Projection of Changes in Rainfall and Drought Based on CMIP6 Scenarios on the Ca River Basin, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Observed Monthly Rainfall Data
2.2.2. Climate Change Scenario Data
2.3. Bias Correction Methods
2.3.1. Quantile Mapping Method
2.3.2. Quantile Delta Mapping Method
2.4. Standardized Precipitation Index
3. Results
3.1. Projection of Annual and Seasonal Precipitation Changes in Ca River Basin
3.2. Projection of Drought Event Changes Based on SPI in Ca River Basin
4. Discussion
5. Conclusions
- (1)
- Intra-annual variability of precipitation in the Ca river basin could increase in the future. The increment in the intra-annual variability can increase the frequency and magnitude of flood and drought events in the Ca river basin. An increase in total annual rainfall in the far future for all stations was projected, with uncertainty increasing with the far future simulation. Seasonal rainfall analysis showed different change trends across the climate change scenarios. MAM precipitation will decrease while SON precipitation will increase.
- (2)
- The short-term drought events will occur more frequently in the Ca river basin. An increase in the frequency of drought events was based on SPI3 and SPI6, while the number of drought events based on SPI12 slightly decreased. The changes in the frequency of drought events for each station varied depending on the applied SPI and climate change scenarios.
- (3)
- The Ca river basin will face more severe drought events in the future, with significant spatial variation among the stations. The change patterns also depend on the climate change scenarios. For example, the SSP370 scenario indicates the most severe drought conditions for the Ca river basin, while the SSP126 scenario suggests a minor reduction in drought severity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Do, V.Q.; Phung, M.L.; Truong, D.T.; Pham, T.T.T.; Dang, V.T.; Nguyen, T.K. The Impact of Extreme Events and Climate Change on Agricultural and Fishery Enterprises in Central Vietnam. Sustainability 2021, 13, 7121. [Google Scholar] [CrossRef]
- Nguyen Duc, K.; Ancev, T.; Randall, A. Evidence of climatic change in Vietnam: Some implications for agricultural production. J. Environ. Manag. 2019, 231, 524–545. [Google Scholar] [CrossRef]
- Phuong, D.N.D.; Dat, N.L.T.; Loi, N.K. Multiple trend tests on air temperature and precipitation anomalies in Vietnam. J. Water Clim. Chang. 2022, 13, 1340–1353. [Google Scholar] [CrossRef]
- Dau, Q.V.; Kuntiyawichai, K.; Adeloye, A.J. Future Changes in Water Availability Due to Climate Change Projections for Huong Basin, Vietnam. Environ. Process. 2020, 8, 77–98. [Google Scholar] [CrossRef]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 12623. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Kinouchi, T.; Nguyen, H.Q. A framework for projecting future intensity-duration-frequency (IDF) curves based on CORDEX Southeast Asia multi-model simulations: An application for two cities in Southern Vietnam. J. Hydrol. 2021, 598, 126461. [Google Scholar] [CrossRef]
- Vietnam, U. Vietnam Drought and Saltwater Intrusion: Transitioning from Emergency to Recovery; UNDP (United Nations Development Programme): Hanoi, Vietnam, 2016. [Google Scholar]
- Sutton, W.R.; Srivastava, J.P.; Rosegrant, M.; Thurlow, J.; Sebastian, L. Striking a Balance: Managing El Niño and La Niña in Vietnam’s Agriculture; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Nguyen, D.-Q.; Renwick, J.; McGregor, J. Variations of surface temperature and rainfall in Vietnam from 1971 to 2010. Int. J. Climatol. 2014, 34, 249–264. [Google Scholar] [CrossRef]
- Phuong, D.N.D.; Hai, L.M.; Dung, H.M.; Loi, N.K. Temporal Trend Possibilities of Annual Rainfall and Standardized Precipitation Index in the Central Highlands, Vietnam. Earth Syst. Environ. 2022, 6, 69–85. [Google Scholar] [CrossRef]
- Stojanovic, M.; Liberato, M.L.R.; Sorí, R.; Vázquez, M.; Phan-Van, T.; Duongvan, H.; Hoang Cong, T.; Nguyen, P.N.B.; Nieto, R.; Gimeno, L. Trends and Extremes of Drought Episodes in Vietnam Sub-Regions during 1980–2017 at Different Timescales. Water 2020, 12, 813. [Google Scholar] [CrossRef]
- Le, P.V.V.; Phan-Van, T.; Mai, K.V.; Tran, D.Q. Space–time variability of drought over Vietnam. Int. J. Climatol. 2019, 39, 5437–5451. [Google Scholar] [CrossRef]
- Skea, J.; Shukla, P.; Al Khourdajie, A.; McCollum, D. Intergovernmental Panel on Climate Change: Transparency and integrated assessment modeling. WIREs Clim. Chang. 2021, 12, e727. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Chen, Y.; Xiang, Y.; Liu, Y.; Kayumba, P.M.; Li, X. Drylands face potential threat of robust drought in the CMIP6 SSPs scenarios. Environ. Res. Lett. 2021, 16, 114004. [Google Scholar] [CrossRef]
- Thanh Thuy, L.T.; Kawagoe, S.; Sarukkalige, R. Estimation of probable maximum precipitation at three provinces in Northeast Vietnam using historical data and future climate change scenarios. J. Hydrol. Reg. Stud. 2019, 23, 100599. [Google Scholar] [CrossRef]
- Seo, M.; Kim, S.; Kim, H.; Kim, H.; Shin, J.-Y.; Heo, J.-H. Evaluation of Statistical PMP Considering RCP Climate Change Scenarios in Republic of Korea. Water 2023, 15, 1756. [Google Scholar] [CrossRef]
- Kim, H.; Villarini, G. Higher emissions scenarios lead to more extreme flooding in the United States. Nat. Commun. 2024, 15, 237. [Google Scholar] [CrossRef] [PubMed]
- Ngo-Duc, T.; Kieu, C.; Thatcher, M.; Nguyen-Le, D.; Phan-Van, T. Climate projections for Vietnam based on regional climate models. Clim. Res. 2014, 60, 199–213. [Google Scholar] [CrossRef]
- Raghavan, S.V.; Vu, M.T.; Liong, S.Y. Ensemble climate projections of mean and extreme rainfall over Vietnam. Glob. Planet. Chang. 2017, 148, 96–104. [Google Scholar] [CrossRef]
- Vu, M.T.; Raghavan, V.S.; Liong, S.Y. Ensemble Climate Projection for Hydro-Meteorological Drought over a river basin in Central Highland, Vietnam. KSCE J. Civ. Eng. 2015, 19, 427–433. [Google Scholar] [CrossRef]
- Vu, M.T.; Vo, N.D.; Gourbesville, P.; Raghavan, S.V.; Liong, S.Y. Hydro-meteorological drought assessment under climate change impact over the Vu Gia–Thu Bon river basin, Vietnam. Hydrol. Sci. J. 2017, 62, 1654–1668. [Google Scholar] [CrossRef]
- Li, Y.; Lu, H.; Yang, K.; Wang, W.; Tang, Q.; Khem, S.; Yang, F.; Huang, Y. Meteorological and hydrological droughts in Mekong River Basin and surrounding areas under climate change. J. Hydrol. Reg. Stud. 2021, 36, 100873. [Google Scholar] [CrossRef]
- Nguyen-Ngoc-Bich, P.; Phan-Van, T.; Ngo-Duc, T.; Vu-Minh, T.; Trinh-Tuan, L.; Tangang, F.T.; Juneng, L.; Cruz, F.; Santisirisomboon, J.; Narisma, G.; et al. Projected evolution of drought characteristics in Vietnam based on CORDEX-SEA downscaled CMIP5 data. Int. J. Climatol. 2021, 41, 5733–5751. [Google Scholar] [CrossRef]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K. Global data assessment and analysis of drought characteristics based on CMIP6. J. Hydrol. 2021, 596, 126091. [Google Scholar] [CrossRef]
- Phuong, D.N.D.; Vu, N.D.; Loi, N.K. Historical trends and future projections of annual rainfall from CMIP6 models in Ho Chi Minh City, Vietnam. Clim. Res. 2024, 92, 97–115. [Google Scholar] [CrossRef]
- Feng, T.; Zhu, X.; Dong, W. Historical assessment and future projection of extreme precipitation in CMIP6 models: Global and continental. Int. J. Climatol. 2023, 43, 4119–4135. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, H.; Baiyinbaoligao; Hu, H.; Khan, M.Y.A.; Wen, J.; Chen, L.; Tian, F. Future projection of seasonal drought characteristics using CMIP6 in the Lancang-Mekong River Basin. J. Hydrol. 2022, 610, 127815. [Google Scholar] [CrossRef]
- Trinh-Tuan, L.; Matsumoto, J.; Tangang, F.T.; Juneng, L.; Cruz, F.; Narisma, G.; Santisirisomboon, J.; Phan-Van, T.; Gunawan, D.; Aldrian, E.; et al. Application of Quantile Mapping Bias Correction for Mid-Future Precipitation Projections over Vietnam. Sola 2019, 15, 1–6. [Google Scholar] [CrossRef]
- Bi, D.; Dix, M.; Marsland, S.; O’Farrell, S.; Sullivan, A.; Bodman, R.; Law, R.; Harman, I.; Srbinovsky, J.; Rashid, H.A.; et al. Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 225–251. [Google Scholar] [CrossRef]
- Ziehn, T.; Chamberlain, M.A.; Law, R.M.; Lenton, A.; Bodman, R.W.; Dix, M.; Stevens, L.; Wang, Y.-P.; Srbinovsky, J. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 193–214. [Google Scholar] [CrossRef]
- Semmler, T.; Danilov, S.; Gierz, P.; Goessling, H.F.; Hegewald, J.; Hinrichs, C.; Koldunov, N.; Khosravi, N.; Mu, L.; Rackow, T.; et al. Simulations for CMIP6 With the AWI Climate Model AWI-CM-1-1. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002009. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Rong, X.; Li, J.; Chen, H.; Xin, Y.; Su, J.; Hua, L.; Zhou, T.; Qi, Y.; Zhang, Z.; Zhang, G.; et al. The CAMS Climate System Model and a Basic Evaluation of Its Climatology and Climate Variability Simulation. J. Meteorol. Res. 2018, 32, 839–861. [Google Scholar] [CrossRef]
- Chai, Z. CAS CAS-ESM2.0 Model Output Prepared for CMIP6 CMIP. 2020. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.CAS.CAS-ESM2-0 (accessed on 7 June 2024).
- Danabasoglu, G.; Lamarque, J.-F.; Bacmeister, J.; Bailey, D.A.; DuVivier, A.K.; Edwards, J.; Emmons, L.K.; Fasullo, J.; Garcia, R.; Gettelman, A.; et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 2020, 12, e2019MS001916. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, X.; Liang, Y.; Qin, Y.; Xu, S.; Huang, W.; Xu, F.; Liu, L.; Wang, Y.; Peng, Y.; et al. Community Integrated Earth System Model (CIESM): Description and Evaluation. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002036. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arsouze, T.; Bergman, T.; Bernardello, R.; Boussetta, S.; Caron, L.P.; Carver, G.; et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- He, B.; Yu, Y.; Bao, Q.; Lin, P.; Liu, H.; Li, J.; Wang, L.; Liu, Y.; Wu, G.; Chen, K.; et al. CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmos. Ocean. Sci. Lett. 2020, 13, 582–588. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Tang, Y.; Lin, P.; Xie, J.; Song, M.; Dong, L.; Zhou, T.; Liu, L.; Wang, L.; et al. The Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3): Description and Evaluation. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002012. [Google Scholar] [CrossRef]
- Swapna, P.; Krishnan, R.; Sandeep, N.; Prajeesh, A.G.; Ayantika, D.C.; Manmeet, S.; Vellore, R. Long-Term Climate Simulations Using the IITM Earth System Model (IITM-ESMv2) With Focus on the South Asian Monsoon. J. Adv. Model. Earth Syst. 2018, 10, 1127–1149. [Google Scholar] [CrossRef]
- Volodin, E.M.; Mortikov, E.V.; Kostrykin, S.V.; Galin, V.Y.; Lykossov, V.N.; Gritsun, A.S.; Diansky, N.A.; Gusev, A.V.; Iakovlev, N.G.; Shestakova, A.A.; et al. Simulation of the modern climate using the INM-CM48 climate model. Russ. J. Numer. Anal. Math. Model. 2018, 33, 367–374. [Google Scholar] [CrossRef]
- Volodin, E.M.; Mortikov, E.V.; Kostrykin, S.V.; Galin, V.Y.; Lykossov, V.N.; Gritsun, A.S.; Diansky, N.A.; Gusev, A.V.; Iakovlev, N.G. Simulation of the present-day climate with the climate model INMCM5. Clim. Dyn. 2017, 49, 3715–3734. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Sun, M.-A.; Kim, B.-H.; Moon, H.; Sung, H.M.; Kim, J.; Byun, Y.-H. Evaluation of the Korea Meteorological Administration Advanced Community Earth-System model (K-ACE). Asia-Pac. J. Atmos. Sci. 2020, 56, 381–395. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component. J. Meteorol. Soc. Japan. Ser. II 2019, 97, 931–965. [Google Scholar] [CrossRef]
- Seland, Ø.; Bentsen, M.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Graff, L.S.; Debernard, J.B.; Gupta, A.K.; He, Y.C.; Kirkevåg, A.; et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 2020, 13, 6165–6200. [Google Scholar] [CrossRef]
- Lee, W.L.; Wang, Y.C.; Shiu, C.J.; Tsai, I.; Tu, C.Y.; Lan, Y.Y.; Chen, J.P.; Pan, H.L.; Hsu, H.H. Taiwan Earth System Model Version 1: Description and evaluation of mean state. Geosci. Model Dev. 2020, 13, 3887–3904. [Google Scholar] [CrossRef]
- Seo, G.-Y.; Ahn, J.-B.; Cha, D.-H.; Suh, M.-S.; Min, S.-K.; Chang, E.-C.; Byun, Y.-H.; Kim, J.-U. Evaluation of multi-RCM ensembles for simulating spatiotemporal variability of Asian summer monsoon precipitation in the CORDEX-East Asia Phase 2 domain. Int. J. Climatol. 2023, 43, 3710–3729. [Google Scholar] [CrossRef]
- Shin, J.-Y.; Kim, K.R.; Lee, Y.H. Spatial prediction of outdoor thermal comfort using an operational NWP model for city and regional scales: A case study in Korea. Urban Clim. 2022, 45, 101286. [Google Scholar] [CrossRef]
- Shin, J.-Y.; Kim, K.R.; Ha, J.-C. Seasonal forecasting of daily mean air temperatures using a coupled global climate model and machine learning algorithm for field-scale agricultural management. Agric. For. Meteorol. 2020, 281, 107858. [Google Scholar] [CrossRef]
- Shin, J.-Y.; Lee, T.; Park, T.; Kim, S. Bias correction of RCM outputs using mixture distributions under multiple extreme weather influences. Theor. Appl. Climatol. 2019, 137, 201–216. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Kim, S.; Joo, K.; Kim, H.; Shin, J.-Y.; Heo, J.-H. Regional quantile delta mapping method using regional frequency analysis for regional climate model precipitation. J. Hydrol. 2021, 596, 125685. [Google Scholar] [CrossRef]
- Heo, J.-H.; Ahn, H.; Shin, J.-Y.; Kjeldsen, T.R.; Jeong, C. Probability Distributions for a Quantile Mapping Technique for a Bias Correction of Precipitation Data: A Case Study to Precipitation Data Under Climate Change. Water 2019, 11, 1475. [Google Scholar] [CrossRef]
- Qin, X.; Dai, C. Comparison of different quantile delta mapping schemes in frequency analysis of precipitation extremes over mainland Southeast Asia under climate change. J. Hydrol. 2022, 606, 127421. [Google Scholar] [CrossRef]
- Cannon, A. MBC: Multivariate Bias Correction of Climate Model Outputs, Version 0.10-6; R package. 2023. Available online: https://rdrr.io/cran/MBC/man/MBC-package.html (accessed on 7 June 2024).
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17-22 January 1993; pp. 179–183. [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Lee, T.; Modarres, R.; Ouarda, T.B.M.J. Data-based analysis of bivariate copula tail dependence for drought duration and severity. Hydrol. Process. 2013, 27, 1454–1463. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E. Characteristics of hydrological and meteorological drought based on intensity-duration-frequency (IDF) curves. Water 2023, 15, 3142. [Google Scholar] [CrossRef]
- Tran-Anh, Q.; Ngo-Duc, T.; Espagne, E.; Trinh-Tuan, L. A high-resolution projected climate dataset for Vietnam: Construction and preliminary application in assessing future change. J. Water Clim. Chang. 2022, 13, 3379–3399. [Google Scholar] [CrossRef]
No | Station | Lon | Lat | Available Period |
---|---|---|---|---|
1 | Muong Xen | 104.117 | 19.400 | 1959–2015 |
2 | Tuong Duong | 104.467 | 19.267 | 1975–2015 |
3 | Con Cuong | 104.850 | 19.067 | 1971–2016 |
4 | Do Luong | 105.283 | 18.900 | 1975–2016 |
5 | Son Diem | 105.350 | 18.500 | 1961–2015 |
6 | Hoa Duyet | 105.583 | 18.367 | 1959–2015 |
7 | Quy Chau | 105.100 | 19.567 | 1975–2016 |
8 | Quy Hop | 105.183 | 19.317 | 1975–2016 |
Index | Variable | st#1 | st#2 | st#3 | st#4 | st#5 | st#6 | st#7 | st#8 |
---|---|---|---|---|---|---|---|---|---|
SPI3 | Duration (month) | 4 | 4 | 1 | 1 | 4 | 4 | 3 | 2 |
Severity | −5.38 | −9.13 | −1.35 | −1.12 | −4.51 | −5.38 | −5.97 | −2.51 | |
Intensity | −1.34 | −2.28 | −1.35 | −1.12 | −1.13 | −1.34 | −1.99 | −1.26 | |
SPI6 | Duration (month) | 5 | 3 | 3 | 2 | 4 | 5 | 3 | 2 |
Severity | −9.54 | −5.33 | −4.25 | −3.22 | −5.25 | −9.54 | −4.27 | −3.43 | |
Intensity | −1.91 | −1.78 | −1.42 | −1.61 | −1.31 | −1.91 | −1.43 | −1.72 | |
SPI12 | Duration (month) | 22 | 22 | 14 | 12 | 17 | 22 | 9 | 11 |
Severity | −46.38 | −45.46 | −24.19 | −19.49 | −31.00 | −46.38 | −13.30 | −14.54 | |
Intensity | −2.11 | −2.07 | −1.73 | −1.62 | −1.82 | −2.11 | −1.48 | −1.32 |
No. | CMIP6 Model Name | Country | Key References |
---|---|---|---|
1 | ACCESS-CM2 | Australia | Bi, et al. [29] |
2 | ACCESS-ESM1-5 | Australia | Ziehn, et al. [30] |
3 | AWI-ESM-1-1-LR | Germany | Semmler, et al. [31] |
4 | BCC-CSM2-MR | China | Wu, et al. [32] |
5 | CAMS-CSM1-0 | China | Rong, et al. [33] |
6 | CAS-ESM2-0 | China | Chai [34] |
7 | CESM2-WACCM | USA | Danabasoglu, et al. [35] |
8 | CIESM | China | Lin, et al. [36] |
9 | CMCC-ESM2 | Italy | Cherchi, et al. [37] |
10 | EC-Earth3-Veg-LR | Europe | Döscher, et al. [38] |
11 | EC-Earth3-Veg | Europe | Döscher, et al. [38] |
12 | EC-Earth3 | Europe | Döscher, et al. [38] |
13 | FGOALS-f3-L | China | He, et al. [39] |
14 | FGOALS-g3 | China | Li, et al. [40] |
15 | IITM-ESM | India | Swapna, et al. [41] |
16 | INM-CM4-8 | Russia | Volodin, et al. [42] |
17 | INM-CM5-0 | Russia | Volodin, et al. [43] |
18 | IPSL-CM6A-LR | France | Boucher, et al. [44] |
19 | KACE-1-0-G | Republic of Korea | Lee, et al. [45] |
20 | MIROC6 | Japan | Tatebe, et al. [46] |
21 | MPI-ESM1-2-HR | Germany | Müller, et al. [47] |
22 | MPI-ESM1-2-LR | Germany | Mauritsen, et al. [48] |
23 | MRI-ESM2-0 | Japan | Yukimoto, et al. [49] |
24 | NorESM2-LM | Norway | Seland, et al. [50] |
25 | NorESM2-LM | Norway | Seland, et al. [50] |
26 | TaiESM1 | Taiwan | Lee, et al. [51] |
27 | NIMS-UKESM | Republic of Korea | Seo, et al. [52] |
Scenario | Variable | st#1 | st#2 | st#3 | st#4 | st#5 | st#6 | st#7 | st#8 |
---|---|---|---|---|---|---|---|---|---|
HIST | No. of events | 0.715 | 0.979 | 0.933 | 0.836 | 0.825 | 0.733 | 1.006 | 1.003 |
Duration (month) | 1.956 | 3.222 | 2.638 | 2.213 | 2.106 | 1.971 | 3.493 | 3.353 | |
Severity | −2.381 | −5.606 | −3.665 | −2.775 | −2.648 | −2.404 | −5.945 | −5.341 | |
SSP126 | No. of events | 0.721 | 0.985 | 0.914 | 0.799 | 0.802 | 0.726 | 1.012 | 1.009 |
Duration (month) | 1.947 | 3.109 | 2.566 | 2.173 | 2.114 | 1.970 | 3.341 | 3.197 | |
Severity | −2.401 | −5.362 | −3.590 | −2.776 | −2.686 | −2.433 | −5.640 | −5.081 | |
SSP245 | No. of events | 0.787 | 0.983 | 0.941 | 0.848 | 0.837 | 0.755 | 1.003 | 1.007 |
Duration (month) | 2.011 | 3.236 | 2.686 | 2.255 | 2.203 | 2.079 | 3.491 | 3.340 | |
Severity | −2.493 | −5.774 | −3.795 | −2.905 | −2.802 | −2.586 | −6.068 | −5.444 | |
SSP370 | No. of events | 0.823 | 0.997 | 0.966 | 0.879 | 0.893 | 0.824 | 1.005 | 1.014 |
Duration (month) | 2.102 | 3.280 | 2.774 | 2.339 | 2.241 | 2.098 | 3.562 | 3.435 | |
Severity | −2.644 | −6.005 | −3.969 | −3.060 | −2.884 | −2.629 | −6.395 | −5.724 | |
SSP585 | No. of events | 0.773 | 0.991 | 0.944 | 0.849 | 0.851 | 0.771 | 0.997 | 1.000 |
Duration (month) | 2.007 | 3.147 | 2.641 | 2.221 | 2.176 | 2.055 | 3.429 | 3.293 | |
Severity | −2.516 | −5.588 | −3.739 | −2.876 | −2.782 | −2.559 | −5.990 | −5.387 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.-Y.; Chien, P.V.; Um, M.-J.; Kim, H.; Sung, K. Projection of Changes in Rainfall and Drought Based on CMIP6 Scenarios on the Ca River Basin, Vietnam. Water 2024, 16, 1914. https://doi.org/10.3390/w16131914
Shin J-Y, Chien PV, Um M-J, Kim H, Sung K. Projection of Changes in Rainfall and Drought Based on CMIP6 Scenarios on the Ca River Basin, Vietnam. Water. 2024; 16(13):1914. https://doi.org/10.3390/w16131914
Chicago/Turabian StyleShin, Ju-Young, Pham Van Chien, Myoung-Jin Um, Hanbeen Kim, and Kyungmin Sung. 2024. "Projection of Changes in Rainfall and Drought Based on CMIP6 Scenarios on the Ca River Basin, Vietnam" Water 16, no. 13: 1914. https://doi.org/10.3390/w16131914
APA StyleShin, J. -Y., Chien, P. V., Um, M. -J., Kim, H., & Sung, K. (2024). Projection of Changes in Rainfall and Drought Based on CMIP6 Scenarios on the Ca River Basin, Vietnam. Water, 16(13), 1914. https://doi.org/10.3390/w16131914