Agricultural Drought-Triggering for Anticipatory Action in Papua New Guinea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Site
2.1.2. Data
2.2. Methods
2.2.1. Analysis of the Observation Network
2.2.2. Agriculture Drought Indices and the Combined Drought Index
2.2.3. Crisis Timeline for PNG
2.2.4. Bias-Correction of the Seasonal Forecast by Using a Machine Learning Approach
2.2.5. Verification Methods
3. Results
3.1. Analysis of the Representative Zones of PNG’s Observation Network
3.2. Verification of CHIRPS 2.0 and GPM Monthly Rainfall Datasets with In Situ Observations
3.3. Analysis of ENSO and IOD as Predictors of Drought
3.4. Antecedent Circumstances as Forerunners of the Impacts of Drought
3.4.1. The Correlation between VHI and Drought
3.4.2. The Correlation between Monthly Mean Soil Moisture and SPI
3.5. Verification of the ECMWF’s Seasonal Rainfall Forecasts and Application of the ML Approach to Correcting the Bias of Seasonal Forecasts
3.6. Verification of the Drought-Triggering Methodology and Identification of Thresholds for Activating Anticipatory Action
3.7. Practical Solutions Associated with Implementation of the AA
4. Discussion and Summary
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Kuleshov, Y.; McGree, S.; Jones, D.; Charles, A.; Cottrill, A.; Prakash, B.; Atalifo, T.; Nihmei, S.; Seuseu, F.L.S.K. ExtremeWeather and Climate Events and Their Impacts on Island Countries in the Western Pacific: Cyclones, Floods and Droughts. Atmos. Clim. Sci. 2014, 4, 803. [Google Scholar] [CrossRef]
- Iese, V.; Kiem, A.S.; Mariner, A.; Malsale, P.; Tofaeono, T.; Kirono, D.G.C.; Round, V.; Heady, C.; Tigona, R.; Veisa, F. Historical and Future Drought Impacts in the Pacific Islands and Atolls. Clim. Chang. 2021, 166, 19. [Google Scholar] [CrossRef]
- Isaev, E.; Ermanova, M.; Sidle, R.C.; Zaginaev, V.; Kulikov, M.; Chontoev, D. Reconstruction of Hydrometeorological Data Using Dendrochronology and Machine Learning Approaches to Bias-Correct Climate Models in Northern Tien Shan, Kyrgyzstan. Water 2022, 14, 2297. [Google Scholar] [CrossRef]
- Isaev, E.; Murata, A.; Fukui, S.; Sidle, R.C. High-Resolution Dynamic Downscaling of Historical and Future Climate Projections over Central Asia. Cent. Asian J. Water Res. 2024, 10, 91–114. [Google Scholar] [CrossRef]
- Bang, S.; Crimp, S. Accessible Weather Forecasts, Advisories Key to PNG Farm Resilience. Partners Res. Dev. 2019, 3, 14–17. [Google Scholar]
- Behlert, B.; Diekjobst, R.; Felgentreff, C.; Manandhar, T.; Mucke, P.; Pries, L.; Radtke, K.; Weller, D. The World Risk Report 2020; Bündnis Entwicklung Hilft: Bochum, Germany, 2020. [Google Scholar]
- Bourke, R.M.; Harwood, T. Food and Agriculture in Papua New Guinea; ANU E Press: Canberra, Australia, 2009; ISBN 1921536616. [Google Scholar]
- Cobon, D.H.; Ewai, M.; Inape, K.; Bourke, R.M. Food Shortages Are Associated with Droughts, Floods, Frosts and ENSO in Papua New Guinea. Agric. Syst. 2016, 145, 150–164. [Google Scholar] [CrossRef]
- Joseph, J.; Hayoge, G.; Sikas-Iha, H.; Dorosh, P.; Schmidt, E.; Kedir, M.J. Potential Impacts of an El Niño Related Drought on Sweet Potato Consumption and Prices in Papua New Guinea; International Food Policy Research Institute: Washington, DC, USA, 2021. [Google Scholar]
- Smith, I.; Moise, A.; Inape, K.; Murphy, B.; Colman, R.; Chuang, C. ENSO-Related Rainfall Changes over the New Guinea Region. J. Geophys. Res. Atmos. 2013, 118, 10665–10675. [Google Scholar] [CrossRef]
- Nicholls, N. Atmospheric and Climatic Hazards: Improved Monitoring and Prediction for Disaster Mitigation. Nat. Hazards 2001, 23, 137–155. [Google Scholar] [CrossRef]
- Chua, Z.-W.; Kuleshov, Y.; Watkins, A.B. Drought Detection over Papua New Guinea Using Satellite-Derived Products. Remote Sens. 2020, 12, 3859. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Kuleshov, Y.; Chua, Z.-W.; Watkins, A.B.; Choy, S.; Sun, Q. Building Capacity for a User-Centred Integrated Early Warning System for Drought in Papua New Guinea. Remote Sens. 2021, 13, 3307. [Google Scholar] [CrossRef]
- Aitkenhead, I.; Kuleshov, Y.; Bhardwaj, J.; Chua, Z.W.; Sun, C.; Choy, S. Validating a Tailored Drought Risk Assessment Methodology: Drought Risk Assessment in Local Papua New Guinea Regions. Nat. Hazards Earth Syst. Sci. 2023, 23, 553–586. [Google Scholar] [CrossRef]
- Parodi, L.S.I.; Enenkel, M.; Lombardi, N.; Ngaina, J. Anticipatory Action for Drought in the Sahel: An Innovation for Drought Risk Management or a Buzzword? Front. Clim. 2024, 6, 1347519. [Google Scholar] [CrossRef]
- Rüth, A.; Fontaine, L.; De Perez, E.C.; Kampfer, K.; Wyjad, K.; Destrooper, M.; Miller, R. Forecast-Based Financing, Early Warning, and Early Action: A Cutting-Edge Strategy for the International Humanitarian Community. In Routledge Companion to Media and Humanitarian Action; Routledge: New York, NY, USA, 2017; pp. 135–149. ISBN 9781315538129. [Google Scholar]
- Thalheimer, L.; Simperingham, E.; Jjemba, E.W. The Role of Anticipatory Humanitarian Action to Reduce Disaster Displacement. Environ. Res. Lett. 2022, 17, 014043. [Google Scholar] [CrossRef]
- ASEAN (Association of Southeast Asian Nations). ASEAN Framework on Anticipatory Action in Disaster Management; ASEAN Secretariat: Jakarta, Indonesia, 2022. [Google Scholar]
- Global Commission on Adaptation Adapt Now. A Global Call for Leadership on Climate Resilience; World Resources Institute: Washington, DC, USA, 2019. [Google Scholar]
- FAO (Food and Agricultural Organization of the United Nations). The Impact of Disasters on Agriculture and Food Security 2023—Avoiding and Reducing Losses through Investment in Resilience; FAO: Rome, Italy, 2023. [Google Scholar]
- Svoboda, M.; Fuchs, B.A. Handbook of Drought Indicators and Indices|World Meteorological Organization; WMO: Geneva, Switzerland, 2016. [Google Scholar]
- Isaev, E.; Jones, C.; Goncalves, M.; Parkinson, E.; Moniz, T.; Soares, R. Exploring the Application of Artificial Intelligence for Triggering Anticipatory Action in Agricultural Drought: A Timor-Leste Case Study; FAO: Dili, Timor-Leste, 2024. [Google Scholar]
- United Nations Office for Disaster Risk Reduction. Disaster Risk Reduction in Papua New Guinea: Status Report 2019; UNDRR: Bangkok, Thailand, 2019. [Google Scholar]
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, A.K.; Mopafi, I.; Duke, T.A. Perspective on Food and Nutrition in the PNG Highlands; PNG University of Technology: Lae, Papua New Guinea, 2001; Volume 11. [Google Scholar]
- Lutulele, R.P. Sweet Potato Variety Developments in the PNG Highlands: Implications for Future Research and Extension Focus. Food Secur. Papua New Guinea 2001, 99, 730–735. [Google Scholar]
- Shuttle Radar Topography Mission (SRTM) Global. NASA Shuttle Radar Topogr. Mission 2013. [CrossRef]
- CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations|Climate Hazards Center—UC Santa Barbara. Available online: https://www.chc.ucsb.edu/data/chirps (accessed on 16 December 2022).
- Wild, A.; Chua, Z.-W.; Kuleshov, Y. Evaluation of Satellite Precipitation Estimates over the South West Pacific Region. Remote Sens. 2021, 13, 3929. [Google Scholar] [CrossRef]
- Jackson, G.; Berg, W.; Kidd, C.; Kirschbaum, D.; Petersen, W.; Huffman, G.; Takayabu, Y. Global Precipitation Measurement (GPM): Unified Precipitation Estimation from Space. In Remote Sensing of Clouds and Precipitation; Springer: Cham, Switzerland, 2018; pp. 175–193. [Google Scholar]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L. ESA CCI Soil Moisture for Improved Earth System Understanding: State-of-the Art and Future Directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Colliander, A.; Chen, F.; Crow, W. The SMAP Mission Combined Active-Passive Soil Moisture Product at 9 Km and 3 Km Spatial Resolutions. Remote Sens. Environ. 2018, 211, 204–217. [Google Scholar] [CrossRef]
- FAO; GIEWS; Earth Observation. Available online: https://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&code=TLS (accessed on 1 September 2023).
- Tokyo Climate Center El Niño and IOD Monitoring. Available online: https://ds.data.jma.go.jp/tcc/tcc/products/elnino/index/index.html (accessed on 1 September 2023).
- WMO. Guide to the Global Observing System, 2010th ed.; WMO: Geneva, Switzerland, 2017. [Google Scholar]
- Isaev, E.; Aniskina, O. Impact of Cloud Microphysic Parametrization Schemes on the Quality of Atmospheric Processes Forecast in Areas with Complex Relief over Territory Kyrgyzstan. Uchenye Zap. RGGMU 2015, 38, 118–125. [Google Scholar]
- Chung, W.; Abdel-Aty, M.; Lee, J. Spatial Analysis of the Effective Coverage of Land-Based Weather Stations for Traffic Crashes. Appl. Geogr. 2018, 90, 17–27. [Google Scholar] [CrossRef]
- Park, S.; Lim, C.H.; Kim, S.J.; Isaev, E.; Choi, S.E.; Lee, S.D.; Lee, W.K. Assessing Climate Change Impact on Cropland Suitability in Kyrgyzstan: Where Are Potential High-Quality Cropland and the Way to the Future. Agronomy 2021, 11, 1490. [Google Scholar] [CrossRef]
- Chang, S.; Isaev, E.; Chen, H.; Wu, B.; Meng, J.; Yan, N.; Ma, Z. Exploring the Linkages between Different Types of Drought and Their Impacts on Crop Production in Kyrgyzstan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4566–4580. [Google Scholar] [CrossRef]
- Wang, P.-X.; Li, X.-W.; Gong, J.-Y.; Song, C.-H. Vegetation Temperature Condition Index and Its Application for Drought Monitoring. In Proceedings of the International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001; pp. 141–143. [Google Scholar]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Sp. Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Kogan, F.N.; Stark, R.; Gitelson, A.; Jargalsaikhan, L.; Dugrajav, C.; Tsooj, S. Derivation of Pasture Biomass in Mongolia from AVHRR-Based Vegetation Health Indices. Int. J. Remote. Sens. 2004, 25, 2889–2896. [Google Scholar] [CrossRef]
- Luong, N.D.; Hiep, N.H.; Bui, T.H. Investigating the Spatio-Temporal Variation of Soil Moisture and Agricultural Drought towards Supporting Water Resources Management in the Red River Basin of Vietnam. Sustainability 2021, 13, 4926. [Google Scholar] [CrossRef]
- Levine, S.; Wilkinson, E.; Weingärtner, L.; Mall, P. Anticipatory Action for Livelihood Protection; Overseas Development Institute: London, UK, 2020. [Google Scholar]
- Nabavi, S.O.; Haimberger, L.; Abbasi, E. Assessing PM 2.5 Concentrations in Tehran, Iran, from Space Using MAIAC, Deep Blue, and Dark Target AOD and Machine Learning Algorithms. Atmos. Pollut. Res. 2019, 10, 889–903. [Google Scholar] [CrossRef]
- Chang, Y.S.; Chiao, H.T.; Abimannan, S.; Huang, Y.P.; Tsai, Y.T.; Lin, K.M. An LSTM-Based Aggregated Model for Air Pollution Forecasting. Atmos. Pollut. Res. 2020, 11, 1451–1463. [Google Scholar] [CrossRef]
- Bolourani, S.; Brenner, M.; Wang, P.; McGinn, T.; Hirsch, J.S.; Barnaby, D.; Zanos, T.P.; Barish, M.; Cohen, S.L.; Coppa, K.; et al. A Machine Learning Prediction Model of Respiratory Failure within 48 Hours of Patient Admission for COVID-19: Model Development and Validation. J. Med. Internet Res. 2021, 23, e24246. [Google Scholar] [CrossRef] [PubMed]
- Czernecki, B.; Marosz, M.; Jędruszkiewicz, J. Assessment of Machine Learning Algorithms in Short-Term Forecasting of PM10 and PM2.5 Concentrations in Selected Polish Agglomerations. Aerosol Air Qual. Res. 2021, 21, 200586. [Google Scholar] [CrossRef]
- Isaev, E.; Ajikeev, B.; Shamyrkanov, U.; Kalnur, K.; Maisalbek, K.; Sidle, R.C. Impact of Climate Change and Air Pollution Forecasting Using Machine Learning Techniques in Bishkek. Aerosol Air Qual. Res. 2022, 22, 210336. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015 21 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Heidke, P. Berechnung Des Erfolges Und Der Gute Der Windstarkevorhersagen Im Sturmwarnungsdienst (Measures of Success and Goodness of Wind Force Forecasts by the Gale-Warning Service). Geogr. Ann. 1926, 8, 301–349. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 213–220. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioners Guide in Atmospheric Science; John Wiley & Sons: Hoboken, NJ, USA, 2012; p. 292. [Google Scholar]
- Isaev, E.; Kulikov, M.; Shibkov, E.; Sidle, R.C. Bias Correction of Sentinel-2 with Unmanned Aerial Vehicle Multispectral Data for Use in Monitoring Walnut Fruit Forest in Western Tien Shan, Kyrgyzstan. J. Appl. Remote. Sens. 2022, 17, 022204. [Google Scholar] [CrossRef]
- Enenkel, M.; Dall, K.; Huyck, C.K.; McClain, S.N.; Bell, V. Monitoring, Evaluation, Accountability, and Learning (MEAL) in Anticipatory Action—Earth Observation as a Game Changer. Front. Clim. 2022, 4, 923852. [Google Scholar] [CrossRef]
- Alahacoon, N.; Amarnath, G.; Gnanatheepan, W. Development of an Anticipatory Action Plan for Drought Hazard in Sri Lanka; International Water Management Institute: Anuradhapura, Sri Lanka, 2023. [Google Scholar]
- Guimarães Nobre, G.; Towner, J.; Nhantumbo, B.; João da Conceição Marcos Matuele, C.; Raiva, I.; Pasqui, M.; Bonifácio, R. Ready, Set, Go! An Anticipatory Action System against Droughts. EGU Sph. 2024, 1–30. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Svoboda, M.D. Drought Early Warning Systems in the Context of Drought Preparedness and Mitigation; WMO: Geneva, Switzerland, 2000. [Google Scholar]
- Esit, M.; Kumar, S.; Pandey, A.; Lawrence, D.M.; Rangwala, I.; Yeager, S. Seasonal to Multi-Year Soil Moisture Drought Forecasting. Clim. Atmos. Sci. 2021, 4, 16. [Google Scholar] [CrossRef]
- UNESCAP. Ready for the Dry Years: Building Resilience to Drought in South-East Asia; UNESCAP: Bangkok, Thailand, 2021. [Google Scholar]
- De Perez, E.C.; Harrison, L.; Berse, K.; Easton-Calabria, E.; Marunye, J.; Marake, M.; Zauisomue, E.H. Adapting to Climate Change through Anticipatory Action: The Potential Use of Weather-Based Early Warnings. Weather Clim. Extrem. 2022, 38, 100508. [Google Scholar] [CrossRef]
- Zaki, M.K.; Noda, K. A Systematic Review of Drought Indices in Tropical Southeast Asia. Atmosphere 2022, 13, 833. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical Bias Correction for Daily Precipitation in Regional Climate Models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Ghosh, S.; Lu, J.; Das, P.; Zhang, Z. Machine Learning Algorithms for Merging Satellite-Based Precipitation Products and Their Application on Meteorological Drought Monitoring over Kenya. Clim. Dyn. 2024, 62, 141–163. [Google Scholar] [CrossRef]
- Sivakumar, M.V.; Stefanski, R.; Bazza, M.; Zelaya, S.; Wilhite, D.; Magalhaes, A.R. High Level Meeting on National Drought Policy: Summary and Major Outcomes. Weather Clim. Extrem. 2014, 3, 126–132. [Google Scholar] [CrossRef]
- Hayes, M.J.; Wilhelmi, O.V.; Knutson, C.L. Reducing Drought Risk: Bridging Theory and Practice. Nat. Hazards Rev. 2004, 5, 106–113. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Sivakumar, M.V.; Pulwarty, R. Managing Drought Risk in a Changing Climate: The Role of National Drought Policy. Weather Clim. Extrem. 2014, 3, 4–13. [Google Scholar] [CrossRef]
- Bandyopadhyay, N.; Bhuiyan, C.; Saha, A.K. Drought Mitigation: Critical Analysis and Proposal for a New Drought Policy with Special Reference to Gujarat (India). Prog. Disaster Sci. 2020, 5, 100049. [Google Scholar] [CrossRef]
Drought Indices | No Drought | Mild Drought | Moderate Drought | Severe Drought | Extreme Drought |
---|---|---|---|---|---|
SPI | >0.00 | −0.99 to 0.00 | −1.49 to −1.00 | −1.99 to −1.5 | <−2.00 |
SMAPI | >−0.05 | −0.15 to −0.05 | −0.30 to −0.15 | −050 to −0.30 | <−0.50 |
VHI | >0.40 | 0.30 to 0.40 | 0.20 to 0.30 | 0.10 to 0.20 | 0.00 to 0.10 |
CDI | No Drought | Mild Drought | Moderate Drought | Severe Drought | Extreme Drought |
---|---|---|---|---|---|
SPI3 | ≥0.00 | <0.00 | ≤−1.00 | ≤−1.00 | ≤−1.5 |
SPI1 | ≥0.00 | <0.00 | <0.00 | ≤−1.00 | ≤−1.00 |
SMAPI | ≥0.00 | <0.00 | ≤−0.05 | ≤−0.15 | ≤−0.30 |
VHI | >0.40 | 0.40 to 0.50 | 0.40 to 0.50 | <0.40 | <0.40 |
PNG Crisis Timeline | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2023 | 2024 | |||||||||||||
Month | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May |
Climate patterns | Dry season | Wet season | |||||||||||||
El Niño phase | Development Phase | Peak Phase | Impact phase | ||||||||||||
Main crops | Crops in PNG are grown on a continuous and rotational basis | ||||||||||||||
Impact of drought on crops | Peak impact | ||||||||||||||
Impact of drought on livestock | Peak impact | ||||||||||||||
Emergency response timings | Peak response time | ||||||||||||||
Early warning | * | ** | |||||||||||||
Anticipatory actions | *** | **** |
Event Forecast | Event Observed | |
---|---|---|
Yes | No | |
Yes | a (hit) | b (false alarm) |
No | c (miss) | d (correct rejection) |
CDI with a Lead Time of 3 Months | HSS | |
---|---|---|
Western (Kiunga) | Western Highlands | |
CDI = no drought | 0.99 | 0.99 |
CDI = mild drought | 0.49 | 0.38 |
CDI = moderate drought | 0.63 | 0.48 |
CDI = severe drought | 0.33 | - |
Year | Month | CDI with a Lead Time of 3 Months | Observed Monthly SMAPI for the CDI Forecasted Month (Western Province), % | CDI with a Lead Time of 3 Months | Observed Monthly SMAPI for the CDI Forecasted Month (Western Highlands), % | ||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | ||||
1997 | 1 | No drought | 1 | 0 | −1 | No drought | 0 | 0 | −1 |
1997 | 2 | No drought | 0 | −1 | −1 | No drought | 0 | −1 | 0 |
1997 | 3 | Mild drought | −1 | −1 | −5 | No drought | −1 | 0 | −2 |
1997 | 4 | Mild drought | −1 | −5 | −9 | No drought | 0 | −2 | −6 |
1997 | 5 | Mild drought | −5 | −9 | 0 | Mild drought | −2 | −6 | −2 |
1997 | 6 | Mild drought | −9 | 0 | −8 | Mild drought | −6 | −2 | −7 |
1997 | 7 | No drought | 0 | −8 | −19 | No drought | −2 | −7 | −18 |
1997 | 8 | Moderate drought | −8 | −19 | −18 | Moderate drought | −7 | −18 | −12 |
1997 | 9 | Severe drought | −19 | −18 | −30 | Moderate drought | −18 | −12 | −16 |
1997 | 10 | Severe drought | −18 | −30 | −15 | Moderate drought | −12 | −16 | −7 |
1997 | 11 | Moderate drought | −30 | −15 | −6 | Moderate drought | −16 | −7 | −5 |
1997 | 12 | Mild drought | −15 | −6 | 0 | Mild drought | −7 | −5 | 1 |
2015 | 1 | No drought | 0 | 0 | −1 | No drought | 0 | 1 | 0 |
2015 | 2 | No drought | 0 | −1 | 0 | No drought | 1 | 0 | 1 |
2015 | 3 | No drought | −1 | 0 | 0 | No drought | 0 | 1 | −1 |
2015 | 4 | No drought | 0 | 0 | 1 | No drought | 1 | −1 | 0 |
2015 | 5 | Mild drought | 0 | 1 | −5 | Mild drought | −1 | 0 | −5 |
2015 | 6 | No drought | 1 | −5 | −5 | Mild drought | 0 | −5 | −7 |
2015 | 7 | Mild drought | −5 | −5 | −8 | Mild drought | −5 | −7 | −10 |
2015 | 8 | Moderate drought | −5 | −8 | −18 | Moderate drought | −7 | −10 | −17 |
2015 | 9 | Moderate drought | −8 | −18 | −15 | Moderate drought | −10 | −17 | −8 |
2015 | 10 | Moderate drought | −18 | −15 | −9 | Moderate drought | −17 | −8 | −6 |
2015 | 11 | Mild drought | −15 | −9 | −9 | Mild drought | −8 | −6 | −1 |
2015 | 12 | Mild drought | −9 | −9 | −2 | Mild drought | −6 | −1 | 0 |
2023 | 1 | No drought | 0 | 0 | 0 | No drought | 0 | 0 | 0 |
2023 | 2 | No drought | 0 | 0 | 0 | No drought | 0 | 0 | 0 |
2023 | 3 | No drought | 0 | 0 | 1 | No drought | 0 | 0 | 1 |
2023 | 4 | No drought | 0 | 1 | 1 | No drought | 0 | 1 | 2 |
2023 | 5 | No drought | 1 | 1 | 0 | No drought | 1 | 2 | −1 |
2023 | 6 | No drought | 1 | 0 | −3 | No drought | 2 | −1 | −5 |
2023 | 7 | No drought | 0 | −3 | −6 | Mild drought | −1 | −5 | 0 |
2023 | 8 | Mild drought | −3 | −6 | −16 | Mild drought | −5 | 0 | 1 |
2023 | 9 | Moderate drought | −6 | −16 | −5 | No drought | 0 | 1 | −1 |
2023 | 10 | Mild drought | −16 | −5 | 2 | No drought | 1 | −1 | 1 |
2023 | 11 | No drought | −5 | 2 | 0 | No drought | −1 | 1 | 0 |
2023 | 12 | No drought | 2 | 0 | 0 | No drought | 1 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaev, E.; Yuave, N.; Inape, K.; Jones, C.; Dawa, L.; Sidle, R.C. Agricultural Drought-Triggering for Anticipatory Action in Papua New Guinea. Water 2024, 16, 2009. https://doi.org/10.3390/w16142009
Isaev E, Yuave N, Inape K, Jones C, Dawa L, Sidle RC. Agricultural Drought-Triggering for Anticipatory Action in Papua New Guinea. Water. 2024; 16(14):2009. https://doi.org/10.3390/w16142009
Chicago/Turabian StyleIsaev, Erkin, Nathan Yuave, Kasis Inape, Catherine Jones, Lazarus Dawa, and Roy C. Sidle. 2024. "Agricultural Drought-Triggering for Anticipatory Action in Papua New Guinea" Water 16, no. 14: 2009. https://doi.org/10.3390/w16142009
APA StyleIsaev, E., Yuave, N., Inape, K., Jones, C., Dawa, L., & Sidle, R. C. (2024). Agricultural Drought-Triggering for Anticipatory Action in Papua New Guinea. Water, 16(14), 2009. https://doi.org/10.3390/w16142009