Radar Interferometry for Sustainable Groundwater Use: Detecting Subsidence and Sinkholes in Kabodarahang Plain
Abstract
:1. Introduction
2. Materials and Methods
3. Geological and Geographical Setting
4. Results
4.1. Displacement Rate for the First-Period Evaluation of the Sentinel-1 Images
4.2. Displacement Rate in the Second Period
4.3. Displacement Rate in the Third Period
4.4. Displacement Rate in the Fourth Period
4.5. Displacement Rate in the Fifth Period
4.6. Displacement in the Whole Period
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lall, U.; Josset, L.; Russo, T. A Snapshot of the World’s Groundwater Challenges. Annu. Rev. Environ. Resour. 2020, 45, 171–194. [Google Scholar] [CrossRef]
- Pacheco, J.; Arzate, J.; Rojas, E.; Arroyo, M.; Yutsis, V.; Ochoa, G. Delimitation of Ground Failure Zones Due to Land Subsidence Using Gravity Data and Finite Element Modeling in the Querétaro Valley, México. Eng. Geol. 2006, 84, 143–160. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Yang, M.; Tang, B.H. Deformation Detection and Attribution Analysis of Urban Areas near Dianchi Lake in Kunming Using the Time-Series InSAR Technique. Appl. Sci. 2022, 12, 10004. [Google Scholar] [CrossRef]
- English, S.; Heo, J.; Won, J. Investigation of Sinkhole Formation with Human Influence: A Case Study Fromwink Sink in Winkler County, Texas. Sustainability 2020, 12, 3537. [Google Scholar] [CrossRef]
- Sahu, P.; Lokhande, R.D. An Investigation of Sinkhole Subsidence and Its Preventive Measures in Underground Coal Mining. Procedia Earth Planet. Sci. 2015, 11, 63–75. [Google Scholar] [CrossRef]
- Cai, Y.; Li, H.; Yan, J.; Huang, H.; Feng, Y.; Huang, H. Experimental Study on Prevention and Control of Ground Fissures in Coal Mining Subsidence in Huaibei Plain of China. Sustainability 2022, 14, 12932. [Google Scholar] [CrossRef]
- Nduji, N.N.; Madu, C.N.; Okafor, C.C. A Low-Cost Web Application System for Monitoring Geometrical Impacts of Surface Subsidence. Sustainability 2022, 14, 14240. [Google Scholar] [CrossRef]
- Rashidi, A.; Khatib, M.M.; Derakhshani, R. Structural Characteristics and Formation Mechanism of the Earth Fissures as a Geohazard in Birjand, Iran. Appl. Sci. 2022, 12, 4144. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Li, M.; Kang, Y.; Lu, Z. Investigating Ground Subsidence and the Causes over the Whole Jiangsu Province, China Using Sentinel-1 SAR Data. Remote Sens. 2021, 13, 179. [Google Scholar] [CrossRef]
- Ilyushin, Y.V.; Nosova, V.A. Methodology to Increase the Efficiency of the Mineral Water Extraction Process. Water 2024, 16, 1329. [Google Scholar] [CrossRef]
- Malanchuk, Z.R.; Moshynskyi, V.S.; Korniienko, V.Y.; Malanchuk, Y.Z.; Lozynskyi, V.H. Substantiating Parameters of Zeolite-Smectite Puff-Stone Washout and Migration within an Extraction Chamber. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2019, 2019, 11. [Google Scholar] [CrossRef]
- Mehrabi, A.; Derakhshani, R.; Nilfouroushan, F.; Rahnamarad, J.; Azarafza, M. Spatiotemporal Subsidence over Pabdana Coal Mine Kerman Province, Central Iran Using Time-Series of Sentinel-1 Remote Sensing Imagery. Episodes 2022, 46, 19–33. [Google Scholar] [CrossRef]
- Ali, H.; Choi, J.H. Risk Prediction of Sinkhole Occurrence for Different Subsurface Soil Profiles Due to Leakage from Underground Sewer and Water Pipelines. Sustainability 2020, 12, 310. [Google Scholar] [CrossRef]
- Marian, D.P.; Onica, I. Analysis of the Geomechanical Phenomena That Led to the Appearance of Sinkholes at the Lupeni Mine, Romania, in the Conditions of Thick Coal Seams Mining with Longwall Top Coal Caving. Sustainability 2021, 13, 6449. [Google Scholar] [CrossRef]
- Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K. Poroelastic Rebound along the Landers 1992 Earthquake Surface Rupture. J. Geophys. Res. Solid Earth 1998, 103, 30131–30145. [Google Scholar] [CrossRef]
- Castellazzi, P.; Arroyo-Domínguez, N.; Martel, R.; Calderhead, A.I.; Normand, J.C.L.; Gárfias, J.; Rivera, A. Land Subsidence in Major Cities of Central Mexico: Interpreting InSAR-Derived Land Subsidence Mapping with Hydrogeological Data. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 102–111. [Google Scholar] [CrossRef]
- Mohammadhasani, M.; Kermani, B.S.S.; Jameel, M.; Hakim, S.J.S. Estimation of Land Subsidence Hazard Using Interferometry of Satellite Radar Images. Proc. Inst. Civ. Eng. Forensic Eng. 2022, 176, 103–110. [Google Scholar] [CrossRef]
- Ferretti, A. Satellite InSAR Data: Reservoir Monitoring from Space (EET 9); EAGE: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Fruneau, B.; Sarti, F. Detection of Ground Subsidence in the City of Paris Using Radar Interferometry: Isolation of Deformation from Atmospheric Artifacts Using Correlation. Geophys. Res. Lett. 2000, 27, 3981–3984. [Google Scholar] [CrossRef]
- Tesauro, M.; Berardino, P.; Lanari, R.; Sansosti, E.; Fornaro, G.; Franceschetti, G. Urban Subsidence inside the City of Napoli (Italy) Observed by Satellite Radar Interferometry. Geophys. Res. Lett. 2000, 27, 1961–1964. [Google Scholar] [CrossRef]
- Diao, X.; Wu, K.; Zhou, D.; Li, L. Integrating the Probability Integral Method for Subsidence Prediction and Differential Synthetic Aperture Radar Interferometry for Monitoring Mining Subsidence in Fengfeng, China. J. Appl. Remote Sens. 2016, 10, 016028. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, F.; Guo, H. Differential Radar Interferometry for Structural and Ground Deformation Monitoring: A New Tool for the Conservation and Sustainability of Cultural Heritage Sites. Sustainability 2015, 7, 1712–1729. [Google Scholar] [CrossRef]
- Tzouvaras, M.; Kouhartsiouk, D.; Agapiou, A.; Danezis, C.; Hadjimitsis, D.G. The Use of Sentinel-1 Synthetic Aperture Radar (SAR) Images and Open-Source Software for Cultural Heritage: An Example from Paphos Area in Cyprus for Mapping Landscape Changes after a 5.6 Magnitude Earthquake. Remote Sens. 2019, 11, 1766. [Google Scholar] [CrossRef]
- Pourkhosravani, M.; Mehrabi, A.; Pirasteh, S.; Derakhshani, R. Monitoring of Maskun Landslide and Determining Its Quantitative Relationship to Different Climatic Conditions Using D-InSAR and PSI Techniques. Geomat. Nat. Hazards Risk 2022, 13, 1134–1153. [Google Scholar] [CrossRef]
- Cianflone, G.; Vespasiano, G.; Tolomei, C.; De Rosa, R.; Dominici, R.; Apollaro, C.; Walraevens, K.; Polemio, M. Different Ground Subsidence Contributions Revealed by Integrated Discussion of Sentinel-1 Datasets, Well Discharge, Stratigraphical and Geomorphological Data: The Case of the Gioia Tauro Coastal Plain (Southern Italy). Sustainability 2022, 14, 2926. [Google Scholar] [CrossRef]
- Li, D.; Hou, X.; Song, Y.; Zhang, Y.; Wang, C. Ground Subsidence Analysis in Tianjin (China) Based on Sentinel-1A Data Using MT-InSAR Methods. Appl. Sci. 2020, 10, 5514. [Google Scholar] [CrossRef]
- Luo, Q.; Li, J.; Zhang, Y. Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data. Remote Sens. 2022, 14, 4138. [Google Scholar] [CrossRef]
- Rafiei, F.; Gharechelou, S.; Golian, S.; Johnson, B.A. Aquifer and Land Subsidence Interaction Assessment Using Sentinel-1 Data and DInSAR Technique. ISPRS Int. J. Geoinf. 2022, 11, 495. [Google Scholar] [CrossRef]
- Sheng, H.; Zhou, L.; Huang, C.; Ma, S.; Xian, L.; Chen, Y.; Yang, F. Surface Subsidence Characteristics and Causes in Beijing (China) before and after COVID-19 by Sentinel-1A TS-InSAR. Remote Sens. 2023, 15, 1199. [Google Scholar] [CrossRef]
- Rashidi, A.; Shahpasandzadeh, M.; Braitenberg, C. Late Cenozoic to Present Kinematic of the North to Eastern Iran Orogen: Accommodating Opposite Sense of Fault Blocks Rotation. Remote Sens. 2022, 14, 4048. [Google Scholar] [CrossRef]
- Rashidi, A.; Kianimehr, H.; Yamini-Fard, F.; Tatar, M.; Zafarani, H. Present Stress Map and Deformation Distribution in the NE Lut Block, Eastern Iran: Insights from Seismic and Geodetic Strain and Moment Rates. Pure Appl. Geophys. 2022, 179, 1887–1917. [Google Scholar] [CrossRef]
- Mehrabi, A.; Pirasteh, S.; Rashidi, A.; Pourkhosravani, M.; Derakhshani, R.; Liu, G.; Mao, W.; Xiang, W. Incorporating Persistent Scatterer Interferometry and Radon Anomaly to Understand the Anar Fault Mechanism and Observing New Evidence of Intensified Activity. Remote Sens. 2021, 13, 2072. [Google Scholar] [CrossRef]
- Rashidi, A.; Derakhshani, R. Strain and Moment Rates from GPS and Seismological Data in Northern Iran: Implications for an Evaluation of Stress Trajectories and Probabilistic Fault Rupture Hazard. Remote Sens. 2022, 14, 2219. [Google Scholar] [CrossRef]
- Rashidi, A.; Kianimehr, H.; Shafieibafti, S.; Mehrabi, A.; Derakhshani, R. Active Faults in the West of the Lut Block (Central Iran). Geophys. Res. 2021, 22, 70–84. [Google Scholar] [CrossRef]
- Bolourchi, M.H.; Hajian, J. Geological Map of Iran, No D5 (Kabodarahang 1/250000); Geological Survey of Iran, Tehran, Iran, 1982.
- Sabzehei, M.; Madihim, B.; Amiri, M.; Alavi-Tehrani, N.; Ghorashi, M. Geological Map of Iran, No D6 (Hamadan 1/250000); Geological Survey of Iran: Tehran, Iran, 1977. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Kamali, Z.; Nazari, H.; Rashidi, A.; Heyhat, M.R.; Khatib, M.M.; Derakhshani, R. Seismotectonics, Geomorphology and Paleoseismology of the Doroud Fault, a Source of Seismic Hazard in Zagros. Appl. Sci. 2023, 13, 3747. [Google Scholar] [CrossRef]
- Rashidi, A.; Nemati, M.; Shafieibafti, S.; Pourbeyranvand, S.; Derakhshani, R.; Braitenberg, C. Structure and Kinematics of Active Faulting in the Northern Domain of Western and Central Alborz, Iran and Interpretation in Terms of Tectonic Evolution of the Region. J. Asian Earth Sci. 2023, 255, 105760. [Google Scholar] [CrossRef]
- Mohammadi Nia, A.; Rashidi, A.; Khatib, M.M.; Mousavi, S.M.; Nemati, M.; Shafieibafti, S.; Derakhshani, R. Seismic Risk in Alborz: Insights from Geological Moment Rate Estimation and Fault Activity Analysis. Appl. Sci. 2023, 13, 6236. [Google Scholar] [CrossRef]
- Ezati, M.; Rashidi, A.; Gholami, E.; Mousavi, S.M.; Nemati, M.; Shafieibafti, S.; Derakhshani, R. Paleostress Analysis in the Northern Birjand, East of Iran: Insights from Inversion of Fault-Slip Data. Minerals 2022, 12, 1606. [Google Scholar] [CrossRef]
- Kermani, A.F.; Derakhshani, R.; Shafieibafti, S. Data on Morphotectonic Indices of Dashtekhak District, Iran. Data Brief 2017, 14, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, R.; Shafieibafti, S.; Derakhshani, R. Investigation of the Tectonic Activity of Bazargan Mountain in Iran. Sustain. Dev. Mt. Territ. 2017, 9, 380–386. [Google Scholar] [CrossRef]
- Heidari, M.; Khanlari, G.R.; Taleb Beydokhti, A.R.; Momeni, A.A. The Formation of Cover Collapse Sinkholes in North of Hamedan, Iran. Geomorphology 2011, 132, 76–86. [Google Scholar] [CrossRef]
- Baharifar, A.; Moinevaziri, H.; Bellon, H.; Piqué, A. The Crystalline Complexes of Hamadan (Sanandaj–Sirjan Zone, Western Iran): Metasedimentary Mesozoic Sequences Affected by Late Cretaceous Tectono-Metamorphic and Plutonic Events. Comptes Rendus Geosci. 2004, 336, 1443–1452. [Google Scholar] [CrossRef]
- Amiri, M. The Effect of Bedrock Dissolution and Pumping on Hamadan Sinkholes Occurrences. In Proceedings of the Conference on Hazards of Sinkholes in Karst Terrains, Kermanshah, Iran, 28 December 2005; pp. 43–68. [Google Scholar]
- Folk, R.L. Spectral Subdivision of Limestone Types. In Classification of Carbonate Rocks—A Symposium; AAPG: London, UK, 1962; pp. 62–84. [Google Scholar]
- Dunham, R.J. Classification of Carbonate Rocks According to Depositional Textures. In Classification of Carbonate Rocks—A Symposium; AAPG: London, UK, 1962. [Google Scholar]
- Karimi, H.; Taheri, K. Hazards and Mechanism of Sinkholes on Kabudar Ahang and Famenin Plains of Hamadan, Iran. Nat. Hazards 2010, 55, 481–499. [Google Scholar] [CrossRef]
- Amighpey, M.; Arabi, S. Studying Land Subsidence in Yazd Province, Iran, by Integration of InSAR and Levelling Measurements. Remote Sens. Appl. 2016, 4, 1–8. [Google Scholar] [CrossRef]
- Omidvar, K. Natural Hazards, Yazd; Yazd University Press: Yazd, Iran, 2011. (In Persian) [Google Scholar]
- Oliver-Cabrera, T.; Wdowinski, S.; Kruse, S.; Robinson, T. InSAR Detection of Localized Subsidence Induced by Sinkhole Activity in Suburban West-Central Florida. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 155–159. [Google Scholar] [CrossRef]
Images | Satellite | Shooting Date | Format | Mode | Polarization | Track |
---|---|---|---|---|---|---|
2017 | Sentinel-1A | 2017/09/15 | SLC | IW | VV | 57 |
2017 | Sentinel-1A | 2017/12/08 | SLC | IW | VV | 57 |
2018 | Sentinel-1A | 2018/03/02 | SLC | IW | VV | 57 |
2018 | Sentinel-1A | 2018/06/06 | SLC | IW | VV | 57 |
2018 | Sentinel-1A | 2018/08/05 | SLC | IW | VV | 57 |
2018 | Sentinel-1A | 2018/09/10 | SLC | IW | VV | 57 |
ID | Periods Dates (Years/Month/Day) | Time Periods (Day) |
---|---|---|
1 | 2017/09/15–2017/12/08 | 83 |
2 | 2017/12/08–2018/03/02 | 84 |
3 | 2018/03/02–2018/06/06 | 94 |
4 | 2018/06/06–2018/08/05 | 59 |
5 | 2018/08/05–2018/09/10 | 35 |
Total | 2017/09/15–2018/09/10 | 355 |
Total Times | 5th Period | 4th Period | 3rd Period | 2nd Period | 1st Period |
---|---|---|---|---|---|
2017/09/15 to 2018/09/10 | 2018/08/05 to 2018/09/10 | 2018/06/06 to 2018/08/05 | 2018/03/02 to 2018/06/06 | 2017/12/08 to 2018/03/02 | 2017/09/15 to 2017/12/08 |
~14.5 cm | ~0.6 cm | ~10 cm | ~1 cm | ~1 cm | 0 to 1 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadhasani, M.; Rashidi, A.; Sheikh Shariati Kermani, B.; Nemati, M.; Derakhshani, R. Radar Interferometry for Sustainable Groundwater Use: Detecting Subsidence and Sinkholes in Kabodarahang Plain. Water 2024, 16, 1976. https://doi.org/10.3390/w16141976
Mohammadhasani M, Rashidi A, Sheikh Shariati Kermani B, Nemati M, Derakhshani R. Radar Interferometry for Sustainable Groundwater Use: Detecting Subsidence and Sinkholes in Kabodarahang Plain. Water. 2024; 16(14):1976. https://doi.org/10.3390/w16141976
Chicago/Turabian StyleMohammadhasani, Mohammad, Ahmad Rashidi, Behnaz Sheikh Shariati Kermani, Majid Nemati, and Reza Derakhshani. 2024. "Radar Interferometry for Sustainable Groundwater Use: Detecting Subsidence and Sinkholes in Kabodarahang Plain" Water 16, no. 14: 1976. https://doi.org/10.3390/w16141976
APA StyleMohammadhasani, M., Rashidi, A., Sheikh Shariati Kermani, B., Nemati, M., & Derakhshani, R. (2024). Radar Interferometry for Sustainable Groundwater Use: Detecting Subsidence and Sinkholes in Kabodarahang Plain. Water, 16(14), 1976. https://doi.org/10.3390/w16141976