Sustainable Management of Water Resources for Drinking Water Supply by Exploring Nanotechnology
Abstract
:1. Introduction
2. Limited Drinking Water Sources and Efforts to Reuse Wastewater
- Safely managed: drinking water comes from an improved source that is available when needed and free from fecal and priority chemical contamination;
- Basic: drinking water is sourced from an improved source with a collection time no more than 30 min for a round trip;
- Limited: drinking water is sourced from an improved source with a collection time more than 30 min for a round trip;
- Unimproved: drinking water comes from an unprotected dug well or unprotected spring;
- Surface water: drinking water is sourced directly from a river, dam, lake, pond, stream, canal or irrigation canal.
3. Drinking Water Sources Contamination
4. Nanotechnology Applications for Drinking Water Treatment
- Top-down approachThis approach is used to convert bulk materials into smaller particles within nanometer sizes to produce nanomaterials. The simplest method of the top-down technique is ball milling, whose principle is applying high energy to mechanically grind powder materials (such as metals and polymers) by frictions of balls inside a rotating drum [66]. Ball milling is suitable for high-capacity production, although it also has some drawbacks such as excessive energy requirements and the possibility of destroying crystal structures during processing [65]. Another method to produce nanomaterials through a top-down approach is by thermal evaporation. In this method, bulk materials are heated to a specific temperature to break chemical bonds [67]. The materials are then evaporated and deposited into a substrate to form a thin layer [65] by various methods, such as electrochemical and sputtering which involves high energy plasma or gas [68]. Laser ablation is a method to generate nanostructures using a pulsed laser to remove molecules from a substrate surface [69]. For producing carbon-based nanomaterials, the arc discharge method can be used. This technique generates high temperature plasma by electricity to allow sublimation of carbon in the cathode. The carbon vapors are subsequently aggregated and deposited onto the anode to form carbon nanostructures [70].
- Bottom-up approachThis approach is the opposite of the top-down approach, where nanomaterials are grown from atoms and molecules to nano-sized particles. The most common technique for the bottom-up method is the sol-gel procedure, where nanomaterial precursors are hydrolyzed to form a colloidal structure with suspended solid particles called sol [67]. The suspended solids are then condensed through an ageing process to form a gel structure, which afterwards can be separated from the liquid by various drying methods, such as thermal, supercritical, or freeze-drying [65]. Another common method to produce nanomaterials by the bottom-up approach is by chemical vapor deposition/CVD. This method utilizes a high temperature to perform heterogeneous chemical reactions of reactant gases on a heated surface. The reactions then form a continuous thin film [71]. The requirement of special apparatus and formation of highly toxic gases as by-products are disadvantages of the CVD method [67]. Frequently used chemical reactions in CVD with an example for each reaction are [72]:Thermal decomposition: SiH4(g) → Si(s) + 2 H2(g)Reduction reaction: 2 BCl3(g) + 3 H2(g) → 2 B(s) + 6 HCl(g)Exchange reaction: SnCl4(g) + O2(g) → SnO2(s) + 2 Cl2(g)Coupled reaction: 2 AlCl3(g) + 3 CO2(g) + 3 H2(g) → Al2O3(s) + 3 CO(g) + 6 HCl(g)The co-precipitation method is another bottom-up technique to manufacture nanomaterials. In this method, a precipitation chemical reaction is performed in a solution with the addition of precipitation agents drop-by-drop, thus producing nano-sized particles. Precipitates can then be aged to obtain bigger particles, and separated from the solution with the centrifugation or filtration process [67]. Nanomaterials can also be synthesized with the hydrothermal or pyrolysis method. The solution precursor is fed into a reactor with a high temperature and high pressure to produce nanomaterials through several chemical reactions [65,67].
5. Available Nanotechnologies for Drinking Water Treatment
5.1. Nano-Adsorbents
5.1.1. Carbon Nano Tubes
5.1.2. Graphene Oxide
5.1.3. Polymeric Nano-Adsorbents
5.1.4. Nano-Silicate
5.1.5. Other Nano-Adsorbents
5.2. Nanomembranes
5.2.1. Nanocomposite Membranes
5.2.2. Nanofiber Membranes
5.2.3. Self-Assembling Membranes
5.2.4. Aquaporin-Based Membranes
5.3. Nano-Photocatalysts
5.4. Nanomaterials for Water Quality Sensors
6. Advantages and Disadvantages of Nanotechnologies for Drinking Water Treatment
7. Initial Sustainability Analysis on Nanotechnology
8. The Challenges
8.1. Safety and Environmental Risks
- Limited public knowledge about the ecotoxicity and increasing exposure to nanomaterials.
- Absence of information regarding the risks of consumption of each nanomaterial.
- Insufficient regulatory controls that guarantee protection improvement and exploitation of nanomaterials.
- The hesitation and lack of commitment of the producers in communicating information about the risks to the customers.
- Engineering control: ventilation, use of less toxic materials, specially designated storage cabinet.
- Administrative control: warning notices, chemical hazard labels.
- Personal protective equipment.
8.2. Regulations
8.3. Synthesizing Cost
8.4. Other Challenges
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. Blueprint for Acceleration: Sustainable Development Goal 6 Synthesis Report on Water and Sanitation 2023; United Nations: New York, MY, USA, 2023; ISBN 9789210026444. [Google Scholar]
- du Plessis, A. Current and Future Water Scarcity and Stress. In Water as an Inescapable Risk; Springer Water; Springer: Cham, Switzerland, 2019; pp. 13–25. ISBN 978-3-030-03186-2. [Google Scholar]
- Wada, Y.; Bierkens, M.F.P. Sustainability of Global Water Use: Past Reconstruction and Future Projections. Environ. Res. Lett. 2014, 9, 104003. [Google Scholar] [CrossRef]
- Biswas, A.K. Water Availability and Use. In Water Resources of North America; Springer: Cham, Switzerland, 2003; pp. 163–174. [Google Scholar] [CrossRef]
- United Nations. Coping with Water Scarcity: Challenge of the Twenty-First Century; United Nations: New York, MY, USA, 2007; Volume 24. [Google Scholar]
- Corcoran, E.; Nellemann, C.; Baker, E.; Bos, R.; Osborn, D.; Savelli, H. Sick Water? The Central Role of Wastewater Management in Sustainable Development: A Rapid Response Assessment; United Nations Environment Programme: Nairobi, Kenya, 2010; Volume 30, ISBN 9788277010755. [Google Scholar]
- Ren, T.; Yuyan, J.; Huan, L.; Yingxin, P.; Dongmei, T.; Qiumei, D.; Zhong, Y. Investigation on an Outbreak of Bacillary Dysentery Due to Infection of Shigella Sonnei in a Town of Guangxi Province. Dialogues Health 2023, 2, 100072. [Google Scholar] [CrossRef]
- Navarro-Espinoza, S.; Angulo-Molina, A.; Meza-Figueroa, D.; López-Cervantes, G.; Meza-Montenegro, M.; Armienta, A.; Soto-Puebla, D.; Silva-Campa, E.; Burgara-Estrella, A.; Álvarez-Bajo, O.; et al. Effects of Untreated Drinking Water at Three Indigenous Yaqui Towns in Mexico: Insights from a Murine Model. Int. J. Environ. Res. Public Health 2021, 18, 805. [Google Scholar] [CrossRef]
- Mesfin, G.; Schluter, W.; Gebremariam, A.; Benti, D.; Bedada, T.; Beyene, B.; Yigzaw, A.; Taddess, Z.; Mbakuliyemo, N.; Babaniyi, O. Polio Outbreak Response in Ethiopia. East Afr. Med. J. 2008, 85, 222–231. [Google Scholar] [CrossRef]
- Garn, J.V.; Boisson, S.; Willis, R.; Bakhtiari, A.; Al-Khatib, T.; Amer, K.; Batcho, W.; Courtright, P.; Dejene, M.; Goepogui, A.; et al. Sanitation and Water Supply Coverage Thresholds Associated with Active Trachoma: Modeling Cross-Sectional Data from 13 Countries. PLoS Negl. Trop. Dis. 2018, 12, e0006110. [Google Scholar] [CrossRef]
- Farooqui, A.; Khan, A.; Kazmi, S.U. Investigation of a Community Outbreak of Typhoid Fever Associated with Drinking Water. BMC Public Health 2009, 9, 476. [Google Scholar] [CrossRef]
- Kulinkina, A.V.; Kosinski, K.C.; Plummer, J.D.; Durant, J.L.; Bosompem, K.M.; Adjei, M.N.; Griffiths, J.K.; Gute, D.M.; Naumova, E.N. Indicators of Improved Water Access in the Context of Schistosomiasis Transmission in Rural Eastern Region, Ghana. Sci. Total Environ. 2017, 579, 1745–1755. [Google Scholar] [CrossRef]
- Von Nguyen, D.; Sreenivasan, N.; Lam, E.; Ayers, T.; Kargbo, D.; Dafae, F.; Jambai, A.; Alemu, W.; Kamara, A.; Islam, M.S.; et al. Cholera Epidemic Associated with Consumption of Unsafe Drinking Water and Street-Vended Water—Eastern Freetown, Sierra Leone, 2012. Am. J. Trop. Med. Hyg. 2014, 90, 518. [Google Scholar] [CrossRef]
- Santucci, R.J.; Scully, J.R. The Pervasive Threat of Lead (Pb) in Drinking Water: Unmasking and Pursuing Scientific Factors That Govern Lead Release. Proc. Natl. Acad. Sci. USA 2020, 117, 23211–23218. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, A.K. The Legacy of Woburn, Massachusetts and Trichloroethylene; University of Idaho: Moscow, ID, USA, 2000; pp. 1–23. [Google Scholar]
- Sauer, M.; Smith, S.; Clemens, B. Does It Pay to Invest in Potable Water in the Developing World? Relationships Between External Financing and Economic Development in Sustainable Community-Run Integrated Projects. J. Int. Dev. 2016, 28, 233–242. [Google Scholar] [CrossRef]
- World Health Organization; United Nations Children’s Fund. State of the World’s Drinking Water: An Urgent Call to Action to Accelerate Progress on Ensuring Safe Drinking Water for All; World Health Organization: Geneva, Switzerland, 2022; ISBN 9789280652901. [Google Scholar]
- Bhaduri, A.; Bogardi, J.; Siddiqi, A.; Voigt, H.; Vörösmarty, C.; Pahl-Wostl, C.; Bunn, S.E.; Shrivastava, P.; Lawford, R.; Foster, S.; et al. Achieving Sustainable Development Goals from a Water Perspective. Front. Environ. Sci. 2016, 4, 182047. [Google Scholar] [CrossRef]
- Denchak, M. Water Pollution Facts, Types, Causes and Effects of Water Pollution|NRDC. Available online: https://www.nrdc.org/stories/water-pollution-everything-you-need-know#categories (accessed on 28 October 2020).
- Koda, E.; Miszkowska, A.; Sieczka, A. Levels of Organic Pollution Indicators in Groundwater at the Old Landfill and Waste Management Site. Appl. Sci. 2017, 7, 638. [Google Scholar] [CrossRef]
- Schaider, L.A.; Ackerman, J.M.; Rudel, R.A. Septic Systems as Sources of Organic Wastewater Compounds in Domestic Drinking Water Wells in a Shallow Sand and Gravel Aquifer. Sci. Total Environ. 2016, 547, 470–481. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Wang, Y.; Guo, X.; Lu, S. Analysis of Point Source Pollution and Water Environmental Quality Variation Trends in the Nansi Lake Basin from 2002 to 2012. Environ. Sci. Pollut. Res. 2016, 23, 4886–4897. [Google Scholar] [CrossRef]
- Lyons, Y. Transboundary Pollution from Offshore Activities: A Study of the Montara Offshore Oil Spill. In Transboundary Pollution: Evolving Issues of International Law and Policy; Edward Elgar Publishing Ltd.: Northampton, MA, USA, 2015; pp. 162–189. ISBN 9781784715793. [Google Scholar]
- Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in Nanotechnology for Water Treatment. Nanotechnol. Sci. Appl. 2015, 8, 1–17. [Google Scholar] [CrossRef]
- Dermatas, D.; Mpouras, T.; Panagiotakis, I. Application of Nanotechnology for Waste Management: Challenges and Limitations. Waste Manag. Res. 2018, 36, 197–199. [Google Scholar] [CrossRef]
- Davarazar, M.; Kamali, M.; Lopes, I. Engineered Nanomaterials for (Waste)Water Treatment—A Scientometric Assessment and Sustainability Aspects. NanoImpact 2021, 22, 100316. [Google Scholar] [CrossRef]
- Schmoll, O. Protecting Groundwater for Health: Managing the Quality of Drinking-Water Sources. In Water Intelligence Online; World Health Organization: Geneva, Switzerland, 2013; Volume 12, p. 678. [Google Scholar] [CrossRef]
- WHO; UNICEF. Progress on Household Drinking Water, Sanitation and Hygiene; World Health Organization: Geneva, Switzerland, 2023; ISBN 9789240030848. [Google Scholar]
- FAO. Coping with Water Scarcity An Action Framework for Agriculture and Food Security; Food and Agriculture Organization: Rome, Italy, 2012; Volume 79. [Google Scholar]
- Darre, N.C.; Toor, G.S. Desalination of Water: A Review. Curr. Pollut. Reports 2018, 4, 104–111. [Google Scholar] [CrossRef]
- Birks, R.; Hills, S. Characterisation of Indicator Organisms and Pathogens in Domestic Greywater for Recycling. Environ. Monit. Assess. 2007, 129, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Salgot, M.; Huertas, E.; Weber, S.; Dott, W.; Hollender, J. Wastewater Reuse and Risk: Definition of Key Objectives. Desalination 2006, 187, 29–40. [Google Scholar] [CrossRef]
- Silicon Valley Clean Water Silicon Valley Clean Water Facilities—Wastewater Treatment. Available online: https://svcw.org/what-we-do/facilities/wastewater-treatment/ (accessed on 21 October 2020).
- Madhura, L.; Singh, S.; Kanchi, S.; Sabela, M.; Bisetty, K. Inamuddin Nanotechnology-Based Water Quality Management for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 65–121. [Google Scholar] [CrossRef]
- Kuzma, S.; Saccoccia, L.; Chertock, M. 25 Countries Face Extremely High Water Stress|World Resources Institute. Available online: https://www.wri.org/insights/highest-water-stressed-countries (accessed on 14 April 2024).
- Lefebvre, O. Beyond NEWater: An Insight into Singapore’s Water Reuse Prospects. Curr. Opin. Environ. Sci. Health 2018, 2, 26–31. [Google Scholar] [CrossRef]
- Bai, Y.; Shan, F.; Zhu, Y.Y.; Xu, J.Y.; Wu, Y.S.; Luo, X.G.; Wu, Y.H.; Hu, H.Y.; Zhang, B.L. Long-Term Performance and Economic Evaluation of Full-Scale MF and RO Process—A Case Study of the Changi NEWater Project Phase 2 in Singapore. Water Cycle 2020, 1, 128–135. [Google Scholar] [CrossRef]
- Hsien, C.; Choong Low, J.S.; Chan Fuchen, S.; Han, T.W. Life Cycle Assessment of Water Supply in Singapore—A Water-Scarce Urban City with Multiple Water Sources. Resour. Conserv. Recycl. 2019, 151, 104476. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Houtman, C.J. Emerging Contaminants in Surface Waters and Their Relevance for the Production of Drinking Water in Europe. J. Integr. Environ. Sci. 2010, 7, 271–295. [Google Scholar] [CrossRef]
- Nguyen, M.D. Compliance of Paper-Making Plants with Regulations on Wastewater Management in Bac Ninh Province, Vietnam. Environ. Dev. Sustain. 2011, 13, 35–50. [Google Scholar] [CrossRef]
- Jones, E.R.; Bierkens, M.F.P.; Wanders, N.; Sutanudjaja, E.H.; van Beek, L.P.H.; van Vliet, M.T.H. Current Wastewater Treatment Targets Are Insufficient to Protect Surface Water Quality. Commun. Earth Environ. 2022, 3, 221. [Google Scholar] [CrossRef]
- Büttner, O.; Jawitz, J.W.; Birk, S.; Borchardt, D. Why Wastewater Treatment Fails to Protect Stream Ecosystems in Europe. Water Res. 2022, 217, 118382. [Google Scholar] [CrossRef]
- Haripriyan, U.; Gopinath, K.P.; Arun, J.; Govarthanan, M. Bioremediation of Organic Pollutants: A Mini Review on Current and Critical Strategies for Wastewater Treatment. Arch. Microbiol. 2022, 204, 286. [Google Scholar] [CrossRef]
- Fito, J.; Tefera, N.; Van Hulle, S.W.H. Sugarcane Biorefineries Wastewater: Bioremediation Technologies for Environmental Sustainability. Chem. Biol. Technol. Agric. 2019, 6, 6. [Google Scholar] [CrossRef]
- Kasmi, M. Biological Processes as Promoting Way for Both Treatment and Valorization of Dairy Industry Effluents. Waste Biomass Valorization 2018, 9, 195–209. [Google Scholar] [CrossRef]
- Garcia-Rodríguez, A.; Matamoros, V.; Fontàs, C.; Salvadó, V. The Ability of Biologically Based Wastewater Treatment Systems to Remove Emerging Organic Contaminants—A Review. Environ. Sci. Pollut. Res. 2014, 21, 11708–11728. [Google Scholar] [CrossRef] [PubMed]
- Manasa, R.L.; Mehta, A. Wastewater: Sources of Pollutants and Its Remediation. In Environmental Biotechnology; Springer: Cham, Switzerland, 2020; Volume 2, pp. 197–219. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Hadibarata, T.; Syafrudin, M.; Yılmaz, M.; Abdullah, S. Microbiological Contaminants in Drinking Water: Current Status and Challenges. Water. Air. Soil Pollut. 2022, 233, 299. [Google Scholar] [CrossRef]
- Gall, A.M.; Mariñas, B.J.; Lu, Y.; Shisler, J.L. Waterborne Viruses: A Barrier to Safe Drinking Water. PLOS Pathog. 2015, 11, e1004867. [Google Scholar] [CrossRef] [PubMed]
- El Moussaouy, A. Environmental Nanotechnology and Education for Sustainability: Recent Progress and Perspective. In Handbook of Environmental Materials Management; Hussain, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 2205–2231. [Google Scholar]
- Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered Nanomaterials for Water Treatment and Remediation: Costs, Benefits, and Applicability. Chem. Eng. J. 2016, 286, 640–662. [Google Scholar] [CrossRef]
- Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of Nanomaterials in Water Treatment Applications: A Review. Chem. Eng. J. 2016, 306, 1116–1137. [Google Scholar] [CrossRef]
- Uddin, M.K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Adisasmito, S.; Pramudita, D.; Sumampouw, G.A.; Mohtar, W.H.M.W.; Indarto, A. Sustainable Applications and Prospects of Nanoadsorbents for Wastewater Treatment. In Adsorption through Advanced Nanoscale Materials; Elsevier: Amsterdam, The Netherlands, 2023; pp. 533–584. [Google Scholar] [CrossRef]
- Mayo, J.T.; Yavuz, C.; Yean, S.; Cong, L.; Shipley, H.; Yu, W.; Falkner, J.; Kan, A.; Tomson, M.; Colvin, V.L. The Effect of Nanocrystalline Magnetite Size on Arsenic Removal. Sci. Technol. Adv. Mater. 2007, 8, 71. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Nutt, M.O.; Hughes, J.B.; Wong, M.S. Designing Pd-on-Au Bimetallic Nanoparticle Catalysts for Trichloroethene Hydrodechlorination. Environ. Sci. Technol. 2005, 39, 1346–1353. [Google Scholar] [CrossRef]
- Lee, J.; Mackeyev, Y.; Cho, M.; Li, D.; Kim, J.H.; Wilson, L.J.; Alvarez, P.J.J. Photochemical and Antimicrobial Properties of Novel C 60 Derivatives in Aqueous Systems. Environ. Sci. Technol. 2009, 43, 6604–6610. [Google Scholar] [CrossRef]
- Yang, H.L.; Lin, J.C.T.; Huang, C. Application of Nanosilver Surface Modification to RO Membrane and Spacer for Mitigating Biofouling in Seawater Desalination. Water Res. 2009, 43, 3777–3786. [Google Scholar] [CrossRef]
- Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q.; Alvarez, P.J.J. Polysulfone Ultrafiltration Membranes Impregnated with Silver Nanoparticles Show Improved Biofouling Resistance and Virus Removal. Water Res. 2009, 43, 715–723. [Google Scholar] [CrossRef]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano-Bio Interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef]
- Oren, Y. Capacitive Deionization (CDI) for Desalination and Water Treatment—Past, Present and Future (a Review). Desalination 2008, 228, 10–29. [Google Scholar] [CrossRef]
- Bogue, R. Nanosensors: A Review of Recent Research. Sens. Rev. 2009, 29, 310–315. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of Nanomaterials Using Various Top-down and Bottom-up Approaches, Influencing Factors, Advantages, and Disadvantages: A Review. Adv. Colloid Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef]
- Chen, F.; Yan, T.H.; Bashir, S.; Liu, J.L. Synthesis of Nanomaterials Using Top-down Methods. In Advanced Nanomaterials and Their Applications in Renewable Energy; Elsevier: Amsterdam, The Netherlands, 2022; pp. 37–60. [Google Scholar] [CrossRef]
- Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13, 59–81. [Google Scholar] [CrossRef]
- Lin, J.M.; Chen, Y.C.; Yang, C.F.; Chen, W. Effect of Substrate Temperature on the Thermoelectric Properties of the Sb2Te3 Thin Films Deposition by Using Thermal Evaporation Method. J. Nanomater. 2015, 2015, 135130. [Google Scholar] [CrossRef]
- Ravi-Kumar, S.; Lies, B.; Zhang, X.; Lyu, H.; Qin, H. Laser Ablation of Polymers: A Review. Polym. Int. 2019, 68, 1391–1401. [Google Scholar] [CrossRef]
- Arora, N.; Sharma, N.N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. Diam. Relat. Mater. 2014, 50, 135–150. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical Vapour Deposition. Nat. Rev. Methods Prim. 2021, 1, 5. [Google Scholar] [CrossRef]
- Carlsson, J.O.; Martin, P.M. Chemical Vapor Deposition. In Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology; William Andrew Publishing: Norwich, NY, USA, 2009; pp. 314–363. ISBN 9780815520313. [Google Scholar]
- Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef]
- Smith, S.C.; Rodrigues, D.F. Carbon-Based Nanomaterials for Removal of Chemical and Biological Contaminants from Water: A Review of Mechanisms and Applications. Carbon 2015, 91, 122–143. [Google Scholar] [CrossRef]
- Ma, X.; Cambré, S.; Wenseleers, W.; Doorn, S.K.; Htoon, H. Quasiphase Transition in a Single File of Water Molecules Encapsulated in (6,5) Carbon Nanotubes Observed by Temperature-Dependent Photoluminescence Spectroscopy. Phys. Rev. Lett. 2017, 118, 027402. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Zhang, S.; Pan, B. Application Potential of Carbon Nanotubes in Water Treatment: A Review. J. Environ. Sci. 2013, 25, 1263–1280. [Google Scholar] [CrossRef]
- Yang, H.Y.; Han, Z.J.; Yu, S.F.; Pey, K.L.; Ostrikov, K.; Karnik, R. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun. 2013, 4, 2220. [Google Scholar] [CrossRef]
- Plata, D.L.; Meshot, E.R.; Reddy, C.M.; Hart, A.J.; Gschwend, P.M. Multiple Alkynes React with Ethylene to Enhance Carbon Nanotube Synthesis, Suggesting a Polymerization-like Formation Mechanism. ACS Nano 2010, 4, 7185–7192. [Google Scholar] [CrossRef]
- AlOmar, M.K.; Alsaadi, M.A.; Hayyan, M.; Akib, S.; Ibrahim, M.; Hashim, M.A. Allyl Triphenyl Phosphonium Bromide Based DES-Functionalized Carbon Nanotubes for the Removal of Mercury from Water. Chemosphere 2017, 167, 44–52. [Google Scholar] [CrossRef]
- Zhan, Y.; Hu, H.; He, Y.; Long, Z.; Wan, X.; Zeng, G. Novel Amino-Functionalized Fe3O4/Carboxylic Multi-Walled Carbon Nanotubes: One-Pot Synthesis, Characterization and Removal for Cu(II). Russ. J. Appl. Chem. 2016, 89, 1894–1902. [Google Scholar] [CrossRef]
- Hayati, B.; Maleki, A.; Najafi, F.; Gharibi, F.; McKay, G.; Gupta, V.K.; Harikaranahalli Puttaiah, S.; Marzban, N. Heavy Metal Adsorption Using PAMAM/CNT Nanocomposite from Aqueous Solution in Batch and Continuous Fixed Bed Systems. Chem. Eng. J. 2018, 346, 258–270. [Google Scholar] [CrossRef]
- Kandah, M.I.; Meunier, J.-L. Removal of Nickel Ions from Water by Multi-Walled Carbon Nanotubes. J. Hazard. Mater. 2007, 146, 283–288. [Google Scholar] [CrossRef]
- Tofighy, M.A.; Mohammadi, T. Adsorption of Divalent Heavy Metal Ions from Water Using Carbon Nanotube Sheets. J. Hazard. Mater. 2011, 185, 140–147. [Google Scholar] [CrossRef]
- Li, Y.H.; Di, Z.; Ding, J.; Wu, D.; Luan, Z.; Zhu, Y. Adsorption Thermodynamic, Kinetic and Desorption Studies of Pb2+ on Carbon Nanotubes. Water Res. 2005, 39, 605–609. [Google Scholar] [CrossRef]
- Atieh, M.A. Removal of Chromium (VI) from Polluted Water Using Carbon Nanotubes Supported with Activated Carbon. Procedia Environ. Sci. 2011, 4, 281–293. [Google Scholar] [CrossRef]
- Ji, D.; Liu, Y.; Ma, H.; Bai, Z.; Qiao, Z.; Ji, D.; Yan, C.; Yan, Y.; Wu, H. Study on Uranium Adsorption Property of Carbon Nanotubes Prepared by Molten Salt Electrolysis. ACS Sustain. Chem. Eng. 2022, 10, 11990–11999. [Google Scholar] [CrossRef]
- Saxena, M.; Sharma, N.; Saxena, R. Highly Efficient and Rapid Removal of a Toxic Dye: Adsorption Kinetics, Isotherm, and Mechanism Studies on Functionalized Multiwalled Carbon Nanotubes. Surf. Interfaces 2020, 21, 100639. [Google Scholar] [CrossRef]
- Balarak, D.; Zafariyan, M.; Igwegbe, C.A.; Onyechi, K.K.; Ighalo, J.O. Adsorption of Acid Blue 92 Dye from Aqueous Solutions by Single-Walled Carbon Nanotubes: Isothermal, Kinetic, and Thermodynamic Studies. Environ. Process. 2021, 8, 869–888. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.; Du, Q.; Peng, X.; Liu, T.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; Zhu, H.; et al. Adsorption of Fluoride from Aqueous Solution by Graphene. J. Colloid Interface Sci. 2011, 363, 348–354. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.M.; Su, X. Adsorption and Removal of Tetracycline Antibiotics from Aqueous Solution by Graphene Oxide. J. Colloid Interface Sci. 2012, 368, 540–546. [Google Scholar] [CrossRef]
- Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S. Adsorption Behavior of EDTA-Graphene Oxide for Pb (II) Removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, S.; Zhang, Q.; Li, C.; Bao, C.; Liu, X.; Xiao, P. Adsorption of Au(III), Pd(II), and Pt(IV) from Aqueous Solution onto Graphene Oxide. J. Chem. Eng. Data 2013, 58, 209–216. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Zeng, G.; Liu, Y.; Wang, X.; Lin, N.; Qi, Y. Adsorption Characteristics and Behaviors of Graphene Oxide for Zn(II) Removal from Aqueous Solution. Appl. Surf. Sci. 2013, 279, 432–440. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Y.; Pang, L.; Li, M.; Song, X.; Wen, J.; Zhao, H. Preparation of Reduced Graphene Oxide/Poly(Acrylamide) Nanocomposite and Its Adsorption of Pb(II) and Methylene Blue. Langmuir 2013, 29, 10727–10736. [Google Scholar] [CrossRef]
- Chen, J.H.; Xing, H.T.; Guo, H.X.; Weng, W.; Hu, S.R.; Li, S.X.; Huang, Y.H.; Sun, X.; Su, Z.B. Investigation on the Adsorption Properties of Cr(vi) Ions on a Novel Graphene Oxide (GO) Based Composite Adsorbent. J. Mater. Chem. A 2014, 2, 12561–12570. [Google Scholar] [CrossRef]
- Zhang, Y.; Chi, H.; Zhang, W.; Sun, Y.; Liang, Q.; Gu, Y.; Jing, R. Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions Mechanism. Nano-Micro Lett. 2014, 6, 80–87. [Google Scholar] [CrossRef]
- Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene Oxide-MnFe2O4 Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. [Google Scholar] [CrossRef]
- Wang, C.; Feng, C.; Gao, Y.; Ma, X.; Wu, Q.; Wang, Z. Preparation of a Graphene-Based Magnetic Nanocomposite for the Removal of an Organic Dye from Aqueous Solution. Chem. Eng. J. 2011, 173, 92–97. [Google Scholar] [CrossRef]
- Ai, L.; Jiang, J. Removal of Methylene Blue from Aqueous Solution with Self-Assembled Cylindrical Graphene-Carbon Nanotube Hybrid. Chem. Eng. J. 2012, 192, 156–163. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Mahesh, K.; Le, N.H.; Kemp, K.C.; Timilsina, R.; Tiwari, R.N.; Kim, K.S. Reduced Graphene Oxide-Based Hydrogels for the Efficient Capture of Dye Pollutants from Aqueous Solutions. Carbon 2013, 56, 173–182. [Google Scholar] [CrossRef]
- Xie, G.; Xi, P.; Liu, H.; Chen, F.; Huang, L.; Shi, Y.; Hou, F.; Zeng, Z.; Shao, C.; Wang, J. A Facile Chemical Method to Produce Superparamagnetic Graphene Oxide-Fe 3O 4 Hybrid Composite and Its Application in the Removal of Dyes from Aqueous Solution. J. Mater. Chem. 2012, 22, 1033–1039. [Google Scholar] [CrossRef]
- Hadi Najafabadi, H.; Irani, M.; Roshanfekr Rad, L.; Heydari Haratameh, A.; Haririan, I. Removal of Cu2+, Pb2+ and Cr6+ from Aqueous Solutions Using a Chitosan/Graphene Oxide Composite Nanofibrous Adsorbent. RSC Adv. 2015, 5, 16532–16539. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, L.; Xu, M.; Feng, S.; Ding, Y.; Wakeel, M.; Alharbi, N.S.; Chen, C. Amino Siloxane Oligomer Modified Graphene Oxide Composite for the Efficient Capture of U(VI) and Eu(III) from Aqueous Solution. ACS Sustain. Chem. Eng. 2017, 5, 10290–10297. [Google Scholar] [CrossRef]
- Arshad, F.; Selvaraj, M.; Zain, J.; Banat, F.; Haija, M.A. Polyethylenimine Modified Graphene Oxide Hydrogel Composite as an Efficient Adsorbent for Heavy Metal Ions. Sep. Purif. Technol. 2019, 209, 870–880. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Few-Layered Graphene Oxide Nanosheets as Superior Sorbents for Heavy Metal Ion Pollution Management. Environ. Sci. Technol. 2011, 45, 10454–10462. [Google Scholar] [CrossRef]
- Travlou, N.A.; Kyzas, G.Z.; Lazaridis, N.K.; Deliyanni, E.A. Functionalization of Graphite Oxide with Magnetic Chitosan for the Preparation of a Nanocomposite Dye Adsorbent. Langmuir 2013, 29, 1657–1668. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.Z.; Bikiaris, D.N.; Lazaridis, N.K. Selective Separation of Basic and Reactive Dyes by Molecularly Imprinted Polymers (MIPs). Chem. Eng. J. 2009, 149, 263–272. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Kotnala, S. Fabrication of Chitosan-Hydroxyapatite Nano-Adsorbent for Removal of Norfloxacin from Water: Isotherm and Kinetic Studies. Mater. Today Proc. 2022, 61, 143–149. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Kehili, S.; Ali, M.; Musa, H.; Ali, U.; Kutty, S.R.M.; Jagaba, A.H.; Abdullahi, S.S.; Tag-Eldin, E.M.; Mahmud, H.N.M.E. Polymer-Based Nano-Adsorbent for the Removal of Lead Ions: Kinetics Studies and Optimization by Response Surface Methodology. Separations 2022, 9, 356. [Google Scholar] [CrossRef]
- Kunduru, K.R.; Nazarkovsky, M.; Farah, S.; Pawar, R.P.; Basu, A.; Domb, A.J. Nanotechnology for Water Purification: Applications of Nanotechnology Methods in Wastewater Treatment. In Water Purification; Elsevier: Amsterdam, The Netherlands, 2017; pp. 33–74. ISBN 9780128043004. [Google Scholar]
- Farhadi, K. Effect of Nano Silica on Water Quality, Health and Safety in Swimming Pools. Int. J. Appl. Exerc. Physiol. 2012, 1, 24. [Google Scholar]
- Asouhidou, D.; Triantafyllidis, K.; Lazaridis, N.; Matis, K.A. Adsorption of Remazol Red 3BS from Aqueous Solutions Using APTES- and Cyclodextrin-Modified HMS-Type Mesoporous Silicas. Colloids Surf. A Physicochem. Eng. Asp. 2009, 346, 83–90. [Google Scholar] [CrossRef]
- Kotsyuda, S.S.; Tomina, V.V.; Zub, Y.L.; Furtat, I.M.; Lebed, A.P.; Vaclavikova, M.; Melnyk, I.V. Bifunctional Silica Nanospheres with 3-Aminopropyl and Phenyl Groups. Synthesis Approach and Prospects of Their Applications. Appl. Surf. Sci. 2017, 420, 782–791. [Google Scholar] [CrossRef]
- Najafi, M.; Yousefi, Y.; Rafati, A.A. Synthesis, Characterization and Adsorption Studies of Several Heavy Metal Ions on Amino-Functionalized Silica Nano Hollow Sphere and Silica Gel. Sep. Purif. Technol. 2012, 85, 193–205. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Fekry, N.A.; El-Latif, M.M.A. Nanocomposites of Nanosilica-Immobilized-Nanopolyaniline and Crosslinked Nanopolyaniline for Removal of Heavy Metals. Chem. Eng. J. 2016, 304, 679–691. [Google Scholar] [CrossRef]
- Da’na, E. Nano-Silica Modified with Diamine for Capturing Azo Dye from Aqueous Solutions. Molecules 2022, 27, 3366. [Google Scholar] [CrossRef]
- Liu, J.; Lin, Q.; Gao, J.; Jia, X.; Cai, M.; Liang, Q. Adsorption Properties and Mechanisms of Methylene Blue and Tetracycline by Nano-Silica Biochar Composites Activated by KOH. Chemosphere 2023, 337, 139395. [Google Scholar] [CrossRef] [PubMed]
- Sumesh, E.; Bootharaju, M.S.; Anshup; Pradeep, T. A Practical Silver Nanoparticle-Based Adsorbent for the Removal of Hg2+ from Water. J. Hazard. Mater. 2011, 189, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Lisha, K.P.; Anshup; Pradeep, T. Towards a Practical Solution for Removing Inorganic Mercury from Drinking Water Using Gold Nanoparticles. Gold Bull. 2009, 42, 144–152. [Google Scholar] [CrossRef]
- Ojea-Jiménez, I.; López, X.; Arbiol, J.; Puntes, V. Citrate-Coated Gold Nanoparticles as Smart Scavengers for Mercury(II) Removal from Polluted Waters. ACS Nano 2012, 6, 2253–2260. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Zhang, G.S. Preparation and Evaluation of Fe-La Composite Oxide Nanoadsorbent for As(III) Removal from Aqueous Solutions. Huanjing Kexue/Environ. Sci. 2014, 35, 4198–4204. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Han, Q.; Yao, X.; Wang, X. Formation of WO3 Nanotube-Based Bundles Directed by NaHSO4 and Its Application in Water Treatment. J. Mater. Chem. A 2013, 1, 1246–1253. [Google Scholar] [CrossRef]
- Pan, S.; Shen, H.; Xu, Q.; Luo, J.; Hu, M. Surface Mercapto Engineered Magnetic Fe3O4 Nanoadsorbent for the Removal of Mercury from Aqueous Solutions. J. Colloid Interface Sci. 2012, 365, 204–212. [Google Scholar] [CrossRef]
- Kozma, G.; Rónavári, A.; Kónya, Z.; Kukovecz, Á. Environmentally Benign Synthesis Methods of Zero-Valent Iron Nanoparticles. ACS Sustain. Chem. Eng. 2016, 4, 291–297. [Google Scholar] [CrossRef]
- Tosco, T.; Petrangeli Papini, M.; Cruz Viggi, C.; Sethi, R. Nanoscale Zerovalent Iron Particles for Groundwater Remediation: A Review. J. Clean. Prod. 2014, 77, 10–21. [Google Scholar] [CrossRef]
- Gillham, R.W.; O’Hannesin, S.F. Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron. Groundwater 1994, 32, 958–967. [Google Scholar] [CrossRef]
- Bokare, V.; Jung, J.L.; Chang, Y.Y.; Chang, Y.S. Reductive Dechlorination of Octachlorodibenzo-p-Dioxin by Nanosized Zero-Valent Zinc: Modeling of Rate Kinetics and Congener Profile. J. Hazard. Mater. 2013, 250–251, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hao, Z.-W.; Liu, W.-L.; Xu, X.-H. Synchronous Treatment of Heavy Metal Ions and Nitrate by Zero-Valent Iron. Huanjing Kexue/Environ. Sci. 2009, 30, 775–779. [Google Scholar]
- Seyedi, S.M.; Rabiee, H.; Shahabadi, S.M.S.; Borghei, S.M. Synthesis of Zero-Valent Iron Nanoparticles Via Electrical Wire Explosion for Efficient Removal of Heavy Metals. Clean Soil Air Water 2017, 45, 1600139. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Z.L.; Sun, Y. Manipulating the Morphology of Nanoscale Zero-Valent Iron on Pumice for Removal of Heavy Metals from Wastewater. Chem. Eng. J. 2015, 263, 55–61. [Google Scholar] [CrossRef]
- O’Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Nanoscale Zero Valent Iron and Bimetallic Particles for Contaminated Site Remediation. Adv. Water Resour. 2013, 51, 104–122. [Google Scholar] [CrossRef]
- Suman; Kardam, A.; Gera, M.; Jain, V.K. A Novel Reusable Nanocomposite for Complete Removal of Dyes, Heavy Metals and Microbial Load from Water Based on Nanocellulose and Silver Nano-Embedded Pebbles. Environ. Technol. 2015, 36, 706–714. [Google Scholar] [CrossRef]
- Batool, M.; Daoush, W.M.; Hussain, M.K. Dye Sequestration Using Biosynthesized Silver Nanoparticles Adsorbent in Aqueous Solutions. Crystals 2022, 12, 662. [Google Scholar] [CrossRef]
- Ahmad, R.; Ejaz, M.O. Synthesis of New Alginate-Silver Nanoparticles/Mica (Alg-AgNPs/MC) Bionanocomposite for Enhanced Adsorption of Dyes from Aqueous Solution. Chem. Eng. Res. Des. 2023, 197, 355–371. [Google Scholar] [CrossRef]
- Seisenbaeva, G.A.; Daniel, G.; Nedelec, J.M.; Gun’Ko, Y.K.; Kessler, V.G. High Surface Area Ordered Mesoporous Nano-Titania by a Rapid Surfactant-Free Approach. J. Mater. Chem. 2012, 22, 20374–20380. [Google Scholar] [CrossRef]
- Mahdavi, S.; Jalali, M.; Afkhami, A. Heavy Metals Removal from Aqueous Solutions Using TiO2, MgO, and Al2O3 Nanoparticles. Chem. Eng. Commun. 2013, 200, 448–470. [Google Scholar] [CrossRef]
- Seisenbaeva, G.A.; Daniel, G.; Kessler, V.G.; Nedelec, J.M. General Facile Approach to Transition-Metal Oxides with Highly Uniform Mesoporosity and Their Application as Adsorbents for Heavy-Metal-Ion Sequestration. Chem. A Eur. J. 2014, 20, 10732–10736. [Google Scholar] [CrossRef] [PubMed]
- Rind, I.K.; Tuzen, M.; Sarı, A.; Lanjwani, M.F.; Memon, N.; Saleh, T.A. Synthesis of TiO2 Nanoparticles Loaded on Magnetite Nanoparticles Modified Kaolinite Clay (KC) and Their Efficiency for As(III) Adsorption. Chem. Eng. Res. Des. 2023, 191, 523–536. [Google Scholar] [CrossRef]
- Kocabaş, Ö.; Yürüm, Y. Synthesis and Characterization of Anatase Nanoadsorbent and Application in Removal of Lead, Copper and Arsenic from Water. Chem. Eng. J. 2013, 225, 625–635. [Google Scholar] [CrossRef]
- Yalçinkaya, Ö.; Kalfa, O.M.; Türker, A.R. Chelating Agent Free-Solid Phase Extraction (CAF-SPE) of Co(II), Cu(II) and Cd(II) by New Nano Hybrid Material (ZrO2/B2O3). J. Hazard. Mater. 2011, 195, 332–339. [Google Scholar] [CrossRef]
- Hua, M.; Jiang, Y.; Wu, B.; Pan, B.; Zhao, X.; Zhang, Q. Fabrication of a New Hydrous Zr(IV) Oxide-Based Nanocomposite for Enhanced Pb(II) and Cd(II) Removal from Waters. ACS Appl. Mater. Interfaces 2013, 5, 12135–12142. [Google Scholar] [CrossRef]
- Wang, X.; Huang, K.; Chen, Y.; Liu, J.; Chen, S.; Cao, J.; Mei, S.; Zhou, Y.; Jing, T. Preparation of Dumbbell Manganese Dioxide/Gelatin Composites and Their Application in the Removal of Lead and Cadmium Ions. J. Hazard. Mater. 2018, 350, 46–54. [Google Scholar] [CrossRef]
- Huangfu, X.; Jiang, J.; Lu, X.; Wang, Y.; Liu, Y.; Pang, S.Y.; Cheng, H.; Zhang, X.; Ma, J. Adsorption and Oxidation of Thallium(I) by a Nanosized Manganese Dioxide. Water Air Soil Pollut. 2015, 226, 1–9. [Google Scholar] [CrossRef]
- Saad, A.H.A.; Azzam, A.M.; El-Wakeel, S.T.; Mostafa, B.B.; Abd El-latif, M.B. Removal of Toxic Metal Ions from Wastewater Using ZnO@Chitosan Core-Shell Nanocomposite. Environ. Nanotechnol. Monit. Manag. 2018, 9, 67–75. [Google Scholar] [CrossRef]
- Sheela, T.; Nayaka, Y.A.; Viswanatha, R.; Basavanna, S.; Venkatesha, T.G. Kinetics and Thermodynamics Studies on the Adsorption of Zn(II), Cd(II) and Hg(II) from Aqueous Solution Using Zinc Oxide Nanoparticles. Powder Technol. 2012, 217, 163–170. [Google Scholar] [CrossRef]
- Somu, P.; Paul, S. Casein Based Biogenic-Synthesized Zinc Oxide Nanoparticles Simultaneously Decontaminate Heavy Metals, Dyes, and Pathogenic Microbes: A Rational Strategy for Wastewater Treatment. J. Chem. Technol. Biotechnol. 2018, 93, 2962–2976. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Seitzhapar, N.; Barsbay, M.; Aimanova, N.A.; Alimkhanova, A.N.; Zheltov, D.A.; Zhumabayev, A.M.; Temirgaziev, B.S.; Almanov, A.A.; Sadyrbekov, D.T. Adsorption Isotherms and Kinetics for Pb(Ii) Ion Removal from Aqueous Solutions with Biogenic Metal Oxide Nanoparticles. RSC Adv. 2023, 13, 26839–26850. [Google Scholar] [CrossRef]
- Vidovix, T.B.; Quesada, H.B.; Bergamasco, R.; Vieira, M.F.; Vieira, A.M.S. Adsorption of Safranin-O Dye by Copper Oxide Nanoparticles Synthesized from Punica Granatum Leaf Extract. Environ. Technol. 2022, 43, 3047–3063. [Google Scholar] [CrossRef]
- Tang, W.; Su, Y.; Li, Q.; Gao, S.; Shang, J. Superparamagnetic Magnesium Ferrite Nanoadsorbent for Effective Arsenic (III, V) Removal and Easy Magnetic Separation. Water Res. 2013, 47, 3624–3634. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, W.; Tan, F.; Luo, F.; Chen, J.; Qiao, X. Investigation on the Efficiency and Mechanism of Cd(II) and Pb(II) Removal from Aqueous Solutions Using MgO Nanoparticles. J. Hazard. Mater. 2015, 299, 664–674. [Google Scholar] [CrossRef]
- Feng, J.; Zou, L.; Wang, Y.; Li, B.; He, X.; Fan, Z.; Ren, Y.; Lv, Y.; Zhang, M.; Chen, D. Synthesis of High Surface Area, Mesoporous MgO Nanosheets with Excellent Adsorption Capability for Ni(II) via a Distillation Treating. J. Colloid Interface Sci. 2015, 438, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Asouhidou, D.D.; Triantafyllidis, K.S.; Lazaridis, N.K.; Matis, K.A. Adsorption of Reactive Dyes from Aqueous Solutions by Layered Double Hydroxides. J. Chem. Technol. Biotechnol. 2012, 87, 575–582. [Google Scholar] [CrossRef]
- Recillas, S.; Colón, J.; Casals, E.; González, E.; Puntes, V.; Sánchez, A.; Font, X. Chromium VI Adsorption on Cerium Oxide Nanoparticles and Morphology Changes during the Process. J. Hazard. Mater. 2010, 184, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.K.; Saxena, A.; Rawat, A.S.; Dixit, P.K.; Kumar, R.; Rai, P.K. Surfactant-Free One-Pot Synthesis of Low-Density Cerium Oxide Nanoparticles for Adsorptive Removal of Arsenic Species. Environ. Prog. Sustain. Energy 2018, 37, 221–231. [Google Scholar] [CrossRef]
- Meepho, M.; Sirimongkol, W.; Ayawanna, J. Samaria-Doped Ceria Nanopowders for Heavy Metal Removal from Aqueous Solution. Mater. Chem. Phys. 2018, 214, 56–65. [Google Scholar] [CrossRef]
- Tabesh, S.; Davar, F.; Loghman-Estarki, M.R. Preparation of γ-Al2O3 Nanoparticles Using Modified Sol-Gel Method and Its Use for the Adsorption of Lead and Cadmium Ions. J. Alloys Compd. 2018, 730, 441–449. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J.; Wang, J.; Bi, J.; Xie, C.; Hao, H. Design and Synthesis of Core–Shell Fe3O4@PTMT Composite Magnetic Microspheres for Adsorption of Heavy Metals from High Salinity Wastewater. Chemosphere 2018, 206, 513–521. [Google Scholar] [CrossRef]
- Tresintsi, S.; Simeonidis, K.; Estradé, S.; Martinez-Boubeta, C.; Vourlias, G.; Pinakidou, F.; Katsikini, M.; Paloura, E.C.; Stavropoulos, G.; Mitrakas, M. Tetravalent Manganese Feroxyhyte: A Novel Nanoadsorbent Equally Selective for As(III) and As(V) Removal from Drinking Water. Environ. Sci. Technol. 2013, 47, 9699–9705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, L.; Wang, T.-J.; Su, C.-L.; Jin, Y. Synthesis and Properties of a Magnetic Core–Shell Composite Nano-Adsorbent for Fluoride Removal from Drinking Water. Appl. Surf. Sci. 2014, 317, 552–559. [Google Scholar] [CrossRef]
- Norouzian Baghani, A.; Mahvi, A.H.; Gholami, M.; Rastkari, N.; Delikhoon, M. One-Pot Synthesis, Characterization and Adsorption Studies of Amine-Functionalized Magnetite Nanoparticles for Removal of Cr (VI) and Ni (II) Ions from Aqueous Solution: Kinetic, Isotherm and Thermodynamic Studies. J. Environ. Health Sci. Eng. 2016, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Badruddoza, A.Z.M.; Tay, A.S.H.; Tan, P.Y.; Hidajat, K.; Uddin, M.S. Carboxymethyl-β-Cyclodextrin Conjugated Magnetic Nanoparticles as Nano-Adsorbents for Removal of Copper Ions: Synthesis and Adsorption Studies. J. Hazard. Mater. 2011, 185, 1177–1186. [Google Scholar] [CrossRef]
- Huang, L.; He, M.; Chen, B.; Hu, B. Magnetic Zr-MOFs Nanocomposites for Rapid Removal of Heavy Metal Ions and Dyes from Water. Chemosphere 2018, 199, 435–444. [Google Scholar] [CrossRef]
- Ge, L.; Wang, W.; Peng, Z.; Tan, F.; Wang, X.; Chen, J.; Qiao, X. Facile Fabrication of Fe@MgO Magnetic Nanocomposites for Efficient Removal of Heavy Metal Ion and Dye from Water. Powder Technol. 2018, 326, 393–401. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, F.A. Kinetic Study on Removal of Copper(II) Using Goethite and Hematite Nano-Photocatalysts. J. Colloid Interface Sci. 2010, 347, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Khezami, L.; Ould M’hamed, M.; Lemine, O.M.; Bououdina, M.; Bessadok-Jemai, A. Milled Goethite Nanocrystalline for Selective and Fast Uptake of Cadmium Ions from Aqueous Solution. Desalin. Water Treat. 2016, 57, 6531–6539. [Google Scholar] [CrossRef]
- Giraldo, L.; Erto, A.; Moreno-Piraján, J.C. Magnetite Nanoparticles for Removal of Heavy Metals from Aqueous Solutions: Synthesis and Characterization. Adsorption 2013, 19, 465–474. [Google Scholar] [CrossRef]
- Adegoke, H.I.; AmooAdekola, F.; Fatoki, O.S.; Ximba, B.J. Adsorption of Cr (VI) on Synthetic Hematite (α-Fe2O3) Nanoparticles of Different Morphologies. Korean J. Chem. Eng. 2014, 31, 142–154. [Google Scholar] [CrossRef]
- Rajput, S.; Singh, L.P.; Pittman, C.U.; Mohan, D. Lead (Pb2+) and Copper (Cu2+) Remediation from Water Using Superparamagnetic Maghemite (γ-Fe2O3) Nanoparticles Synthesized by Flame Spray Pyrolysis (FSP). J. Colloid Interface Sci. 2017, 492, 176–190. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Heavy Metals Removal Using Hydrogel-Supported Nanosized Hydrous Ferric Oxide: Synthesis, Characterization, and Mechanism. Sci. Total Environ. 2017, 580, 776–786. [Google Scholar] [CrossRef] [PubMed]
- An, B.; Steinwinder, T.R.; Zhao, D. Selective Removal of Arsenate from Drinking Water Using a Polymeric Ligand Exchanger. Water Res. 2005, 39, 4993–5004. [Google Scholar] [CrossRef]
- Huo, L.; Zeng, X.; Su, S.; Bai, L.; Wang, Y. Enhanced Removal of As (V) from Aqueous Solution Using Modified Hydrous Ferric Oxide Nanoparticles. Sci. Rep. 2017, 7, 40765. [Google Scholar] [CrossRef]
- Moussa, S.I.; Sheha, R.R.; Saad, E.A.; Tadros, N.A. Synthesis and Characterization of Magnetic Nano-Material for Removal of Eu3+ Ions from Aqueous Solutions. J. Radioanal. Nucl. Chem. 2013, 295, 929–935. [Google Scholar] [CrossRef]
- Afshar, A.; Sadjadi, S.A.S.; Mollahosseini, A.; Eskandarian, M.R. Polypyrrole-Polyaniline/Fe3O4 Magnetic Nanocomposite for the Removal of Pb(II) from Aqueous Solution. Korean J. Chem. Eng. 2016, 33, 669–677. [Google Scholar] [CrossRef]
- Su, Y.; Adeleye, A.S.; Huang, Y.; Sun, X.; Dai, C.; Zhou, X.; Zhang, Y.; Keller, A.A. Simultaneous Removal of Cadmium and Nitrate in Aqueous Media by Nanoscale Zerovalent Iron (NZVI) and Au Doped NZVI Particles. Water Res. 2014, 63, 102–111. [Google Scholar] [CrossRef]
- Zarime, N.A.; Yaacob, W.Z.W.; Jamil, H. Removal of Heavy Metals Using Bentonite Supported Nano-Zero Valent Iron Particles. In Proceedings of the AIP Conference Proceedings, Selangor, Malaysia, 4 April 2018; American Institute of Physics Inc.: College Park, MD, USA; Volume 1940. [Google Scholar]
- Huang, D.L.; Chen, G.M.; Zeng, G.M.; Xu, P.; Yan, M.; Lai, C.; Zhang, C.; Li, N.J.; Cheng, M.; He, X.X.; et al. Synthesis and Application of Modified Zero-Valent Iron Nanoparticles for Removal of Hexavalent Chromium from Wastewater. Water Air Soil Pollut. 2015, 226, 1–14. [Google Scholar] [CrossRef]
- Sepehri, S.; Kanani, E.; Abdoli, S.; Rajput, V.D.; Minkina, T.; Asgari Lajayer, B. Pb(II) Removal from Aqueous Solutions by Adsorption on Stabilized Zero-Valent Iron Nanoparticles—A Green Approach. Water 2023, 15, 222. [Google Scholar] [CrossRef]
- Abd El-Monaem, E.M.; Omer, A.M.; El-Subruiti, G.M.; Mohy-Eldin, M.S.; Eltaweil, A.S. Zero-Valent Iron Supported-Lemon Derived Biochar for Ultra-Fast Adsorption of Methylene Blue. Biomass Convert. Biorefinery 2024, 14, 1697–1709. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N.; Lazaridis, N.K. Low-Swelling Chitosan Derivatives as Biosorbents for Basic Dyes. Langmuir 2008, 24, 4791–4799. [Google Scholar] [CrossRef]
- Gokila, S.; Gomathi, T.; Sudha, P.N.; Anil, S. Removal of the Heavy Metal Ion Chromiuim(VI) Using Chitosan and Alginate Nanocomposites. Int. J. Biol. Macromol. 2017, 104, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Asouhidou, D.; Triantafyllidis, K.; Lazaridis, N.; Matis, K.A.; Kim, S.-S.; Pinnavaia, T. Sorption of Reactive Dyes from Aqueous Solutions by Ordered Hexagonal and Disordered Mesoporous Carbons. Microporous Mesoporous Mater. 2009, 117, 257–267. [Google Scholar] [CrossRef]
- Madrakian, T.; Afkhami, A.; Zadpour, B.; Ahmadi, M. New Synthetic Mercaptoethylamino Homopolymer-Modified Maghemite Nanoparticles for Effective Removal of Some Heavy Metal Ions from Aqueous Solution. J. Ind. Eng. Chem. 2015, 21, 1160–1166. [Google Scholar] [CrossRef]
- Zendehdel, M.; Shoshtari-Yeganeh, B.; Cruciani, G. Removal of Heavy Metals and Bacteria from Aqueous Solution by Novel Hydroxyapatite/Zeolite Nanocomposite, Preparation, and Characterization. J. Iran. Chem. Soc. 2016, 13, 1915–1930. [Google Scholar] [CrossRef]
- Tripathy, D.B.; Gupta, A. Nanomembranes-Affiliated Water Remediation: Chronology, Properties, Classification, Challenges and Future Prospects. Membranes 2023, 13, 713. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- Ursino, C.; Castro-Muñoz, R.; Drioli, E.; Gzara, L.; Albeirutty, M.H.; Figoli, A. Progress of Nanocomposite Membranes for Water Treatment. Membranes 2018, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Maximous, N.; Nakhla, G.; Wong, K.; Wan, W. Optimization of Al2O3/PES Membranes for Wastewater Filtration. Sep. Purif. Technol. 2010, 73, 294–301. [Google Scholar] [CrossRef]
- Bottino, A.; Capannelli, G.; D’Asti, V.; Piaggio, P. Preparation and Properties of Novel Organic-Inorganic Porous Membranes. Sep. Purif. Technol. 2001, 22–23, 269–275. [Google Scholar] [CrossRef]
- Pendergast, M.M.; Hoek, E.M.V. A Review of Water Treatment Membrane Nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef]
- Bae, T.H.; Tak, T.M. Effect of TiO2 Nanoparticles on Fouling Mitigation of Ultrafiltration Membranes for Activated Sludge Filtration. J. Memb. Sci. 2005, 249, 1–8. [Google Scholar] [CrossRef]
- Lind, M.L.; Ghosh, A.K.; Jawor, A.; Huang, X.; Hou, W.; Yang, Y.; Hoek, E.M.V. Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes. Langmuir 2009, 25, 10139–10145. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Deng, B. Fabrication of Polyamide Thin-Film Nano-Composite (PA-TFN) Membrane with Hydrophilized Ordered Mesoporous Carbon (H-OMC) for Water Purifications. J. Memb. Sci. 2011, 375, 46–54. [Google Scholar] [CrossRef]
- Chen, X.; Hong, L.; Xu, Y.; Ong, Z.W. Ceramic Pore Channels with Inducted Carbon Nanotubes for Removing Oil from Water. ACS Appl. Mater. Interfaces 2012, 4, 1909–1918. [Google Scholar] [CrossRef]
- Kang, S.; Mauter, M.S.; Elimelech, M. Physicochemical Determinants of Multiwalled Carbon Nanotube Bacterial Cytotoxicity. Environ. Sci. Technol. 2008, 42, 7528–7534. [Google Scholar] [CrossRef] [PubMed]
- Vecitis, C.D.; Zodrow, K.R.; Kang, S.; Elimelech, M. Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. ACS Nano 2010, 4, 5471–5479. [Google Scholar] [CrossRef] [PubMed]
- Rajaeian, B.; Rahimpour, A.; Tade, M.O.; Liu, S. Fabrication and Characterization of Polyamide Thin Film Nanocomposite (TFN) Nanofiltration Membrane Impregnated with TiO2 Nanoparticles. Desalination 2013, 313, 176–188. [Google Scholar] [CrossRef]
- Gehrke, I. Environmental Friendly Recycling of Strategic Metals; Annual Report; Fraunhofer UMSICHT: Oberhausen, Germany, 2014. [Google Scholar]
- Pervez, M.N.; Yeo, W.S.; Mishu, M.M.R.; Talukder, M.E.; Roy, H.; Islam, M.S.; Zhao, Y.; Cai, Y.; Stylios, G.K.; Naddeo, V. Electrospun Nanofiber Membrane Diameter Prediction Using a Combined Response Surface Methodology and Machine Learning Approach. Sci. Rep. 2023, 13, 9679. [Google Scholar] [CrossRef] [PubMed]
- Cloete, T.E. Nanotechnology in Water Treatment Applications; Kwaadsteniet, M.d., Botes, M., Lopez-Romero, J.M., Eds.; Caister Academic Press: Norfolk, UK, 2010; ISBN 9781904455660. [Google Scholar]
- Das, R.; Ali, M.E.; Hamid, S.B.A.; Ramakrishna, S.; Chowdhury, Z.Z. Carbon Nanotube Membranes for Water Purification: A Bright Future in Water Desalination. Desalination 2014, 336, 97–109. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Feng, C.; Khulbe, K.C.; Matsuura, T.; Tabe, S.; Ismail, A.F. Preparation and Characterization of Electro-Spun Nanofiber Membranes and Their Possible Applications in Water Treatment. Sep. Purif. Technol. 2013, 102, 118–135. [Google Scholar] [CrossRef]
- Rahman, M.M. Selective Swelling and Functionalization of Integral Asymmetric Isoporous Block Copolymer Membranes. Macromol. Rapid Commun. 2021, 42, 2100235. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.P.; Culfaz-Emecen, P.Z.; Ramon, G.Z.; Visser, T.; Koops, G.H.; Jin, W.; Ulbricht, M. Thinking the Future of Membranes: Perspectives for Advanced and New Membrane Materials and Manufacturing Processes. J. Memb. Sci. 2020, 598, 117761. [Google Scholar] [CrossRef]
- Ma, Y.; Zeng, J.; Zeng, Y.; Zhou, H.; Liu, G.; Liu, Y.; Zeng, L.; Jian, J.; Yuan, Z. Preparation and Performance of Poly(4-Vinylpyridine)-b-Polysulfone-b-Poly(4-Vinylpyridine) Triblock Copolymer/Polysulfoneblend Membrane for Separation of Palladium (II) from Electroplating Wastewaters. J. Hazard. Mater. 2020, 384, 121277. [Google Scholar] [CrossRef]
- Kumar, M.; Grzelakowski, M.; Zilles, J.; Clark, M.; Meier, W. Highly Permeable Polymeric Membranes Based on the Incorporation of the Functional Water Channel Protein Aquaporin Z. Proc. Natl. Acad. Sci. USA 2007, 104, 20719. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.A.K.; Reddy, P.V.L.; Kwon, E.; Kim, K.H.; Akter, T.; Kalagara, S. Recent Advances in Photocatalytic Treatment of Pollutants in Aqueous Media. Environ. Int. 2016, 91, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J.J. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Acc. Chem. Res. 2013, 46, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ahmad, Z.; Khan, A.U.; Mastoi, N.R.; Aslam, M.; Kim, J. Photocatalytic Systems as an Advanced Environmental Remediation: Recent Developments, Limitations and New Avenues for Applications. J. Environ. Chem. Eng. 2016, 4, 4143–4164. [Google Scholar] [CrossRef]
- Tahir, M.B.; Nawaz, T.; Nabi, G.; Sagir, M.; Khan, M.I.; Malik, N. Role of Nanophotocatalysts for the Treatment of Hazardous Organic and Inorganic Pollutants in Wastewater. Int. J. Environ. Anal. Chem. 2022, 102, 491–515. [Google Scholar] [CrossRef]
- Padervand, M.; Ghasemi, S.; Hajiahmadi, S.; Wang, C. K4Nb6O17/Fe3N/α-Fe2O3/C3N4 as an Enhanced Visible Light-Driven Quaternary Photocatalyst for Acetamiprid Photodegradation, CO2 Reduction, and Cancer Cells Treatment. Appl. Surf. Sci. 2021, 544, 148939. [Google Scholar] [CrossRef]
- El Mragui, A.; Zegaoui, O.; Esteves da Silva, J.C.G. Elucidation of the Photocatalytic Degradation Mechanism of an Azo Dye under Visible Light in the Presence of Cobalt Doped TiO2 Nanomaterials. Chemosphere 2021, 266, 128931. [Google Scholar] [CrossRef]
- Peerakiatkhajohn, P.; Butburee, T.; Sul, J.H.; Thaweesak, S.; Yun, J.H. Efficient and Rapid Photocatalytic Degradation of Methyl Orange Dye Using Al/ZnO Nanoparticles. Nanomaterials 2021, 11, 1059. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Mitan, M.; Kim, H.; Vaya, D. Efficient Photocatalytic Degradation of Malachite Green Dye Using Facilely Synthesized Cobalt Oxide Nanomaterials Using Citric Acid and Oleic Acid. J. Phys. Chem. Solids 2021, 155, 110125. [Google Scholar] [CrossRef]
- Asadzadeh Patehkhor, H.; Fattahi, M.; Khosravi-Nikou, M. Synthesis and Characterization of Ternary Chitosan–TiO2–ZnO over Graphene for Photocatalytic Degradation of Tetracycline from Pharmaceutical Wastewater. Sci. Rep. 2021, 11, 24177. [Google Scholar] [CrossRef]
- Yi, C.; Liao, Q.; Deng, W.; Huang, Y.; Mao, J.; Zhang, B.; Wu, G. The Preparation of Amorphous TiO2 Doped with Cationic S and Its Application to the Degradation of DCFs under Visible Light Irradiation. Sci. Total Environ. 2019, 684, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Isa, E.D.; Shameli, K.; Ch’ng, H.J.; Che Jusoh, N.W.; Hazan, R. Photocatalytic Degradation of Selected Pharmaceuticals Using Green Fabricated Zinc Oxide Nanoparticles. Adv. Powder Technol. 2021, 32, 2398–2409. [Google Scholar] [CrossRef]
- Hayati, F.; Isari, A.A.; Fattahi, M.; Anvaripour, B.; Jorfi, S. Photocatalytic Decontamination of Phenol and Petrochemical Wastewater through ZnO/TiO2 Decorated on Reduced Graphene Oxide Nanocomposite: Influential Operating Factors, Mechanism, and Electrical Energy Consumption. RSC Adv. 2018, 8, 40035–40053. [Google Scholar] [CrossRef] [PubMed]
- Vikesland, P.J. Nanosensors for Water Quality Monitoring. Nat. Nanotechnol. 2018, 13, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science 2001, 293, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Gao, X.; Su, J.Z.; Nie, S. Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nat. Biotechnol. 2001, 19, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Puri, N.; Gupta, A.; Mishra, A. Recent Advances on Nano-Adsorbents and Nanomembranes for the Remediation of Water. J. Clean. Prod. 2021, 322, 129051. [Google Scholar] [CrossRef]
- El-Sheikh, M.A.; Hadibarata, T.; Yuniarto, A.; Sathishkumar, P.; Abdel-Salam, E.M.; Alatar, A.A. Role of Nanocatalyst in the Treatment of Organochlorine Compounds–A Review. Chemosphere 2021, 268, 128873. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Zhang, M.; Feng, Z.; Yu, D.-G.; Wang, K.; Arias, J.L.; Scherf, U.; El-Hammadi, M.M.; Zhou, Y.; et al. Electrospun Nanofiber Membranes for Air Filtration: A Review. Nanomaterials 2022, 12, 1077. [Google Scholar] [CrossRef]
- Kloos, J.; Joosten, N.; Schenning, A.; Nijmeijer, K. Self-Assembling Liquid Crystals as Building Blocks to Design Nanoporous Membranes Suitable for Molecular Separations. J. Memb. Sci. 2021, 620, 118849. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Sikdar, S.K.; Costa, C.A.V.; Caetano, N.S. Sustainability Considerations about Microalgae for Biodiesel Production. In Advanced Biofuels and Bioproducts; Springer: New York, NY, USA, 2013; pp. 745–757. ISBN 9781461433484. [Google Scholar]
- Mata, M.T.; Martins, A.A.; Costa, A.V.C.; Sikdar, K.S. Nanotechnology and Sustainability-Current Status and Future Challenges. In Life Cycle Analysis of Nanoparticles. Risk, Assessment, and Sustainability; DEStech Publications: Lancaster, PA, USA, 2015; pp. 271–306. [Google Scholar]
- Lens, P.N.L. Nanotechnology for Water and Wastewater Treatment; IWA Publishing: London UK, 2013; Volume 12. [Google Scholar] [CrossRef]
- Arancon, R.A.D.; Tao Zhang, Y.; Luque, R. Nanotechnology Management for a Safer Work Environment. Pure Appl. Chem. 2014, 86, 1159–1168. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Motellier, S.; Clavaguera, S.; Nowack, B. Review of Nanomaterial Aging and Transformations through the Life Cycle of Nano-Enhanced Products. Environ. Int. 2015, 77, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Bernd, N. Pollution Prevention and Treatment Using Nanotechnology. In Nanotechnology; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Saleem, H.; Zaidi, S.J. Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment. Nanomaterials 2020, 10, 1764. [Google Scholar] [CrossRef] [PubMed]
- Hochella, M.F.; Lower, S.K.; Maurice, P.A.; Penn, R.L.; Sahai, N.; Sparks, D.L.; Twining, B.S. Nanominerals, Mineral Nanoparticles, and Earth Systems. Science 2008, 319, 1631–1635. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, W.; Qiu, Y.; Yi, X.; Von Dem Bussche, A.; Kane, A.; Gao, H.; Koski, K.; Hurt, R. Biological and Environmental Interactions of Emerging Two-Dimensional Nanomaterials. Chem. Soc. Rev. 2016, 45, 1750–1780. [Google Scholar] [CrossRef] [PubMed]
- Laborda, F.; Bolea, E.; Cepriá, G.; Gómez, M.T.; Jiménez, M.S.; Pérez-Arantegui, J.; Castillo, J.R. Detection, Characterization and Quantification of Inorganic Engineered Nanomaterials: A Review of Techniques and Methodological Approaches for the Analysis of Complex Samples. Anal. Chim. Acta 2016, 904, 10–32. [Google Scholar] [CrossRef] [PubMed]
- Gondikas, A.P.; Von Der Kammer, F.; Reed, R.B.; Wagner, S.; Ranville, J.F.; Hofmann, T. Release of TiO2 Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environ. Sci. Technol. 2014, 48, 5415–5422. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, B.; Kim, S. Influence of Nanotoxicity on Human Health and Environment: The Alternative Strategies. Rev. Environ. Contam. Toxicol. 2017, 242, 61–104. [Google Scholar] [CrossRef]
- Aitken, R.J.; Hankin, S.M.; Ross, B.; Tran, C.L.; Stone, V.; Fernandes, T.F.; Donaldson, K.; Duffin, R.; Chaudhry, Q.; Wilkins, T.A.; et al. A Review of Completed and Near Completed Environment, Health and Safety Research on Nanomaterials and Nanotechnology; Institute of Occupational Medicine (IOM): Edinburgh, UK, 2009. [Google Scholar]
- Som, C.; Nowack, B.; Krug, H.F.; Wick, P. Toward the Development of Decision Supporting Tools That Can Be Used for Safe Production and Use of Nanomaterials. Acc. Chem. Res. 2013, 46, 863–872. [Google Scholar] [CrossRef]
- Krug, H.F.; Wick, P. Nanotoxicology: An Interdisciplinary Challenge. Angew. Chem. Int. Ed. 2011, 50, 1260–1278. [Google Scholar] [CrossRef]
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off. J. Eur. Union 2006, 396, 1–849. Available online: https://eur-lex.europa.eu/eli/reg/2006/1907/oj (accessed on 18 June 2024).
- Rauscher, H.; Rasmussen, K.; Sokull-Klüttgen, B. Regulatory Aspects of Nanomaterials in the EU. Chem. Ing. Tech. 2017, 89, 224–231. [Google Scholar] [CrossRef]
- Rasmussen, K.; González, M.; Kearns, P.; Sintes, J.R.; Rossi, F.; Sayre, P. Review of Achievements of the OECD Working Party on Manufactured Nanomaterials’ Testing and Assessment Programme. From Exploratory Testing to Test Guidelines. Regul. Toxicol. Pharmacol. 2016, 74, 147–160. [Google Scholar] [CrossRef] [PubMed]
- GadelHak, Y.; El-Azazy, M.; Shibl, M.F.; Mahmoud, R.K. Cost Estimation of Synthesis and Utilization of Nano-Adsorbents on the Laboratory and Industrial Scales: A Detailed Review. Sci. Total Environ. 2023, 875, 162629. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, N.; Bahadur, N.; Kansal, A. Techno-Economic Assessment of Integrated Photochemical AOPs for Sustainable Treatment of Textile and Dyeing Wastewater. J. Water Process Eng. 2023, 56, 104302. [Google Scholar] [CrossRef]
- Mahmoud, A.S.; Mostafa, M.K.; Peters, R.W. A Prototype of Textile Wastewater Treatment Using Coagulation and Adsorption by Fe/Cu Nanoparticles: Techno-Economic and Scaling-up Studies. Nanomater. Nanotechnol. 2021, 11, 18479804211041181. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Sadik, O.; Karn, B.; Kirwan, K. A Framework of Criteria for the Sustainability Assessment of Nanoproducts. J. Clean. Prod. 2016, 126, 277–287. [Google Scholar] [CrossRef]
- Roco, M.C. Converging Science and Technology at the Nanoscale: Opportunities for Education and Training. Nat. Biotechnol. 2003, 21, 1247–1249. [Google Scholar] [CrossRef]
- Yawson, R.M. Skill Needs and Human Resources Development in the Emerging Field of Nanotechnology. J. Vocat. Educ. Train. 2010, 62, 285–296. [Google Scholar] [CrossRef]
Required Engineered Nanomaterials Properties | Engineered Nanomaterial-Aided Technologies | Citation |
---|---|---|
Specific and greater surface area | Higher sorbents with great irreversible adsorption ability (useful in the removal of arsenic and other toxic heavy metals by using magnetite nanoparticles) and reactants and reactants | [56] |
Improved catalytic properties | Titanium dioxide- and fullerene-based photocatalysts were used as hyper-catalysts, and a hybrid of palladium/gold was also used in the reduction process of wastewater treatment for pesticide residues | [57,58] |
Antimicrobial properties | Titanium dioxide and fullerenes derivatives were used as disinfectants without toxic byproducts | [59,60] |
Unique characteristic properties (antibiotic, catalytic, etc.) | Self-cleaning ability, nanofiltration membranes that have unique features in deactivating virus and terminating organic pollutants | [61] |
Self-assembly on surfaces | This feature will reduce bacterial contact with electrode surface, the formation of biofilms, and corrosion in water storage systems | [62] |
High conductivity | New electrodes for electrosorption (fast deionization) and a cost-effective, energy-efficient desalination process | [63] |
Fluorescence | Rapid detection of pathogens and other pollutants using sensor technology | [64] |
No. | Adsorbent | Adsorbate | Adsorption Capacity (mg/g) | Initial Concentration (mg/L) | Removal Rate (%) | Reference |
---|---|---|---|---|---|---|
1 | Deep eutectic solvents functionalized CNTs | Hg(II) | 186.97 | 5.0 | 93.97 | [79] |
2 | Amino-functionalized Fe3O4/multi-walled CNTs (MWCNTs) | Cu(II) | 30.49 | n.d. | n.d. | [80] |
3 | CNT-coated poly-amidoamine dendrimer | As(III) | 432 | n.d. | n.d. | [81] |
Co(II) | 494 | |||||
Zn(II) | 470 | |||||
4 | MWCNTs | Ni(II) | 12.3–37 | n.d. | n.d. | [82] |
5 | CNT sheets | Pb(II) | 101.05 | n.d. | n.d. | [83] |
Cd(II) | 75.84 | |||||
Co(II) | 69.63 | |||||
Zn(II) | 58.00 | |||||
Cu(II) | 50.37 | |||||
6 | Acidified MWCNTs | Pb(II) | 15.6 | n.d. | n.d. | [84] |
Cd(II) | 3.6 | |||||
7 | Activated carbon supported CNTs | Cr(VI) | 9.0 | 0.5 | 100 | [85] |
8 | CNTs prepared by molten salt electrolysis | U(VI) | 150 | n.d. | n.d. | [86] |
9 | MWCNTs functionalized with L-tyrosine | Methylene blue | 440 | 50 | 100 | [87] |
10 | Single-walled CNTs | Acid blue 92 dye | 86.91 | 50 | 99.1 | [88] |
No. | Adsorbent | Adsorbate | Adsorption Capacity (mg/g) | Initial Concentration (mg/L) | Removal Rate (%) | Reference |
---|---|---|---|---|---|---|
1 | Ethylenediamine triacetic acid on GO | Pb(II) | 479 ± 46 | 100 | 95.86 | [91] |
2 | GO | Au(III) | 108.342 | 50 | n.d. | [92] |
Pd(II) | 80.775 | 30 | ||||
Pt(IV) | 71.378 | 30 | ||||
3 | GO | Zn(II) | 246 | 40 | n.d. | [93] |
4 | Polyacrylamide on reduced GO | Pb(II) | 1000 | n.d. | n.d. | [94] |
Methylene blue | 1530 | |||||
5 | Polyethyleneimine GO composite | Cr(VI) | 539.53 | 10.96 | 96.35 | [95] |
6 | Polyvinylpyrrolidone-reduced GO | Cu(II) | 1689 | 3.5 | 95 | [96] |
7 | GO-MnFe2O4 | Pb(II) | 673 | 20 | 100 | [97] |
As(III) | 146 | 20 | 99.5 | |||
As(V) | 207 | 20 | 96 | |||
8 | Graphene-based magnetic nanocomposite | Fuchsine | 89.4 | 20 | 99 | [98] |
9 | Cylindrical graphene–carbon nanotube | Methylene blue | 81.97 | 10 | 97 | [99] |
10 | RGO hydrogels | Methylene blue | 7.85 | 8.54 | 100 | [100] |
Rhodamine blue | 29.44 | 9.82 | 97 | |||
11 | GO-Fe3O4 | Methylene blue | 167.2 | n.d. | n.d. | [101] |
Neutral red | 171.3 | |||||
12 | Chitosan/GO | Pb(II) | 461.3 | n.d. | n.d. | [102] |
Cu(II) | 423.8 | |||||
Cr(VI) | 310.4 | |||||
13 | Poly amino siloxane oligomer-modified graphene oxide composite | U(VI) | 310.63 | n.d. | n.d. | [103] |
Eu(III) | 243.90 | |||||
14 | Functionalized GO-embedded calcium alginate beads | Pb(II) | 602 | 100 | ~100 | [104] |
Hg(II) | 374 | 100 | ~100 | |||
Cd(II) | 181 | 100 | ~100 | |||
15 | Few-layered GO nanosheets | Cd(II) | 106.3 | n.d. | n.d. | [105] |
Co(II) | 68.2 | |||||
16 | GO/magnetic chitosan | Reactive Black 5 | 391 | 20 | 81 | [106] |
No. | Adsorbent | Adsorbate | Adsorption Capacity (mg/g) | Initial Concentration (mg/L) | Removal Rate (%) | Reference |
---|---|---|---|---|---|---|
1 | Hexagonal mesoporous silica/HMS | Remazol Red 3BS | ~15 | n.d. | n.d. | [112] |
2 | HMS-NH2 | Remazol Red 3BS | ~125 | n.d. | n.d. | [112] |
3 | HMS-β-cyclodextrin | Remazol Red 3BS | ~250 | n.d. | n.d. | [112] |
4 | Bifunctional silica nanospheres | Cu(II) | 139.8 | n.d. | n.d. | [113] |
Methylene blue | 99.0 | |||||
5 | Amino functionalized silica nano hollow sphere | Pb(II) | 96.79 | n.d. | n.d. | [114] |
Cd(II) | 40.73 | |||||
Ni(II) | 31.29 | |||||
6 | Nano-silica sorbent with nano-polyaniline | Cu(II) | 108 | n.d. | 99.3 | [115] |
Cd(II) | 90 | n.d. | 84.1 | |||
Hg(II) | 120 | n.d. | 71.0 | |||
Pb(II) | 186 | n.d. | 89.9 | |||
7 | Nano-silica sorbent with crosslinked nano-polyaniline | Cu(II) | 105 | n.d. | 96.2 | [115] |
Cd(II) | 118 | n.d. | 81.9 | |||
Hg(II) | 271 | n.d. | 72.0 | |||
Pb(II) | 300 | n.d. | 86.9 | |||
8 | Nano-silica particles decorated with amine groups | Methyl orange | 5.4 | 10 | 100 | [116] |
9 | Nano-silica–biochar composite | Methylene blue | 99.30 | 200 | 99.51 | [117] |
Tetracycline | 19.87 | 100 | 96.03 |
Adsorbent | Pollutant | Adsorption Capacity (mg/g) | Initial Concentration (mg/L) | Removal Rate (%) | Reference |
---|---|---|---|---|---|
Nanosilver | |||||
Nanocellulose-Ag nanoparticles | Pb(II) | 9.42 | 25 | 99.48 | [132] |
Cr(III) | 8.93 | 25 | 98.30 | ||
Ag@mercaptosuccinic acid | Hg(II) | 800 | 2 | ~95 | [118] |
Biosynthesized nano-silver | Methylene blue | 121.04 | 10 | 95.6 | [133] |
Alginate–Silver nanoparticle/Mica bio-nanocomposite | Methylene blue | 352 | 20 | 99.07 | [134] |
Brilliant green | 249 | 20 | 91.53 | ||
Metal oxides | |||||
Nano-sized TiO2 | Cr(VI) | 12.6 | n.d. | n.d. | [135] |
TiO2 nanoparticles | Cd(II) | 120.1 | 100 | 37.5 | [136] |
Cu(II) | 50.2 | 100 | 14.9 | ||
Ni(II) | 39.3 | 100 | 47.8 | ||
Pb(II) | 21.7 | 100 | 14.9 | ||
Mesoporous TiO2 | Cr(VI) | 25.8 | n.d. | n.d. | [137] |
Kaolinite clay coated with TiO2-magnetic Fe3O4 nanoparticles | As(III) | 462.0 | 25 | 92 | [138] |
Anatase nano-adsorbent | Pb(II) | 31.25 | 10 | 97.41 | [139] |
Cu(II) | 23.74 | 10 | 62.57 | ||
As(III) | 16.98 | 10 | 49.29 | ||
Mesoporous ZrO2 | Cr(VI) | 73.0 | n.d. | n.d. | [137] |
ZrO2/B2O3 nanocomposite | Co(II) | 32.2 | n.d. | n.d. | [140] |
Cu(II) | 46.5 | ||||
Cd(II) | 109.9 | ||||
Nano-sized hydrated ZrO2 inside cation exchange resin D-001 | Pb(II) | 319.4 | 0.5 mmol/L | ~100 | [141] |
Cd(II) | 214.7 | 0.5 mmol/L | ~100 | ||
Manganese dioxide/gelatin | Pb(II) | 318.7 | 10 | 100 | [142] |
100 | 92.8 | ||||
Cd(II) | 105.1 | 10 | 87.9 | ||
100 | 34.7 | ||||
Nanoscale manganese dioxide | Tl(I) | 672 | 10 mM | ~87 | [143] |
Mesoporous Nb2O5 | Cr(VI) | 74.7 | n.d. | n.d. | [137] |
ZnO/chitosan core-shell nanocomposite | Pb(II) | 476.1 | 10 | 88 | [144] |
Cd(II) | 135.1 | 10 | 74 | ||
Cu(II) | 117.6 | 10 | 53 | ||
ZnO nanoparticles | Zn(II) | 357 | 100 | 78 | [145] |
Cd(II) | 387 | 100 | 54 | ||
Hg(II) | 714 | 100 | 42 | ||
Casein-capped ZnO nanoparticles | Cd(II) | 156.74 | n.d. | n.d. | [146] |
Pd(II) | 194.93 | ||||
Co (II) | 67.93 | ||||
ZnO nanoparticles | Pb(II) | 163.6 | 100 | ~90 | [147] |
CuO nanoparticles | Pb(II) | 153.8 | 100 | ~100 | [147] |
CuO nanoparticles | Safranin-O dye | 189.54 | 50 | 95.80 | [148] |
Magnesium ferrite (Mg0.27Fe2.50O4) nano-crystallites | As(III) | 127.4 | 0.044 | ~98 | [149] |
As(V) | 83.2 | 0.071 | ~98 | ||
MgO nanoparticles | Cd(II) | 135 | 100 | >94 | [136] |
Cu(II) | 149.1 | 100 | >94 | ||
Ni(II) | 149.9 | 100 | >94 | ||
Pb(II) | 148.6 | 100 | >94 | ||
MgO nanoparticles | Cd(II) | 2294 | n.d. | n.d. | [150] |
Pb(II) | 2614 | ||||
Hexagonal mesoporous MgO nanosheets | Ni(II) | 1684.25 | 300 | 99.4 | [151] |
Hydrotalcite-based calcined Mg/Al | Remazol Red 3BS | 134.4 | n.d. | n.d. | [152] |
CeO2 nanoparticles | Cr(VI) | 121.95 | 0.6 | 96.5 | [153] |
37.5 | 67.8 | ||||
80 | 50.6 | ||||
CeO2 nanoparticles | As(III) | 71.9 | 50 | 92 | [154] |
As(V) | 36.8 | 50 | 79 | ||
Samaria-doped CeO2 nano-powder | Pb(II) | 23 | 25 | 94.5 | [155] |
γ-Al2O3 nanoparticles | Pb(II) | 47.08 | 50 | 97 | [156] |
Cd(II) | 17.22 | 50 | 87 | ||
Al2O3 nanoparticles | Cd(II) | 118.9 | 100 | 31 | [136] |
Cu(II) | 47.9 | 100 | 8.5 | ||
Ni(II) | 35.9 | 100 | 11.7 | ||
Pb(II) | 41.2 | 100 | 18.7 | ||
Fe3O4 @organodisulfide polymer | Pb(II) | 533.13 | n.d. | n.d. | [157] |
Hg(II) | 603.16 | ||||
Cd(II) | 216.59 | ||||
Fe–La composite oxide nano-adsorbent | As(III) | 58.2 | n.d. | n.d. | [121] |
Fe/Mn oxy-hydroxide (δ-Fe0.76Mn0.24OOH) | As(III) | 6.7 μg/g | n.d. | n.d. | [158] |
As(V) | 11.7 μg/g | ||||
Fe–Ti bimetallic magnetic oxide | F | 57.22 | n.d. | n.d. | [159] |
Amino functionalized Fe3O4nanoparticles | Cr(VI) | 232.51 | 5 | 98.02 | [160] |
Ni(II) | 222.12 | 5 | 93.03 | ||
Carboxymethyl-β-cyclodextrin Fe3O4 nanoparticles | Cu(II) | 47.2 | n.d. | n.d. | [161] |
Fe3O4@SiO2/Zr-Metal-Organic Frameworks | Pb(II) | 102 | 10 | ~100 | [162] |
Methylene blue | 128 | 20 | 98 | ||
Methyl orange | 130 | 20 | 99 | ||
Fe@MgO | Pb(II) | 1476.4 | 50 | 98.7 | [163] |
Methyl orange | 6947.9 | 200 | 90.8 | ||
Water goethite (α-FeOOH) | Cu(II) | 149.25 | n.d. | n.d. | [164] |
Goethite nanocrystalline powders | Cd(II) | 167 | n.d. | n.d. | [165] |
Magnetite nanoparticles | Pb(II) | 37.3 | 150 | ~96 | [166] |
Cu(II) | 10.8 | 150 | ~93 | ||
Zn(II) | 10.5 | 150 | ~86 | ||
Mn(II) | 7.69 | 150 | ~85 | ||
Nano-hematite | Cr(VI) | 6.33–200 | n.d. | n.d. | [167] |
Maghemite nanoparticle | Pb(II) | 68.9 | 10 | 59.2 | [168] |
Cu(II) | 34.0 | 10 | 25.9 | ||
Hydrous ferric oxide (HFO) nanoparticles on poly(trans-Aconitic acid/2-hydroxyethyl acrylate) hydrogel | Pb(II) | 303.8 | n.d. | n.d. | [169] |
Cu(II) | 107.5 | ||||
Cd(II) | 149.8 | ||||
Ni(II) | 85.87 | ||||
HFO nanoparticles | As | 92 | 300 | 99.9 | [170] |
HFO-carboxymethyl cellulose | As(V) | 355 | 38.2 | 90.5 | [171] |
Mercapto-functionalized nano-Fe3O4 magnetic polymers | Hg(II) | 140 | 20 | 100 | [123] |
Ferrite-coated apatite magnetic nanomaterial | Sr(II) | 20.10 | 20 | 86.1 | [172] |
Cd(II) | 73.75 | 200 | 87.1 | ||
Eu(III) | 157.14 | 200 | 76.4 | ||
Polypyrrole-polyaniline/Fe3O4 | Pb(II) | 243.9 | 20 | 100 | [173] |
Nano zero-valent iron | |||||
Au-doped nZVI | Cd(II) | 188 | 50 | 98 | [174] |
Bentonite composite nZVI (B-nZVI) | Pb(II) | 50.25 | 25 | 99.7 | [175] |
Cu(II) | 70.20 | 25 | 98.9 | ||
Cd(II) | 14.25 | 25 | 44.6 | ||
Co(II) | 12.90 | 25 | 43.2 | ||
Ni(II) | 16.50 | 25 | 53.9 | ||
Zn(II) | 34.95 | 25 | 93.6 | ||
nZVI modified by sodium dodecyl sulfate | Cr(VI) | 253.68 | 50 | 98.92 | [176] |
nZVI-rice straw-based activated carbon | Pb(II) | 140.8 | 50 | 99.6 | [177] |
nZVI-supported lemon-derived biochar | Methylene blue | 1959.94 | 50 | 96.17 | [178] |
Others | |||||
Chitosan microspheres | Basic blue 3G | 109.91 | 100 | ~70 | [179] |
Chitosan microspheres–acrylamide | Basic blue 3G | 177.79 | 100 | ~80 | [179] |
Chitosan microspheres–acrylic acid | Basic blue 3G | 259.33 | 100 | ~90 | [179] |
Chitosan/alginate nanocomposite | Cr(VI) | 108.8 | 100 | 79.91 | [180] |
Synthetic mesoporous carbons | Remazol Red 3BS | 500–580 | 204 | ~100 | [181] |
Mercaptoethylamino monomer | Ag(I) | 260.55 | 20 | ~65 | [182] |
Hg(II) | 237.60 | 20 | ~95 | ||
Pb(II) | 118.51 | 20 | ~85 | ||
Cd(II) | 91.55 | 20 | ~55 | ||
Hydroxyapatite/zeolite | Pb(II) | 55.55 | 100 | 95 | [183] |
Cd(II) | 40.16 | 100 | 100 |
Photocatalyst | Catalyst Addition (g/L) | Contaminant | Initial Concentration (mg/L) | Treatment Duration (hour) | Removal Rate (%) | Reference |
---|---|---|---|---|---|---|
1% Co-TiO2 | 0.5 | Methyl Orange | 33 | 6 | 34.7 | [212] |
5% Al/ZnO | 1 | Methyl Orange | 50 | 0.67 | 99 | [213] |
Co3O4 modified by citric acid | 0.5 | Malachite green | 3.65 | 1.67 | 91.2 | [214] |
Co3O4 modified by oleic acid | 0.5 | Malachite green | 3.65 | 1.67 | 66.6 | [214] |
Chitosan-TiO2-ZnO | 0.5 | Tetracycline | 20 | 3 | 97.2 | [215] |
S-TiO2 | 0.4 | Diclofenac | 10 | 4 | 93 | [216] |
ZnO with pullulan as capping agent | 0.5 | Amoxicilin Paracetamol | 30 | 2 | 85.7 96.8 | [217] |
ZnO-TiO2 | 0.6 | Phenol | 60 | 2.67 | 100 | [218] |
Sensing Strategy | Nanomaterial Types | Analytes |
---|---|---|
Optical | ||
Colorimetric | Gold nanoparticles, silver nanoparticles | NO2−, NO3−, cocaine, Pb(II), Cu(II), Hg(II) |
Fluorescence | Quantum dots | Heavy metals [Cd(III), Pb(II), Hg(II), Cu(II)] |
Surface-enhanced Raman spectroscopy (SERS) | Gold nanoparticles | Pesticides, bacteria, viruses, protozoa |
Electrical | ||
Chemiresistors | Gold nanowires | Halides |
Metal oxide semiconductor nanowires | Fe(III), Volatile Organic Compounds (VOCs), ammonia | |
Polymer nanowires | VOCs, NO2 | |
Field-effect transistors | Silicon nanowires | Nucleic acids, influenza |
Two-dimensional transition metal dichalcogenides | Glucose, H2O2, proteins, Hg(II), pH | |
Gold nanoparticles functionalized polymeric FETs | Hg(II) | |
Phosphorene | igG protein | |
Electrochemical | Graphene | Bacteria |
Carbon nanotubes | Ammonium, Co(II), organo-phosphate pesticides | |
Copper nanowire electrodes | Nitrate | |
Polymeric nanocomposite membranes | Ag(I), Hg(II), Cu(II) | |
Reduced graphene oxide/gold nanoparticle nanocomposite | Organo-phosphate pesticides | |
Magnetic | ||
Magnetoresistance | Magnetite (Fe3O4)Maghemite (γ-Fe2O3) | Mycobacteriumbovis, Influenza A |
Hydrodynamic property changes | Magnetite (Fe3O4) | Spore detection |
T2 relaxation magnetic resonance | Magnetic beads | Salmonella enterica and Newcastle disease virus; Escherichia coli 0157:H7 |
Nanomaterials | Advantages | Disadvantages |
---|---|---|
Carbon-based nano-adsorbents | Better mechanical and thermal stability, ability to tune the surface functional groups | High regeneration cost, lower performance after regeneration |
Metal-based nano-adsorbents | Highly reactive with faster kinetics, easier separation with magnetic property, mostly water insoluble | Cost-effective, greater tendency to aggregate, toxicity of some metals, occasionally generate sludge |
Polymer-based nano-adsorbents | Better mechanical stability, higher chemical functionality, better adsorption rate | Higher maintenance cost |
Nanocomposite membranes | High fouling resistance, better water permeability, higher thermal and mechanical stability | Release of nanoparticles to water, membrane pore blockage |
Nanofiber membranes | Small diameter with high porosity, high specific surface area, good pore channel connectivity | Poor recyclability and reusability, shrinkage tendency |
Self-assembling membranes | Possibility to control the pore functionality by molecular design, thus enhancing the selectivity for specific molecules or micropollutants | Scaling-up process |
Nano-photocatalysts | High surface area to volume ratio, antimicrobial activity, do not form toxic by-products | Possibility of inert substrates fixation which reduce performance, mostly require UV irradiation to boost degradation efficiency, low reaction selectivity |
Indicator | Impact | Analysis | ||
---|---|---|---|---|
Environmental | Societal | Economic | ||
Energy intensity (MJ/kg product) | Yes | Yes | Yes | Higher energy in manufacturing, lower energy in utilization [76] |
Material intensity (kg/kg product) | Yes | Yes | Yes | Different types of CNTs exhibit different behavior [200] |
Potential chemical risk (dimensionless) | Yes | Yes | Yes | High risk due to the uncertain mechanism [200] |
Potential environmental impact (dimensionless) | Yes | Yes | Yes | High risk due to lack of knowledge [200] |
Water use (m3/kg product) | Yes | No | Yes | Uncertain |
Global warming (kg CO2-eq/kg product) | Yes | No | Yes | Uncertain |
Ultrafine particle emissions (kg/kg product) | Yes | No | No | Uncertain |
Wastewater generated (m3/kg product) | Yes | No | No | Uncertain |
Net cash flow generated (EUR/kg product) | No | No | Yes | Not developed |
Direct employment (persons/ton product) | No | Yes | No | Not developed |
Nanomaterial | Environmental Effects |
---|---|
Nano-TiO2 | Perturbing aquatic ecosystem’s carbon and nitrogen cycles |
Carbon nanotubes | Impacts upon contact with the surface of the environmental organisms; environmental harm |
Various types of nanostructures | Toxicity determined by various physicochemical as well as environmental factors |
Silicon nanoparticles | Important dangerous factor for environmental exposure; negative effect on ecosystem |
Nanostructured flame retardants | Endurance and tendency to regroup in the environment; toxic to wildlife and plants |
Nano-silver | Origin of multiple transformations when it is released into the environment and creates adverse influences |
Fullerenes | Impact on soil organisms and enzymes; aquatic ecosystems; the coupling of chemicals to fullerenes (nanoparticles) can have an influence on the toxicity of some environmental pollutants |
Polymer nanocomposites | The important dangerous factor for environmental exposure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhi, T.P.; Sumampouw, G.A.; Pramudita, D.; Munandari, A.; Kurnia, I.; Wan Mohtar, W.H.M.; Indarto, A. Sustainable Management of Water Resources for Drinking Water Supply by Exploring Nanotechnology. Water 2024, 16, 1896. https://doi.org/10.3390/w16131896
Adhi TP, Sumampouw GA, Pramudita D, Munandari A, Kurnia I, Wan Mohtar WHM, Indarto A. Sustainable Management of Water Resources for Drinking Water Supply by Exploring Nanotechnology. Water. 2024; 16(13):1896. https://doi.org/10.3390/w16131896
Chicago/Turabian StyleAdhi, Tri Partono, Giovanni Arneldi Sumampouw, Daniel Pramudita, Arti Munandari, Irwan Kurnia, Wan Hanna Melini Wan Mohtar, and Antonius Indarto. 2024. "Sustainable Management of Water Resources for Drinking Water Supply by Exploring Nanotechnology" Water 16, no. 13: 1896. https://doi.org/10.3390/w16131896
APA StyleAdhi, T. P., Sumampouw, G. A., Pramudita, D., Munandari, A., Kurnia, I., Wan Mohtar, W. H. M., & Indarto, A. (2024). Sustainable Management of Water Resources for Drinking Water Supply by Exploring Nanotechnology. Water, 16(13), 1896. https://doi.org/10.3390/w16131896