Evaluation and Comparison of Five Long-Term Precipitation Datasets in the Hang-Jia-Hu Plain of Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Ground Observations
2.2.2. Gridded Precipitation Datasets
Precipitation Datasets | Time Series | Spatial Resolution | Temporal Resolution | Reference |
---|---|---|---|---|
CHM_PRE | 1961–2022 | 0.1 degrees | Daily | [33] |
CMFD | 1979–2018 | 0.1 degrees | 3-Hourly | [32] |
HHU | 1960–2020 | 1 km | Monthly | [29] |
HRLT | 1961–2019 | 1 km | Daily | [30] |
NWAFU | 1901–2022 | 1 km | Monthly | [31] |
2.3. Methods
3. Results
3.1. Evaluation of Precipitation Datasets at Different Time Scales
3.1.1. Annual Scale
3.1.2. Monthly Scale
3.2. Differences in Spatiotemporal Characteristics of Precipitation Datasets
3.2.1. Differences in the Trend and Properties of Precipitation
3.2.2. Spatial Distribution Comparison
3.3. Differences in the Frequency of Precipitation Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Stations | NSE | RMSE (mm/d) | ME (mm/d) | R | DISO |
---|---|---|---|---|---|
CHM_PRE | 0.96 | 2.07 | −0.11 | 0.98 | 0.60 |
CMFD | 0.50 | 7.06 | 0.19 | 0.72 | 2.11 |
HRLT | 0.76 | 4.93 | −0.02 | 0.87 | 1.45 |
References
- Tang, G.; Wan, W.; Zeng, Z.; Guo, X.; Li, N.; Long, D.; Hong, Y. An overview of the Global Precipitation Measurement (GPM) mission and it’s latest development. Remote Sens. Technol. Appl. 2015, 30, 607–615. [Google Scholar] [CrossRef]
- Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar] [CrossRef] [PubMed]
- Tradowsky, J.S.; Philip, S.Y.; Kreienkamp, F.; Kew, S.F.; Lorenz, P.; Arrighi, J.; Bettmann, T.; Caluwaerts, S.; Chan, S.C.; De Cruz, L.; et al. Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021. Clim. Change 2023, 176, 90. [Google Scholar] [CrossRef]
- Wang, X.Y.; Jiang, W.G.; Wu, J.J.; Hou, P.; Dai, Z.J.; Rao, P.Z.; Ling, Z.Y.; Deng, Y. Extreme hourly precipitation characteristics of Mainland China from 1980 to 2019. Int. J. Climatol. 2023, 43, 2989–3004. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.M.; Ji, P.; Wu, P.L.; Sheffield, J.; Otkin, J.A. A global transition to flash droughts under climate change. Science 2023, 380, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Villarini, G.; Vecchi, G.A.; Smith, J.A. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature 2018, 563, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Maggioni, V.; Meyers, P.C.; Robinson, M.D. A Review of Merged High-Resolution Satellite Precipitation Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. J. Hydrometeorol. 2016, 17, 1101–1117. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Westra, S.; Fowler, H.J.; Evans, J.P.; Alexander, L.V.; Berg, P.; Johnson, F.; Kendon, E.J.; Lenderink, G.; Roberts, N.M. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar] [CrossRef]
- Meng, N.; Yang, Y.; Qi, W.; Zhu, J.; Dai, X.; Li, R.; Ma, J.; Zheng, H. Multi-dimensional evaluation of four monthly long-term and high-resolution gridded precipitation datasets on the Qinghai-Tibet Plateau. Atmos. Res. 2024, 300, 107226. [Google Scholar] [CrossRef]
- Valencia, S.; Marin, D.E.; Gomez, D.; Hoyos, N.; Salazar, J.F.; Villegas, J.C. Spatio-temporal assessment of Gridded precipitation products across topographic and climatic gradients in Colombia. Atmos. Res. 2023, 285, 106643. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X.; Guo, D. Estimates of Global Surface Hydrology and Heat Fluxes from the Community Land Model (CLM4.5) with Four Atmospheric Forcing Datasets. J. Hydrometeorol. 2016, 17, 2493–2510. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G.J.; Kidd, C.; Kucera, P.A.; Kummerow, C.D.; Masunaga, H.; Petersen, W.A.; et al. Global precipitation measurements for validating climate models. Atmos. Res. 2017, 197, 1–20. [Google Scholar] [CrossRef]
- Schneider, U.; Fuchs, T.; Meyer-Christoffer, A.; Rudolf, B. Global Precipitation Analysis Products of the GPCC. GPCC DWD Int. Publ. 2008, 112, 1–15. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorolog. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Ebita, A.; Kobayashi, S.; Ota, Y.; Moriya, M.; Kumabe, R.; Onogi, K.; Harada, Y.; Yasui, S.; Miyaoka, K.; Takahashi, K.; et al. The Japanese 55-year Reanalysis “JRA-55”: An Interim Report. Sola 2011, 7, 149–152. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef]
- Chen, S.; Gan, T.; Tan, X.; Shao, D.Z.; Zhu, J. Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China. Clim. Dyn. 2019, 53, 737–757. [Google Scholar] [CrossRef]
- Dong, W.; Wang, G.; Guo, L.; Sun, J.; Sun, X. Evaluation of Three Gridded Precipitation Products in Characterizing Extreme Precipitation over the Hengduan Mountains Region in China. Remote Sens. 2022, 14, 4408. [Google Scholar] [CrossRef]
- Zhou, Z.; Smith, J.A.; Wright, D.B.; Baeck, M.L.; Yang, L.; Liu, S. Storm Catalog-Based Analysis of Rainfall Heterogeneity and Frequency in a Complex Terrain. Water Resour. Res. 2019, 55, 1871–1889. [Google Scholar] [CrossRef]
- Qu, L.; Zhu, Q.; Zhu, C.; Zhang, J. A dataset of monthly precipitation with resolution of 1 km in China from 1960 to 2020. China Sci. Data 2023, 8, 286–297. [Google Scholar] [CrossRef]
- Qin, R.; Zhao, Z.; Xu, J.; Ye, J.-S.; Li, F.-M.; Zhang, F. HRLT: A high-resolution (1 d, 1 km) and long-term (1961–2019) gridded dataset for surface temperature and precipitation across China. Earth Syst. Sci. Data 2022, 14, 4793–4810. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Miao, C.; Gou, J.; Zheng, H.; Zhang, Q.; Guo, X. A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations. Earth Syst. Sci. Data 2023, 15, 3147–3161. [Google Scholar] [CrossRef]
- Xu, W.; Ding, J.; Bao, Q.; Wang, J.; Xu, K. Improving the accuracy of precipitation estimates in a typical inland arid region of China using a dynamic Bayesian model averaging approach. J. Arid. Land 2024, 16, 331–354. [Google Scholar] [CrossRef]
- Li, Y.; Qin, X.; Liu, Y.; Jin, Z.; Liu, J.; Wang, L.; Chen, J. Evaluation of Long-Term and High-Resolution Gridded Precipitation and Temperature Products in the Qilian Mountains, Qinghai-Tibet Plateau. Front. Environ. Sci. 2022, 10, 906821. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, Z.; He, X.; Xu, T.; Liu, S.; Xu, Z. Uncertainty assessment of temperature and precipitation reanalysis data in Heihe River Basin. J. Arid. Meteorol. 2019, 37, 529–539. [Google Scholar] [CrossRef]
- Cui, H.; Wang, H.; Xiao, W.; Gao, B. Evaluation on application accuracy of CMFD precipitation data in Three Gorges Reservoir Area. Yangtze River 2021, 52, 98–104. [Google Scholar] [CrossRef]
- Ren, M.; Xu, Z.; Pang, B.; Liu, W.; Liu, J.; Du, L.; Wang, R. Assessment of Satellite-Derived Precipitation Products for the Beijing Region. Remote Sens. 2018, 10, 1914. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Xu, J.; Wang, G.; Shao, Y.; Yang, L. Multi-source precipitation data fusion analysis and application based on Bayesian-Three Cornered Hat method. Adv. Water. Sci. 2023, 34, 685–696. [Google Scholar] [CrossRef]
- Xu, G.; Xu, Y.; Luo, X.; Yin, Y. Changes of Water Level Induced by Human Activities at Hangzhou-Jiaxing-Huzhou Plain in Recent 50 Years. Sci. Geog. Sin. 2012, 32, 1262–1268. [Google Scholar]
- Xu, G.; Xu, Y.; Wang, L. Temporal and spatial changes of river systems in Hangzhou- Jiaxing-Huzhou Plain during 1960s-2000s. Acta Geogr.Sin. 2013, 68, 966–974. [Google Scholar]
- Wang, J.; Xu, Y.; Wang, Y.; Wang, Q.; Yuan, J.; Gao, B.; Xiang, J.; Dai, X. Impacts of anthropogenic activity on the response of water level to rainfall in the urbanized plain river network: A case study in the Hangzhou-Jiaxing-Huzhou region of Taihu Basin. J. Lake Sci. 2019, 31, 779–787. [Google Scholar]
- A New Daily Gridded Precipitation Dataset for the Chinese Mainland based on Gauge Observations; National Tibetan Plateau Data, Third Pole Environment Data Center: Tibet, China, 2023.
- Miao, C.; Gou, J.; Fu, B.; Tang, Q.; Duan, Q.; Chen, Z.; Lei, H.; Chen, J.; Guo, J.; Borthwick, A.G.L.; et al. High-quality reconstruction of China’s natural streamflow. Sci. Bull. 2022, 67, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Gou, J.; Miao, C.; Samaniego, L.; Xiao, M.; Wu, J.; Guo, X. CNRD v1.0: A High-Quality Natural Runoff Dataset for Hydrological and Climate Studies in China. Bull. Am. Meteorol. Soc. 2021, 102, E929–E947. [Google Scholar] [CrossRef]
- China Meteorological Forcing Dataset (1979–2018); National Tibetan Plateau Data, Third Pole Environment Data Center: Tibet, China, 2019.
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Monthly Precipitation Data Set with 1 km Resolution in China from 1960 to 2020; Science Data Bank: Beijing, China, 2022.
- HRLT: A High-Resolution (1 Day, 1 km) and Long-Term (1961–2019) Gridded Dataset for Temperature and Precipitation across China; PANGAEA: Hongkong, China, 2022.
- 1-km Monthly Precipitation Dataset for China (1901–2022); National Tibetan Plateau Data, Third Pole Environment Data Center: Tibet, China, 2020.
- Hu, Z.Y.; Chen, X.; Zhou, Q.M.; Chen, D.L.; Li, J.F. DISO: A rethink of Taylor diagram. Int. J. Climatol. 2019, 39, 2825–2832. [Google Scholar] [CrossRef]
- Mo, C.; Lei, X.; Mo, X.; Ruan, R.; Tang, G.; Li, L.; Sun, G.; Jiang, C. Comprehensive evaluation and comparison of ten precipitation products in terms of accuracy and stability over a typical mountain basin, Southwest China. Atmos. Res. 2024, 297, 107116. [Google Scholar] [CrossRef]
Statistical Index | Equation | Value Range | Perfect Value |
---|---|---|---|
R | (−1, 1) | 1 | |
RMSE | (0, +∞) | 0 | |
ME | (−∞, +∞) | 0 | |
NSE | (−∞, 1) | 1 | |
DISO | (0, +∞) | 0 |
Stations | NSE | RMSE (mm/yr) | ME (mm/yr) | R | DISO |
---|---|---|---|---|---|
CHM_PRE | 0.74 | 122.42 | −41.79 | 0.88 | 0.31 |
CMFD | 0.57 | 156.96 | 70.47 | 0.82 | 0.49 |
HHU | 0.60 | 150.49 | 132.48 | 0.96 | 0.43 |
HRLT | 0.75 | 118.28 | −6.49 | 0.87 | 0.29 |
NWAFU | 0.28 | 202.54 | −118.64 | 0.73 | 0.79 |
Stations | NSE | RMSE (mm/mon) | ME (mm/mon) | R | DISO |
---|---|---|---|---|---|
CHM_PRE | 0.96 | 16.54 | −3.48 | 0.98 | 0.17 |
CMFD | 0.84 | 32.19 | 5.87 | 0.93 | 0.35 |
HHU | 0.92 | 22.47 | 11.04 | 0.97 | 0.25 |
HRLT | 0.88 | 28.69 | −0.54 | 0.94 | 0.31 |
NWAFU | 0.68 | 46.23 | −9.89 | 0.84 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Qiang, Y.; Nie, W.; Gou, P.; Wang, F.; Liu, Y.; Zhang, X.; Zhou, T.; Wang, S. Evaluation and Comparison of Five Long-Term Precipitation Datasets in the Hang-Jia-Hu Plain of Eastern China. Water 2024, 16, 2003. https://doi.org/10.3390/w16142003
Wang K, Qiang Y, Nie W, Gou P, Wang F, Liu Y, Zhang X, Zhou T, Wang S. Evaluation and Comparison of Five Long-Term Precipitation Datasets in the Hang-Jia-Hu Plain of Eastern China. Water. 2024; 16(14):2003. https://doi.org/10.3390/w16142003
Chicago/Turabian StyleWang, Kunxin, Yaohui Qiang, Wei Nie, Peng Gou, Feng Wang, Yang Liu, Xuepeng Zhang, Tianyu Zhou, and Siyu Wang. 2024. "Evaluation and Comparison of Five Long-Term Precipitation Datasets in the Hang-Jia-Hu Plain of Eastern China" Water 16, no. 14: 2003. https://doi.org/10.3390/w16142003
APA StyleWang, K., Qiang, Y., Nie, W., Gou, P., Wang, F., Liu, Y., Zhang, X., Zhou, T., & Wang, S. (2024). Evaluation and Comparison of Five Long-Term Precipitation Datasets in the Hang-Jia-Hu Plain of Eastern China. Water, 16(14), 2003. https://doi.org/10.3390/w16142003