, J.; Yang, X.; Yuan, X.; Wang, Q.; Zhao, J.; Zhang, B.; Zhang, T.; Chen, X.; et al. Pollution characteristics and ecological risk of microplastic in sediments of Liaodong Bay from the northern Bohai Sea in China. Mar. Pollut. Bull. 2023, 187, 114505. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, Y.; Xiao, K.; Wang, X.; Zhang, X.; Li, G.; Li, H. Effect of submarine groundwater discharge on nutrient distribution and eutrophication in Liaodong Bay, China. Water Res. 2023, 247, 120732. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Laws, E.A.; Zhu, Y.; Zhang, H.; Ye, S.; Yuan, H.; Ding, X. Nutrient dynamics and their interaction with phytoplankton growth during autumn in Liaodong Bay, China. Cont. Shelf Res. 2019, 186, 34–47. [Google Scholar] [CrossRef]
- Ma, Q.; Liang, S.; Sun, Z.; Zhang, R.; Wang, P. Development and evaluation of a GPU-based coupled three-dimensional hydrodynamic and water quality model. Mar. Pollut. Bull. 2023, 187, 114494. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yin, B. Numerical investigation of nutrient limitations in the Bohai Sea. Mar. Environ. Res. 2010, 70, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, L.; Lin, X.; Yan, J.; Zhang, P.; Zhao, B.; Zhang, C.; Yu, Y. Spatial distribution, control factors and sources of heavy metal in the surface sediments of Fudu Estuary waters, East Liaodong Bay, China. Mar. Pollut. Bull. 2020, 156, 111279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Wang, L.; Zhao, S.; Yang, X.; Zhao, Q.; Zhang, X.; Yuan, X. 2017. Heavy metals in seawater and sediments from the northern Liaodong Bay of China: Levels, distribution and potential risks. Reg. Stud. Mar. Sci. 2020, 11, 32–42. [Google Scholar]
- Wu, J.; Wang, Z.; Zhang, Y.; Tian, J.; Song, L.; Han, J.; Yu, J.; Zhang, Y. Spatial distribution and ecological risks of polycyclic aromatic hydrocarbons in sea ice and seawater from northern Liaodong Bay, China. Mar. Pollut. Bull. 2022, 174, 113319. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Chen, X.; Wu, J.; Zhang, C.; Yu, J.; Bai, J.; Chen, T. Sources and spatiotemporal variations of nitrogen and phosphorus in Liaodong Bay, China. Mar. Pollut. Bull. 2022, 185, 114191. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, P.A.; Carbajal, N.; Rodríguez, J.H.G. Lagrangian trajectories, residual currents and rectification process in the Northern Gulf of California. Estuar. Coast. Shelf Sci. 2017, 194, 263–275. [Google Scholar] [CrossRef]
- Liubartseva, S.; Coppini, G.; Lecci, R.; Creti, S. Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea. Mar. Pollut. Bull. 2016, 103, 115–127. [Google Scholar] [CrossRef]
- Kong, X. Influence of inter-river water diversion on estuary pollution control: A case study of Liaodong Bay. Reg. Stud. Mar. Sci. 2024, 70, 103362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Deng, J.; Zhang, L.; Wang, P.; Zhang, G.; Dong, X.; Sun, J. A Study on Chemical Oxygen Demand (COD) Concentration Distribution and Its Hydrodynamic Mechanisms in Liaodong Bay, China. Water 2024, 16, 2135. https://doi.org/10.3390/w16152135
Liu X, Deng J, Zhang L, Wang P, Zhang G, Dong X, Sun J. A Study on Chemical Oxygen Demand (COD) Concentration Distribution and Its Hydrodynamic Mechanisms in Liaodong Bay, China. Water. 2024; 16(15):2135. https://doi.org/10.3390/w16152135
Chicago/Turabian StyleLiu, Xincang, Jiahui Deng, Lianjie Zhang, Ping Wang, Guangshuai Zhang, Xiangke Dong, and Jiawen Sun. 2024. "A Study on Chemical Oxygen Demand (COD) Concentration Distribution and Its Hydrodynamic Mechanisms in Liaodong Bay, China" Water 16, no. 15: 2135. https://doi.org/10.3390/w16152135
APA StyleLiu, X., Deng, J., Zhang, L., Wang, P., Zhang, G., Dong, X., & Sun, J. (2024). A Study on Chemical Oxygen Demand (COD) Concentration Distribution and Its Hydrodynamic Mechanisms in Liaodong Bay, China. Water, 16(15), 2135. https://doi.org/10.3390/w16152135