Enhancing Urban Flood Forecasting: Integrating Weather Forecasts and Hydrological Models
Abstract
:1. Introduction
2. Case Study and Data Description
2.1. Overview of the Typhoon Khanun Process
2.2. Circulation Situation Analysis
3. Methods
3.1. Weather Research and Forecasting Model
3.2. InfoWorks ICM Modeling
3.3. Statistical Methods
4. Results and Discussion
4.1. Comparative Analysis of Meteorological Elements
4.1.1. Simulation Test of Horizontal Basic Elements
4.1.2. Simulation Test of Vertical Basic Elements
4.2. Analysis of Precipitation Simulation Results
4.2.1. Comparison of Precipitation Simulation Results
4.2.2. Precipitation Simulation Test
4.3. Analysis of Streamflow Simulation Results
5. Conclusions and Discussions
- (1)
- Based on the precipitation evaluations of the above examples, the 36 h rainfall distribution simulated by the NSSL and Lin schemes exhibited better results than those of other cloud microphysical parameterization schemes. The TS score results confirmed the above conclusion and indicated that the NSSL scheme is optimal. However, when applied the simulated precipitation from NSSL to the InfoWorks ICM model to simulate flooding, the results were not optimal.
- (2)
- The InfoWorks ICM was used to establish an urban stormwater model for the study area. The results show that the P3 scheme is the best for simulating the flood peak and process flow, indicating that the model is more sensitive to rainfall process changes due to input precipitation and that the precipitation process of the WRF simulation results requires further comparison and evaluation.
- (3)
- The atmospheric-hydrological model adopts a one-way coupling method with precipitation as the coupling variable. The results show that the optimal solution P3 exhibits an RMSE, correlation coefficient, and NSE of 2.6, 0.73, and 0.48, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cong, C.; Chen, L.; Lei, X.; Li, Y. A Study on the Mechanism of the Tropical Cyclone Remote Precipitation. Acta Meteorol. Sin. 2012, 70, 717–727. [Google Scholar]
- Shanghai Typhoon Institute of China Meteorological Administration. Climatological Atlas of Tropical Cyclones over the Western North Pacific (1981–2010); Science Press: Beijing, China, 2017. [Google Scholar]
- Meng, Z.; Xu, X.; Chen, L. Mesoscale Characteristics of the Interaction between Tc Tim(9406) and Mid-Latitude Circulation. Acta Meteorol. Sin. 2002, 60, 31–39. [Google Scholar]
- Cong, C.; Chen, L.; Lei, X.; Li, Y. An Overview on the Study of Tropical Cyclone Remote Rainfall. J. Trop. Meteorol. 2011, 27, 264–270. [Google Scholar]
- Xu, H.; Li, X.; Yin, J.; Zhang, D. Predecessor rain events in the yangtze river delta region associated with south China sea and northwest pacific ocean (SCS-WNPO) tropical cyclones. Adv. Atmos. Sci. 2023, 40, 1021–1042. [Google Scholar] [CrossRef]
- Son, Y.; Lorenzo, E.D.; Luo, J. WRF-hydro-CUFA: A scalable and adaptable coastal-urban flood model based on the WRF-hydro and SWMM models. Environ. Model. Softw. 2023, 167, 105770. [Google Scholar] [CrossRef]
- Xia, Q.; Fan, Y.; Zhang, H.; Jiang, C.; Wang, Y.; Hua, X.; Liu, D. A Review on the Development of Two-Way Coupled Atmospheric-Hydrological Models. Sustainability 2023, 15, 2803. [Google Scholar] [CrossRef]
- Wagner, S.; Fersch, B.; Yuan, F.; Yu, Z.; Kunstmann, H. Fully coupled atmospheric-hydrological modeling at regional and long-term scales: Development, application, and analysis of WRF-HMS. Water Resour. Res. 2016, 52, 3187–3211. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Li, C.; Yu, F.; Wang, W.; Qiu, Q. Parameter Sensitivity Analysis of the WRF-Hydro Modeling System for Streamflow Simulation: A Case Study in Semi-Humid and Semi-Arid Catchments of Northern China. Asia-Pac. J. Atmos. Sci. 2021, 57, 451–466. [Google Scholar] [CrossRef]
- Song, H.-J.; Lim, K.-S.S. Evaluation of bulk microphysics parameterizations for simulating the vertical structure of heavy rainfall between Korea and the United States. Weather. Clim. Extrem. 2022, 37, 100490. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Lord, S.J.; Willoughby, H.E.; Piotrowicz, J.M. Role of a Parameterized Ice-Phase Microphysics in an Axisymmetric, Nonhydrostatic Tropical Cyclone Model. J. Atmos. Sci. 1984, 41, 2836–2848. [Google Scholar] [CrossRef]
- Xu, W.; Chen, H.; Wei, H.; Luo, Y.; Zhao, T. Extreme Precipitation Produced by Relatively Weak Convective Systems in the Tropics and Subtropics. Geophys. Res. Lett. 2022, 49, e2022GL098048. [Google Scholar] [CrossRef]
- Gu, X.; Li, G. Impact of cloud microphysical schemes on numerical simulation of a plateau shear line rainstorm event. J. Yunnan Univ. (Nat. Sci. Ed.) 2019, 41, 526–536. [Google Scholar]
- Pang, Q.; Ping, F.; Shen, X.; Liu, L. A Comparative Study of Effects of Different Microphysics Schemes on Precipitation Simulation for Typhoon Mujigae (2015). Chin. J. Atmos. Sci. 2019, 43, 202–220. [Google Scholar] [CrossRef]
- Zhou, W.; Lu, C.; Gao, W.; Deng, L. A Modeling Study of the Evolution and Microphysical Mechanisms of a Warm-Sector Heavy Rainfall in South China. J. Trop. Meteorol. 2020, 36, 805–820. [Google Scholar] [CrossRef]
- Liu, J.; Bray, M.; Han, D. A study on WRF radar data assimilation for hydrological rainfall prediction. Hydrol. Earth Syst. Sci. 2013, 17, 3095–3110. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Xu, B.; Li, C.; Liu, Y.; Yu, F. A WRF/WRF-Hydro coupling system with an improved structure for rainfall-runoff simulation with mixed runoff generation mechanism. J. Hydrol. 2022, 612, 128049. [Google Scholar] [CrossRef]
- Ravazzani, G.; Amengual, A.; Ceppi, A.; Homar, V.; Romero, R.; Lombardi, G.; Mancini, M. Potentialities of ensemble strategies for flood forecasting over the Milano urban area. J. Hydrol. 2016, 539, 237–253. [Google Scholar] [CrossRef]
- Thorndahl, S.; Nielsen, J.E.; Jensen, D.G. Urban pluvial flood prediction: A case study evaluating radar rainfall nowcasts and numerical weather prediction models as model inputs. Water Sci. Technol. 2016, 74, 2599–2610. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, D.; Li, X. The Impacts of Microphysics and Terminal Velocities of Graupel/Hail on the Rainfall of Typhoon Fitow (2013) as Seen from the WRF Model Simulations with Several Microphysics Schemes. J. Geophys. Res. Atmos. 2021, 126, e2020JD033940. [Google Scholar] [CrossRef]
- Xu, H.; Li, X. Torrential rainfall processes associated with a landfall of Typhoon Fitow (2013): A three-dimensional WRF modeling study. J. Geophys. Res. Atmos. 2017, 122, 6004–6024. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, D. Impacts of cloud radiative processes on the convective and stratiform rainfall associated with typhoon fitow (2013). Front. Earth Sci. 2022, 16, 1052–1060. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, H.; Zhang, J.; Zeng, X.; Ye, L.; Liu, Y.; Tayyab, M.; Chen, Y. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China. Meteorol. Atmos. Phys. 2018, 130, 635–647. [Google Scholar] [CrossRef]
- Hunt, K.M.R.; Menon, A. The 2018 Kerala floods: A climate change perspective. Clim. Dyn. 2020, 54, 2433–2446. [Google Scholar] [CrossRef]
- Gu, Y.; Peng, D.; Deng, C.; Zhao, K.; Pang, B.; Zuo, D. Atmospheric–hydrological modeling for Beijing’s sub-center based on WRF and SWMM. Urban Clim. 2022, 41, 101066. [Google Scholar] [CrossRef]
- Liu, T.; Yu, J.; Meng, Q.; Wang, Y.; Zhang, X. Near-inertial oscillation response of typhoon ‘Kanu’ in the northeastern continental shelf of the South China Sea. Mar. Forecast. 2022, 39, 83–89. [Google Scholar]
- Jin, Q.; Li, W. Influence Analysis of Typhoon Khanun to Ningbo City. China Water Resour. 2018, 841, 35–36. [Google Scholar]
- Duan, J.; Qian, Y.; Jiang, J.; Wang, Y.; Wu, Z. Causes of Rainstorm Enhancement in Northeastern Zhejiang Related with Typhoon Khanun Landing in Guangdong Province. J. Arid Meteorol. 2020, 38, 737–746. [Google Scholar]
- Chen, S.-H.; Sun, W.-Y. A One-dimensional Time Dependent Cloud Model. J. Meteorol. Soc. Jpn. Ser. II 2002, 80, 99–118. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Milbrandt, J.A.; Yau, M.K. A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter. J. Atmos. Sci. 2005, 62, 3051–3064. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Yau, M.K. A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description. J. Atmos. Sci. 2005, 62, 3065–3081. [Google Scholar] [CrossRef]
- Lin, Y.; Colle, B.A. A New Bulk Microphysical Scheme That Includes Riming Intensity and Temperature-Dependent Ice Characteristics. Mon. Weather Rev. 2011, 139, 1013–1035. [Google Scholar] [CrossRef]
- Lim, K.-S.S.; Hong, S.-Y. Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E.C. Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics. J. Atmos. Sci. 2010, 67, 171–194. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Morrison, H.; Milbrandt, J.A. Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests. J. Atmos. Sci. 2015, 72, 287–311. [Google Scholar] [CrossRef]
- Khain, A.; Lynn, B.; Dudhia, J. Aerosol Effects on Intensity of Landfalling Hurricanes as Seen from Simulations with the WRF Model with Spectral Bin Microphysics. J. Atmos. Sci. 2010, 67, 365–384. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, P.; Li, Y.; Wang, L.; Chen, C.; Li, J.; Hu, T. Management of the designed risk level of urban drainage system in the future: Evidence from haining city, China. J. Environ. Manag. 2024, 351, 119846. [Google Scholar] [CrossRef]
- Pan, J.; Chen, Y.; Tang, W.; Wang, L.; Wang, P.; Hu, T. InfoWorks icm-based simulative study on rainstorm waterlogging for Asian Games venues in Lin’An District. Water Resour. Hydropower Eng. 2023, 54, 12–21. [Google Scholar] [CrossRef]
- Su, Z.; Li, L.; Ren, F.; Zhu, J.; Liu, C.; Wan, Q.; Sun, Q.; Jia, L. Study of Landfalling Typhoon Potential Maximum Gale Forecasting in South China. Atmosphere 2023, 14, 888. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, D.; Yang, R.; Yang, H. Predecessor rain events over China’s low-latitude highlands associated with Bay of Bengal tropical cyclones. Clim. Dyn. 2018, 50, 825–843. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Yin, J.; Zhou, L.; Song, Y.; Hu, T. Microphysics affect the sensitivities of rainfall to different horizontal-resolution simulations: Evidence from a case study of the Weather Research and Forecasting model runs. Atmos. Res. 2023, 296, 107022. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Chen, S.; Li, W.; Zhang, A. Mechanisms of the transport height of water vapor by tropical cyclones on heavy rainfall. Weather Clim. Extrem. 2023, 41, 100587. [Google Scholar] [CrossRef]
Configuration | Options |
---|---|
Initial Filed | ERA5 reanalysis data (1° × 1°) |
Nesting Options | D01: 184 × 150 × 35; D02:331 × 271 × 35; D03:301 × 232 × 35; D04: 502 × 472 × 35; D05: 502 × 295 × 35 |
Center Point | (25° N, 121° E) |
Resolutions | 27 km (d01); 9 km (d02); 3 km (d03); 1 km (d04); 3 km (d05) |
The top of the vertical height | 20 hPa |
Vertical layers | 35 |
Microphysical schemes | WSM6; Purdue-Lin; Milbrandt-Yau; WDM6; Thompson; NSSL; Morrison; SBU_YLin; P3 |
Cumulus Parameterization | Grell–Devenyi |
Radiation schemes | RRTMG |
Land-Surface Models | Noah |
Planetary Boundary Layer schemes | YSU |
Item | Full Name | Reference |
---|---|---|
Lin | The Purdue–Lin scheme | [30] |
WSM6 | The WRF single-moment 6-class graupel scheme | [31] |
Milbrandt –Yau | The Milbrandt–Yau 2-moment scheme | [32,33] |
SBU_YLin | The SBU_YLin 5-class scheme | [34] |
WDM6 | The WRF double-moment 6-class scheme | [35] |
NSSL | The NSSL 2-moment scheme with CCNs Prediction | [36] |
Thompson | The Aerosol-aware Thompson scheme | [37] |
Morrison | The Morrison double-moment scheme | [38] |
P3 | The Predicted Particle Properties scheme | [39] |
SBM | The Spectral Bin Microphysics scheme | [40] |
PREs | Predecessor Rain Events | / |
InfoWorks ICM | Integrated Catchment Modeling | / |
WRF | Weather Research and Forecasting model | / |
ERA5 | ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis V5 | / |
Number of Flow Generating Surface | Flow Generating Surface | Runoff Type | Fixed Runoff Coefficient | Initial Loss Type | Initial Loss Value | Runoff Coefficient |
---|---|---|---|---|---|---|
1 | Roads | Fixed | 0.9 | Abs 1 | 0.002 | 0.018 |
2 | Buildings | Fixed | 0.8 | Abs | 0.001 | 0.020 |
3 | Greenery | Horton | / | Abs | 0.0030 | 0.030 |
4 | Bare ground | Horton | / | Abs | 0.0025 | 0.040 |
5 | Others | Fixed | 0.5 | Abs | 0.0050 | 0.025 |
Name (Symbol) | Formula | Optimal Value |
---|---|---|
The Nash efficiency coefficient (NSE) | 1 | |
The relative error of peak streamflow (REP) | 0 | |
The absolute error of the time of peak occurrence (AET) | 0 | |
Pearson correlation coefficient (PCC) | 1 | |
Root mean square error (RMSE) | 0 | |
Mean bias error (MBE) | 0 |
Variables | Methods | Lin | WSM6 | Milbrandt–Yau | SBU_Y Lin | WDM6 | NSSL | Thompson | Morrison | P3 |
---|---|---|---|---|---|---|---|---|---|---|
Geo-potential height field | PCC | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
RMSE | 2.37 | 2.42 | 2.40 | 2.37 | 2.41 | 2.41 | 2.39 | 2.37 | 2.42 | |
Wind field | PCC | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
RMSE | 2.85 | 2.98 | 2.87 | 2.85 | 2.95 | 2.91 | 2.87 | 2.85 | 2.97 | |
Temperature | PCC | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
RMSE | 0.82 | 0.82 | 0.80 | 0.75 | 0.89 | 0.80 | 0.83 | 0.77 | 0.84 | |
Water vapor mixing ratio | PCC | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
RMSE | 0.65 | 0.62 | 0.68 | 0.61 | 0.64 | 0.67 | 0.66 | 0.63 | 0.64 |
Rainfall Level | 24 h Cumulative Rainfall (mm) |
---|---|
Light rain | ≥0.1 |
Moderate rain | ≥10 |
Heavy rain | ≥25 |
Torrential rain | ≥50 |
Heavy torrential rain | ≥100 |
Extreme torrential rain | ≥250 |
Precipitation | Lin | WSM6 | Milbrandt–Yau | SBU_ YLin | WDM6 | NSSL | Thompson | Morrison | P3 | Averaged |
---|---|---|---|---|---|---|---|---|---|---|
Light rain | 0.99 | 0.99 | 0.99 | 0.99 | 0.96 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Moderate rain | 0.77 | 0.78 | 0.81 | 0.85 | 0.74 | 0.76 | 0.78 | 0.80 | 0.75 | 0.78 |
Heavy rain | 0.74 | 0.73 | 0.66 | 0.71 | 0.72 | 0.75 | 0.76 | 0.72 | 0.70 | 0.72 |
Torrential rain | 0.56 | 0.56 | 0.46 | 0.54 | 0.60 | 0.60 | 0.52 | 0.51 | 0.58 | 0.55 |
Heavy torrential rain | 0.43 | 0.49 | 0.38 | 0.42 | 0.54 | 0.53 | 0.35 | 0.39 | 0.41 | 0.44 |
Extreme torrential rain | 0.11 | 0.11 | 0.09 | 0.11 | 0.11 | 0.12 | 0.10 | 0.09 | 0.12 | 0.11 |
Averaged | 0.60 | 0.61 | 0.57 | 0.60 | 0.61 | 0.63 | 0.58 | 0.58 | 0.59 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, L.; Lou, Y.; Hu, T.; Wu, J.; Xu, H. Enhancing Urban Flood Forecasting: Integrating Weather Forecasts and Hydrological Models. Water 2024, 16, 2004. https://doi.org/10.3390/w16142004
Liu Y, Wang L, Lou Y, Hu T, Wu J, Xu H. Enhancing Urban Flood Forecasting: Integrating Weather Forecasts and Hydrological Models. Water. 2024; 16(14):2004. https://doi.org/10.3390/w16142004
Chicago/Turabian StyleLiu, Yebing, Luoyang Wang, Yihan Lou, Tangao Hu, Jiaxi Wu, and Huiyan Xu. 2024. "Enhancing Urban Flood Forecasting: Integrating Weather Forecasts and Hydrological Models" Water 16, no. 14: 2004. https://doi.org/10.3390/w16142004
APA StyleLiu, Y., Wang, L., Lou, Y., Hu, T., Wu, J., & Xu, H. (2024). Enhancing Urban Flood Forecasting: Integrating Weather Forecasts and Hydrological Models. Water, 16(14), 2004. https://doi.org/10.3390/w16142004