Development of an Explicit Water Level Pool Routing Method in Reservoirs
Abstract
1. Introduction
2. Materials and Methods
2.1. Proposed Model
2.1.1. Assumptions
- A horizontal water surface is considered in a reservoir.
- The conservation of mass equation is used for considering inflow and outflow hydrographs.
- The discharge curve is evaluated using a rectangular weir.
2.1.2. General Governing Equations
2.2. Solution for Small Watersheds
2.3. Methodology
3. Case Study
4. Results
5. Discussion
5.1. Proposed Model
- The conservation of mass equation given bywhere = storage in a reservoir.
- The storage–outflow function expressed as follows:
5.2. Solution for Small Watersheds
5.3. Validation
5.4. Limitations of the Proposed Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| : | surface area of a reservoir (m2) | 
| : | drainage area of a watershed (ha) | 
| : | Weir width (m) | 
| : | discharge coefficient of a weir | 
| : | hydraulic head measured over the weir crest (m) | 
| : | parameter that defines the percentage of reduction in an outflow hydrograph | 
| power of the final term in the binomial theorem (-) | |
| : | total number of analyzed water flows of an outflow hydrograph (-) | 
| : | storage in a reservoir (m3) | 
| : | time (s) | 
| : | base time of a hydrograph (s) | 
| : | peak time of a hydrograph (s) | 
| : | base time of a hydrograph (s) | 
| : | amount of precipitation (mm) | 
| Root Mean Square Error (m3/s) | |
| : | R-squared (-) | 
| : | sum of squares of residual (m6/s2) | 
| : | dimensionless peak flow (-) | 
| : | inflow hydrograph (m3/s) | 
| : | outflow hydrograph (m3/s) | 
| : | peak flow (m3/s) | 
| : | total sum of squares of the analyzed variable (m6/s2) | 
| : | inflow volume of water (m3) | 
| : | outflow volume of water (m3) | 
| : | time step (s) | 
| : | variation in water surface (m) | 
Appendix A
| t (h) [1] | (m3/s) [2] | (m) [3] | (m) [4] | (m3/s) [5] | 
|---|---|---|---|---|
| 0 | 0.00 | 0 | 0.0055 | 0.0000 | 
| 0.1 | 2.79 | 0.006 | 0.0159 | 0.046 | 
| 0.2 | 5.58 | 0.021 | 0.0249 | 0.357 | 
| 0.3 | 8.37 | 0.046 | 0.0350 | 1.133 | 
| … | … | … | … | … | 
| 1.4 | 88.87 | 0.7334 | 0.0676 | 71.232 | 
| 1.5 | 97.72 | 0.800 | 0.0472 | 81.318 | 
| 1.6 | 96.03 | 0.847 | 0.0198 | 88.619 | 
| 1.7 | 94.34 | 0.867 | 0.0053 | 91.741 | 
| 1.8 | 92.65 | 0.872 | −0.0065 | 92.580 | 
| … | … | … | … | … | 
| 5.0 | 0.00 | 0.049271 | −0.0046 | 1.242 | 
References
- Crookston, B.M.; Erpicum, S. Hydraulic Engineering of Dams. J. Hydraul. Res. 2022, 60, 184–186. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Longobardi, A.; Schmalz, B. SuDS as a Climate Change Adaptation Strategy: Scenario-Based Analysis for an Urban Catchment in Northern Italy. Urban Climb 2023, 51, 101596. [Google Scholar] [CrossRef]
- Kim, B.; Sanders, B.F. Dam-Break Flood Model Uncertainty Assessment: Case Study of Extreme Flooding with Multiple Dam Failures in Gangneung, South Korea. J. Hydraul. Eng. 2016, 142, 05016002. [Google Scholar] [CrossRef]
- Dotson, H.W. Watershed Modeling with HEC-HMS (Hydrologic Engineering Centers-Hydrologic Modeling System) Using Spatially Distributed Rainfall. In Coping with Flash Floods; Springer: Berlin/Heidelberg, Germany, 2001; pp. 219–230. [Google Scholar]
- Gabriel-Martin, I.; Sordo-Ward, A.; Garrote, L.; Granados, I. Hydrological Risk Analysis of Dams: The Influence of Initial Reservoir Level Conditions. Water 2019, 11, 461. [Google Scholar] [CrossRef]
- Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B.-J. Assessing the Operation Rules of a Reservoir System Based on a Detailed Modelling Chain. Nat. Hazards Earth Syst. Sci. 2015, 15, 365–379. [Google Scholar] [CrossRef]
- Todini, E. Hydraulic and Hydrologic Flood Routing Schemes. In Recent Advances in the Modeling of Hydrologic Systems; Bowles, D.S., O’Connell, P.E., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 389–405. [Google Scholar] [CrossRef]
- Fenton, J.D. Flood Routing Methods. J. Hydrol. 2019, 570, 251–264. [Google Scholar] [CrossRef]
- Nematollahi, B.; Niazkar, M.; Talebbeydokhti, N. Analytical and Numerical Solutions to Level Pool Routing Equations for Simplified Shapes of Inflow Hydrographs. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 3147–3161. [Google Scholar] [CrossRef]
- Theodor, S. Numerical Solution of Saint-Venant Equations. J. Hydraul. Div. 1970, 96, 223–252. [Google Scholar] [CrossRef]
- Chow, V. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
- Tseng, M.-H. Kinematic Wave Computation Using an Efficient Implicit Method. J. Hydroinform. 2010, 12, 329–338. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill Science/Engineering/Math: Columbus, OH, USA, 1988. [Google Scholar]
- Fiorentini, M.; Orlandini, S. Robust Numerical Solution of the Reservoir Routing Equation. Adv. Water Resour. 2013, 59, 123–132. [Google Scholar] [CrossRef]
- Guang, L.X.; Ben, D.W.; Hua, S.R. Numerical Solution to Reservoir Flood Routing. J. Hydrol. Eng. 2009, 14, 197–202. [Google Scholar] [CrossRef]
- Basha, H.A. Nonlinear Reservoir Routing: Particular Analytical Solution. J. Hydraul. Eng. 1994, 120, 624–632. [Google Scholar] [CrossRef]
- Arrieta-Pastrana, A.; Coronado-Hernández, O.E.; Coronado-Hernández, J.R. Explicit Scheme for a Hydrological Channel Routing: Mathematical Model and Practical Application. Water 2024, 16, 1480. [Google Scholar] [CrossRef]
- Smith, A.A. A Generalized Approach to Kinematic Flood Routing. J. Hydrol. 1980, 45, 71–89. [Google Scholar] [CrossRef]
- Salvati, A.; Moghaddam Nia, A.; Salajegheh, A.; Shirzadi, A.; Shahabi, H.; Ahmadisharaf, E.; Han, D.; Clague, J.J. A Systematic Review of Muskingum Flood Routing Techniques. Hydrol. Sci. J. 2024, 69, 810–831. [Google Scholar] [CrossRef]
- Barry, D.A.; Bajracharya, K. On the Muskingum-Cunge Flood Routing Method. Environ. Int. 1995, 21, 485–490. [Google Scholar] [CrossRef]
- Tang, X.N.; Knight, D.W.; Samuels, P.G. Volume Conservation in Variable Parameter Muskingum-Cunge Method. J. Hydraul. Eng. 1999, 125, 610–620. [Google Scholar] [CrossRef]
- Liu, C. The Essence of the Generalized Newton Binomial Theorem. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2766–2768. [Google Scholar] [CrossRef]
- De Martino, G.; De Paola, F.; Fontana, N.; Marini, G.; Ranucci, A. Experimental Assessment of Level Pool Routing in Preliminary Design of Floodplain Storage. Sci. Total Environ. 2012, 416, 142–147. [Google Scholar] [CrossRef]
- Tafarojnoruz, A.; Gaudio, R.; Calomino, F. Bridge Pier Scour Mitigation under Steady and Unsteady Flow Conditions. Acta Geophys. 2012, 60, 1076–1097. [Google Scholar] [CrossRef]
- Giuseppe, D.; Ali, T.; Giampiero, S.; Claudia, A.; Francesco, C.; Roberto, G. Modified Einstein Sediment Transport Method to Simulate the Local Scour Evolution Downstream of a Rigid Bed. J. Hydraul. Eng. 2016, 142, 04016041. [Google Scholar] [CrossRef]
- Ecociencias. Evaluación de La Hidrología Superficial de La Cuenca de Cienaga de La Virgen Compuesta Por Los Municipios de Turbaco, Santa Rosa y Villanueva Distrito de Cartagena—Departamento de Bolívar; Ecociencias: Cartagena, Colombia, 2005. [Google Scholar]
- Sierra-Sánchez, A.; Coronado-Hernandez, O.E.; Paternina-Verona, D.A.; Gatica, G.; Ramos, H.M. Statistical Analysis to Quantify the Impact of Map Type on Estimating Peak Discharge in Non-Instrumented Basins. Trans. Energy Syst. Eng. Appl. 2023, 4, 1–17. [Google Scholar] [CrossRef]
- Arrieta-Pastrana, A.; Martínez-Padilla, E. Drenajes Pluviales Principales—Urbanización Barcelona de Indias; Universidad de Cartagena: Cartagena, Colombia, 2007. [Google Scholar]













| Parameter | Units | Range | |
|---|---|---|---|
| From | To | ||
| ) | m | 20 | 120 | 
| ) | - | 1.42 | 1.86 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrieta-Pastrana, A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S. Development of an Explicit Water Level Pool Routing Method in Reservoirs. Water 2024, 16, 2042. https://doi.org/10.3390/w16142042
Arrieta-Pastrana A, Coronado-Hernández OE, Fuertes-Miquel VS. Development of an Explicit Water Level Pool Routing Method in Reservoirs. Water. 2024; 16(14):2042. https://doi.org/10.3390/w16142042
Chicago/Turabian StyleArrieta-Pastrana, Alfonso, Oscar E. Coronado-Hernández, and Vicente S. Fuertes-Miquel. 2024. "Development of an Explicit Water Level Pool Routing Method in Reservoirs" Water 16, no. 14: 2042. https://doi.org/10.3390/w16142042
APA StyleArrieta-Pastrana, A., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2024). Development of an Explicit Water Level Pool Routing Method in Reservoirs. Water, 16(14), 2042. https://doi.org/10.3390/w16142042
 
        




 
       