Vertical Distribution Patterns of Nitrogen and Phosphorus in Soil Solution: Insights from a Wetland Trial Site in the Li River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Field Layout and Sampling Methods
2.3. Sample Collection and Data Analysis
3. Results
3.1. Physico-Chemical Properties of Soils in the Study Area
3.2. Distribution Characteristics of Nitrogen and Phosphorus Content in Soil Solution
3.3. Temporal Variation Characteristics of Nitrogen and Phosphorus in Soil Solution
3.3.1. Overall Variation in Nitrogen and Phosphorus in Soil Solution between Irrigation and Non-Irrigation Seasons
3.3.2. Nitrogen and Phosphorus Changes in Soil Solutions at Different Depths during the Irrigation Season and Non-Irrigation Season
3.4. Nitrogen Concentration Variability in Soil Solutions across Periods, Landforms, and Land Use Types
3.4.1. Vertical Transport of Nitrogen in Soil Solutions among Different Karst Types during the Irrigation Season
3.4.2. Vertical Transport of Nitrogen in Soil Solutions among Different Karst Types during the Non-Irrigation Season
3.4.3. Vertical Transport of Nitrogen in Soil Solutions among Different Land Use Types during the Irrigation Season
4. Effect of Rainfall on Soil Solution Nitrogen and Phosphorus
5. Discussion
5.1. Variation Analysis of Nitrogen and Phosphorus Content in Soil Solution in Irrigation Season and Non-Irrigation Season
5.2. Factors Affecting the Vertical Distribution of Soil Solution N and P in Different Karst Landforms
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current Status of Agricultural and Rural Non-Point Source Pollution Assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.S.; Groffman, P.M.; Band, L.E.; Elliott, E.M.; Shields, C.A.; Kendall, C. Tracking Nonpoint Source Nitrogen Pollution in Human-Impacted Watersheds. Environ. Sci. Technol. 2011, 45, 8225–8232. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Jiang, S.; Sheng, H.; Liu, X.; Hua, H.; Liu, X.; Zhang, Y. Human Perturbation of the Global Phosphorus Cycle: Changes and Consequences. Environ. Sci. Technol. 2018, 52, 2438–2450. [Google Scholar] [CrossRef] [PubMed]
- You, Y.Y.; Jin, W.B.; Xiong, Q.X.; Xue, L.; Ai, T.C.; Li, B.L. Simulation and Validation of Non-Point Source Nitrogen and Phosphorus Loads under Different Land Uses in Sihu Basin, Hubei Province, China. Procedia Environ. Sci. 2012, 13, 1781–1797. [Google Scholar] [CrossRef]
- Wang, H. Study on The Water and Nutrient Distribution Pattern in Soil under Drip Fertigation. Master’s Thesis, Northwest A & F University, Xianyang, China, 2007. (In Chinese). [Google Scholar]
- Cao, L. Study on The Feature and Control Tecnology of Upland Ntrogen Loss. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2007. (In Chinese). [Google Scholar]
- The Second National Pollution Source Census Bulletin. Environ. Prot. 2020, 48, 8–10.
- Castellano, M.J.; David, M.B. Long-Term Fate of Nitrate Fertilizer in Agricultural Soils Is Not Necessarily Related to Nitrate Leaching from Agricultural Soils. Proc. Natl. Acad. Sci. USA. 2014, 111, E766. [Google Scholar] [CrossRef] [PubMed]
- Hyodo, F.; Wardle, D.A. Effect of Ecosystem Retrogression on Stable Nitrogen and Carbon Isotopes of Plants, Soils and Consumer Organisms in Boreal Forest Islands. Rapid Commun. Mass Spectrom. 2009, 23, 1892–1898. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, H.; Zhang, W.; Wang, K. Soil Nutrients and Stoichiometric Ratios as Affected by Land Use and Lithology at County Scale in a Karst Area, Southwest China. Sci. Total Environ. 2018, 619, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Xu, D.; Chen, G.; Li, P.; Cheng, Q.; Chen, C. Assessment on Soil Quality under Different Land Use Patterns in Karst Area Based On Minimum Data Set. Acta Agrestia Sin. 2021, 29, 2323. [Google Scholar] [CrossRef]
- Yang, D.; Yu, Y.; Qin, S.; Zhong, X. Content and ecological stoichiometric characteristics of soil nutrients under different land utilization types in stony desertification area. Southwest China J. Agric. Sci. 2018, 31, 1875–1881. [Google Scholar]
- Ma, H.; Chen, G.; Wang, Y.; Chen, H.; Li, Q.; Tu, L. Effects of Nitrogen Addtion on Soil Solution Chemistry in a Subtropical Evergreen Broad-leaved Forest. Acta Ecol. Sin. 2021, 41, 9354–9363. (In Chinese) [Google Scholar]
- Su, C.; Tang, J.; Pan, X.; Zou, S. Chemical Characteritics of Soil Solution under Fe—Mn Nodules in Litang Karst Area. Hubei Agric. Sci. 2014, 53, 1531–1534. (In Chinese) [Google Scholar] [CrossRef]
- de Souza, J.C.; Pereira, M.A.; da Costa, E.N.D.; da Silva, D.M.L. Nitrogen Dynamics in Soil Solution under Different Land Uses: Atlantic Forest and Cacao–Cabruca System. Agroforest Syst. 2018, 92, 425–435. [Google Scholar] [CrossRef]
- Ford, W.I.; Husic, A.; Fogle, A.; Taraba, J. Long-Term Assessment of Nutrient Flow Pathway Dynamics and in-Stream Fate in a Temperate Karst Agroecosystem Watershed. Hydrol. Process 2019, 33, 1610–1628. [Google Scholar] [CrossRef]
- Green, S.M.; Dungait, J.A.J.; Tu, C.; Buss, H.L.; Sanderson, N.; Hawkes, S.J.; Xing, K.; Yue, F.; Hussey, V.L.; Peng, J.; et al. Soil Functions and Ecosystem Services Research in the Chinese Karst Critical Zone. Chem. Geol. 2019, 527, 119107. [Google Scholar] [CrossRef]
- Yang, M.; Lee, J.; Jang, S.; Annable, M.D.; Jawitz, J.W. Nitrate Attenuation Potential in Karst Conduits and Aquifer Matrix. J. Hydrol. 2023, 624, 129896. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst Landscapes of China: Patterns, Ecosystem Processes and Services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Q.; Wang, Z.; Gao, S.; Jia, H.; Shen, Y. Distribution, Water Quality, and Health Risk Assessment of Trace Elements in Three Streams during the Wet Season, Guiyang, Southwest China. Elem. Sci. Anthr. 2021, 9, 00133. [Google Scholar] [CrossRef]
- Kilroy, G.; Coxon, C. Temporal Variability of Phosphorus Fractions in Irish Karst Springs. Env. Geol. 2005, 47, 421–430. [Google Scholar] [CrossRef]
- Wu, L.; Chen, H.; Fu, Z.; Wang, K.; Zhang, W.; Wang, S. Effects of Karst Fissureson Subsurface Runoff and Nitrogen Vertical Leaching. J. Soil Water Conserv. 2017, 31, 64–71. (In Chinese) [Google Scholar] [CrossRef]
- Dai, Q.; Liu, Z.; Shao, H.; Yang, Z. Karst Bare Slope Soil Erosion and Soil Quality: A Simulation Case Study. Solid Earth 2015, 6, 985–995. [Google Scholar] [CrossRef]
- Ren, K.; Pan, X.; Yuan, D.; Zeng, J.; Liang, J.; Peng, C. Nitrate Sources and Nitrogen Dynamics in a Karst Aquifer with Mixed Nitrogen Inputs (Southwest China): Revealed by Multiple Stable Isotopic and Hydro-Chemical Proxies. Water Res. 2022, 210, 118000. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Li, S.-L.; Yue, F.-J.; Qin, C.-Q.; Buckerfield, S.; Zeng, J. Rainfall Driven Nitrate Transport in Agricultural Karst Surface River System: Insight from High Resolution Hydrochemistry and Nitrate Isotopes. Agric. Ecosyst. Environ. 2020, 291, 106787. [Google Scholar] [CrossRef]
- Yue, F.-J.; Li, S.-L.; Waldron, S.; Oliver, D.M.; Chen, X.; Li, P.; Peng, T.; Liu, C.-Q. Source Availability and Hydrological Connectivity Determined Nitrate-Discharge Relationships during Rainfall Events in Karst Catchment as Revealed by High-Frequency Nitrate Sensing. Water Res. 2023, 231, 119616. [Google Scholar] [CrossRef]
- Walton, C.R.; Zak, D.; Audet, J.; Petersen, R.J.; Lange, J.; Oehmke, C.; Wichtmann, W.; Kreyling, J.; Grygoruk, M.; Jabłońska, E.; et al. Wetland Buffer Zones for Nitrogen and Phosphorus Retention: Impacts of Soil Type, Hydrology and Vegetation. Sci. Total Environ. 2020, 727, 138709. [Google Scholar] [CrossRef]
- Wu, L.; Qiao, S.; Peng, M.; Ma, X. Coupling Loss Characteristics of Runoff-Sediment-Adsorbed and Dissolved Nitrogen and Phosphorus on Bare Loess Slope. Environ. Sci. Pollut. R. 2018, 25, 14018–14031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, Y.; Dai, Q.; Tan, J.; Wang, C.; Zhou, H.; Hu, Z. Glyphosate Spraying Exacerbates Nitrogen and Phosphorus Loss in Karst Slope Farmland. Environ. Monit. Assess. 2024, 196, 80. [Google Scholar] [CrossRef] [PubMed]
- Yao, N.; Yu, B.; Cai, C.; Wang, T.; Zhu, H. Characteristic of Soil Nitrogen and Phosphorus Loss in Danjiangkou Reservoir Area. Bull. Soil Water Conserv. 2017, 37, 97–103. (In Chinese) [Google Scholar] [CrossRef]
- Li, R.; Zou, Y.; Xu, J.; Ding, G. Distribution Characteristics and Erosion Risk of Nitrogen and Phosphorus in Soils of Zhuangmu Town in Lake Wabuhu Basin. Environ. Sci. 2014, 35, 1051–1059. (In Chinese) [Google Scholar] [CrossRef]
- Liang, F.; Jiang, X.; Yuan, J.; Xie, D. Main Features of the Loss of Nitrogen and Phosphorus and Rainfall Intensity Influence in the Slope Farmland of the Three Gorges Reservoir Area. J. Soil Water Conserv. 2012, 26, 81–85. (In Chinese) [Google Scholar] [CrossRef]
- Han, J.; Li, Z.; Qian, C. Nitrogen, phosphorous and soil losses by runoff in a farmland-dominated watershed in purple soil region. Ecol. Environ. Sci. 2010, 19, 423–427. (In Chinese) [Google Scholar] [CrossRef]
- Wang, T.; Huang, Z.; Zeng, L.; Xiao, W.; Song, W. Effects of Different Fertilizationon Nitrogen and Phosphorus Leaching of Citrus Orchard Soil in the Three Gorges Reservoir Area. J. Soil Water Conserv. 2018, 32, 53–57. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Qin, W.; Lu, X. Effects of Biochar with Different Particle Sizes on Soil Nitrogen and Phosphorus Loss in Shilin Stony Desertification Farmland. Chin. Agric. Sci. Bull. 2021, 37, 68–74. (In Chinese) [Google Scholar]
- Bai, Y.; Zha, X.; Zhang, J.; Chen, S. The Threshold of Nitrogen and Phosphorus Loss in Runoff on Degraded Ferralsols of Fujian Province, Southern China. Environ. Earth Sci. 2020, 79, 395. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, S.; Ruan, Q.; Tang, C. Synergetic Impact of Climate and Vegetation Cover on Runoff, Sediment, and Nitrogen and Phosphorus Losses in the Jialing River Basin, China. J. Clean. Prod. 2022, 361, 132141. [Google Scholar] [CrossRef]
- Uribe, N.; Corzo, G.; Quintero, M.; Van Griensven, A.; Solomatine, D. Impact of Conservation Tillage on Nitrogen and Phosphorus Runoff Losses in a Potato Crop System in Fuquene Watershed, Colombia. Agr. Water Manage 2018, 209, 62–72. [Google Scholar] [CrossRef]
- Zhang, S.; Hou, X.; Wu, C.; Zhang, C. Impacts of Climate and Planting Structure Changes on Watershed Runoff and Nitrogen and Phosphorus Loss. Sci. Total Environ. 2020, 706, 134489. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Qiao, J.; Zhu, Y.; Jia, X.; Shao, M. Vertical Distribution of Soil Available Phosphorus and Soil Available Potassium in the Critical Zone on the Loess Plateau, China. Sci. Rep. 2021, 11, 3159. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wu, A.; Zhou, G. Spatial Distribution Patterns of Soil Total Phosphorus Influenced by Climatic Factors in China’s Forest Ecosystems. Sci. Rep. 2021, 11, 5357. [Google Scholar] [CrossRef]
- Qiao, J.; Zhu, Y.; Jia, X.; Huang, L.; Shao, M. Vertical Distribution of Soil Total Nitrogen and Soil Total Phosphorus in the Critical Zone on the Loess Plateau, China. Catena 2018, 166, 310–316. [Google Scholar] [CrossRef]
- Jiménez, J.L.G.; Daly, K.; Healy, M.G. Phosphorus and Nitrogen Leaching from an Organic and a Mineral Soil Receiving Single and Split Dairy Slurry Applications: A Laboratory Column Experiment. J. Soils Sediments 2023, 23, 1114–1122. [Google Scholar] [CrossRef]
- Wang, L.; Luo, P.; Guo, X.; Zhang, M.; Li, H.; Liu, F.; Wu, J. Leaching of Soil Legacy Nitrogen in Intact Soil Columns and Significance of Soil Macropore Structure. Sci. Total Environ. 2024, 906, 167546. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Tian, G.; Liang, X. Short-term Leaching Dynamics of Nitrogen, Phosphorous, and Heavy Metals after Additions of Organic Materials into Soil. J. Soil Water Conserv. 2010, 24, 1–5+24. (In Chinese) [Google Scholar] [CrossRef]
- Cai, S.; Ma, L.; Zhao, G.; Wang, K. Remote Sensing Supervision on Spatio-temporal Evolution of Karst Wetland in Recent 40 years in Huixian District of Guilin, China. J. Guang Xi Norm.Univ. 2009, 27, 111–117. (In Chinese) [Google Scholar] [CrossRef]
- Pan, Y.; Xie, L.; Dai, F.; Wu, Q.; Wan, P.; Xu, L.; Zhang, Y. Effects of Land Use Types on Nitrogen and Phosphorus in Rivers of the Huixian Karst Wetland in the Lijiang River Basin. China Rural Water Hydropower 2022, 20–26. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, Z.; Shen, H.; Zhou, S.; Fan, J.; Zhu, N.; Li, J. Dynamic characteristics and equilibrium of water level of the karst groundwater system beneath the Huixian wetland. Carsologica Sin. 2021, 40, 325–333. (In Chinese) [Google Scholar] [CrossRef]
- Cai, S.; Ma, L.; Jiang, C. Research on Huixian Karst Wetland Ecosystem; Geological Publishing House: Beijing, China, 2012; pp. 27–41+109–110. (In Chinese) [Google Scholar]
- Juntakut, P.; Snow, D.D.; Haacker, E.M.K.; Ray, C. The Long Term Effect of Agricultural, Vadose Zone and Climatic Factors on Nitrate Contamination in Nebraska’s Groundwater System. J. Contam. Hydrol. 2019, 220, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Szymczycha, B.; Kroeger, K.D.; Crusius, J.; Bratton, J.F. Depth of the Vadose Zone Controls Aquifer Biogeochemical Conditions and Extent of Anthropogenic Nitrogen Removal. Water Res. 2017, 123, 794–801. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, F.; Chen, X.; Miao, Y.; Li, J.; Shi, L.; Xu, J.; Ye, Y.; Liu, C.; Yang, Z.; et al. On-Farm Evaluation of an in-Season Nitrogen Management Strategy Based on Soil Nmin Test. Field Crop Res. 2008, 105, 48–55. [Google Scholar] [CrossRef]
- Cambouris, A.N.; Zebarth, B.J.; Nolin, M.C.; Laverdière, M.R. Apparent Fertilizer Nitrogen Recovery and Residual Soil Nitrate under Continuous Potato Cropping: Effect of N Fertilization Rate and Timing. Can. J. Soil. Sci. 2008, 88, 813–825. [Google Scholar] [CrossRef]
- Liao, L.; Green, C.T.; Bekins, B.A.; Böhlke, J.K. Factors Controlling Nitrate Fluxes in Groundwater in Agricultural Areas. Water Resour. Res. 2012, 48, WR011008. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global Impacts of Conversions from Natural to Agricultural Ecosystems on Water Resources: Quantity versus Quality. Water Resour. Res. 2007, 43, WR005486. [Google Scholar] [CrossRef]
- Welch, H.L.; Green, C.T.; Coupe, R.H. The Fate and Transport of Nitrate in Shallow Groundwater in Northwestern Mississippi, USA. Hydrogeol. J. 2011, 19, 1239–1252. [Google Scholar] [CrossRef]
- Rhymes, J.; Jones, L.; Wallace, H.; Jones, T.G.; Dunn, C.; Fenner, N. Small Changes in Water Levels and Groundwater Nutrients Alter Nitrogen and Carbon Processing in Dune Slack Soils. Soil Biol. Biochem. 2016, 99, 28–35. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, M.; Liu, H.; Wang, R.; Zhao, J.; Yang, Y.; Cui, R.; Chen, A. Effects of Shallow Groundwater Table Fluctuations on Nitrogen in the Groundwater and Soil Profile in the Nearshore Vegetable Fields of Erhai Lake, Southwest China. J. Soil. Sediment. 2020, 20, 42–51. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Y.; Cai, Z. The mechanisms of soil regulating nitrogen dynamics. Adv. Earth Sci. 2019, 34, 11–19. (In Chinese) [Google Scholar] [CrossRef]
- Yang, S.; Peng, S.; Xu, J.; He, Y.; Wang, Y. Effects of Water Saving Irrigation and Controlled Release Nitrogen Fertilizer Managements on Nitrogen Losses from Paddy Fields. Paddy Water Environ. 2015, 13, 71–80. [Google Scholar] [CrossRef]
- Shekhar, S.; Mailapalli, D.R.; Raghuwanshi, N.S. Effect of Alternate Wetting and Drying Irrigation Practice on Rice Crop Growth and Yield: A Lysimeter Study. ACS Agric. Sci. Technol. 2022, 2, 919–931. [Google Scholar] [CrossRef]
- Agah, A.E.; Meire, P.; de Deckere, E. Simulation of Phosphorus Transport in Soil Under Municipal Wastewater Application Using Hydrus-1D. In Soil Contamination—Current Consequences and Further Solutions; IntechOpen: London, UK, 2016; ISBN 978-953-51-2816-8. [Google Scholar]
- Qi, D.; Wu, Q.; Zhu, J. Nitrogen and Phosphorus Losses from Paddy Fields and the Yield of Rice with Different Water and Nitrogen Management Practices. Sci. Rep. 2020, 10, 9734. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Hou, H. Study on the Relationship between Rainfall and Groundwater in Different Karst Areas. Groundwater 2018, 40, 61–64. (In Chinese) [Google Scholar]
- Bao, J.; Wu, X.; Zhang, Q.; Yuan, D.; Guo, F.; Liu, F. Unveiling the Nitrogen Transport and Transformation in Different Karst Aquifers Media. J. Hydrol. 2023, 620, 129335. [Google Scholar] [CrossRef]
- Li, J.; Zou, S.; Wang, J.; Zhou, C.; Wu, Y.; Zhang, H.; Zhao, Y.; Yang, G. Spatiotemporal Variability and Control Factors of NO3− in a Polluted Karst Water System of an Agricultural Wetland in South China. Chemosphere 2023, 313, 137435. [Google Scholar] [CrossRef] [PubMed]
- Hara, Y.; Toriyama, K. Ammonium Nitrogen in Soil Solution and Seed Nitrogen Affect the Percentage of Establishment of Rice Plants in Submerged Soil. Soil. Sci. Plant Nutr. 1998, 44, 415–422. [Google Scholar] [CrossRef]
- Dai, Y.; Lang, Y.; Wang, T.; Han, X.; Wang, L.; Zhong, J. Modelling the Sources and Transport of Ammonium Nitrogen with the SPARROW Model: A Case Study in a Karst Basin. J. Hydrol. 2021, 592, 125763. [Google Scholar] [CrossRef]
Growth Period | Nursery Stage | Transplanting Stage | Tillering Stage | Panicle Initiation Stage | Heading Stage | Milk Ripening Stage | |
---|---|---|---|---|---|---|---|
Early rice | Water depth (mm) | 30 | 10~20 | 20~30 | 20~30 | 10~20 | 10~20 |
Irrigation volume (m3/ha) | 300 | 150 | 250 | 250 | 150 | 150 | |
Late rice | Water depth (mm) | 30~50 | 10~20 | 20~30 | 20~30 | 10~20 | 10~20 |
Irrigation volume (m3/ha) | 400 | 150 | 250 | 250 | 150 | 150 |
Landform Types | Plot Number | Land Use Methods | pH | Moisture Content % | Bulk Density g/cm3 | Particle Size Classification (%) | SOM g/kg | NO3−-Nmg/kg | NH4+-N mg/kg | TN g/kg | TP g/kg | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.002 mm | 2.0–0.05 mm | 0.05–0.002 mm | |||||||||||
non-karst landforms | A1-1 | paddy fields | 7.76 | 24.7 | 1.56 | 46.75 | 32.21 | 21.04 | 8.61 | 6.04 | 7.82 | 0.411 | 0.379 |
A1-2 | 7.62 | 33.5 | 1.46 | 47.97 | 29.43 | 22.60 | 8.16 | 1.88 | 5.83 | 0.416 | 0.39 | ||
A1-3 | 7.59 | 32 | 1.55 | 47.87 | 34.94 | 17.20 | 5.73 | 2.26 | 2.39 | 0.391 | 0.321 | ||
A2-1 | paddy fields | 7.23 | 28.9 | 1.39 | 38.22 | 34.94 | 26.84 | 27.4 | 1.49 | 2.42 | 1.27 | 0.68 | |
A2-2 | 7.22 | 33.7 | 1.4 | 43.66 | 25.30 | 31.04 | 34.2 | 2.5 | 2.46 | 1.48 | 0.35 | ||
A2-3 | 7.4 | 30.7 | 1.52 | 33.49 | 46.34 | 20.17 | 10.2 | 2.33 | 3.08 | 0.486 | 0.329 | ||
A3-1 | dryland | 6.89 | 29 | 1.41 | 57.41 | 22.91 | 19.68 | 12.3 | 9.08 | 2.71 | 0.656 | 0.402 | |
A3-2 | 6.41 | 33 | 1.45 | 60.12 | 24.13 | 15.76 | 9.17 | 1.75 | 2.47 | 0.534 | 0.184 | ||
A3-3 | 5.73 | 34.2 | 1.39 | 56.69 | 25.90 | 17.41 | 9.12 | 1.9 | 2.12 | 0.489 | 0.413 | ||
A4-1 | dryland | 6.83 | 35.6 | 1.39 | 55.57 | 13.93 | 30.51 | 24.7 | 7.3 | 1.27 | 1.18 | 0.385 | |
A4-2 | 6.85 | 32.7 | 1.36 | 52.84 | 13.07 | 34.09 | 24.8 | 5.67 | 1.38 | 1.3 | 0.584 | ||
A4-3 | 7.09 | 32.8 | 1.49 | 55.32 | 22.96 | 21.72 | 20.8 | 1.41 | 1.01 | 0.836 | 0.458 | ||
peak-forest plains | B1-1 | dryland | 7.37 | 16.5 | 1.11 | 16.79 | 37.55 | 45.67 | 20.3 | 3.41 | 1.22 | 1.02 | 0.427 |
B1-2 | 7.74 | 23 | 1.18 | 27.45 | 26.73 | 45.82 | 16.5 | 1.88 | 1.27 | 0.958 | 0.327 | ||
B1-3 | 7.82 | 38.8 | 1.23 | 17.24 | 35.86 | 46.90 | 43.2 | 4.81 | 5.67 | 2.22 | 0.626 | ||
B2-1 | paddy fields | 7.73 | 36 | 1.22 | 38.73 | 27.59 | 33.68 | 21.4 | 0.41 | 1.83 | 1.13 | 0.679 | |
B2-2 | 7.59 | 36.6 | 1.33 | 57.06 | 18.19 | 24.75 | 7.7 | 2.16 | 2.03 | 0.506 | 0.587 | ||
B2-3 | 7.76 | 37.3 | 1.26 | 54.99 | 23.18 | 21.83 | 8.25 | 3.31 | 2.12 | 0.576 | 0.527 | ||
B3-1 | paddy fields | 7.24 | 42.5 | 1.28 | 26.14 | 28.47 | 45.39 | 36.3 | 1.59 | 6.12 | 1.68 | 0.546 | |
B3-2 | 7.38 | 37.5 | 1.3 | 35.69 | 25.02 | 39.29 | 17.9 | 1.19 | 2.19 | 0.958 | 0.507 | ||
B3-3 | 7.34 | 33.3 | 1.51 | 32.70 | 35.29 | 32.01 | 12.2 | 1.07 | 3.79 | 0.606 | 0.359 | ||
B4-1 | dryland | 7.89 | 39.9 | 1.44 | 21.94 | 34.79 | 43.27 | 22.7 | 5.17 | 3.49 | 0.985 | 0.559 | |
B4-2 | 7.96 | 31.6 | 1.5 | 23.48 | 47.34 | 29.19 | 19.7 | 0.4 | 5.34 | 0.961 | 0.641 | ||
B4-3 | 7.87 | 31.2 | 1.43 | 29.51 | 39.62 | 30.86 | 15.6 | 0.59 | 6.04 | 0.741 | 0.561 | ||
peak-cluster depressions | C1-1 | dryland | 5.86 | 28.8 | 1.33 | 40.99 | 13.24 | 45.77 | 24 | 13.6 | 3.67 | 1.41 | 0.585 |
C1-2 | 6.28 | 28.4 | 1.13 | 46.21 | 6.26 | 47.53 | 19.2 | 4.77 | 1.72 | 1.13 | 0.397 | ||
C1-3 | 6.34 | 31.6 | 1.32 | 46.36 | 18.66 | 34.98 | 18 | 13.2 | 1.54 | 1.13 | 0.454 | ||
C2-1 | dryland | 5.4 | 29.9 | 1.27 | 42.10 | 15.59 | 42.32 | 22.2 | 11.2 | 1.05 | 1.48 | 0.826 | |
C2-2 | 6.6 | 34.4 | 1.19 | 42.76 | 25.48 | 31.76 | 13.1 | 3.4 | 1.49 | 1.04 | 0.766 | ||
C2-3 | 7.65 | 33.6 | 1.39 | 44.12 | 27.53 | 28.35 | 16.3 | 2.92 | 7.28 | 1.19 | 0.976 | ||
C3-1 | paddy fields | 7.95 | 31.2 | 1.53 | 25.77 | 45.03 | 29.21 | 25.3 | 5.86 | 1.26 | 1.12 | 0.827 | |
C3-2 | 7.85 | 34.6 | 1.47 | 51.57 | 26.21 | 22.22 | 9 | 0.96 | 1.65 | 0.611 | 0.45 | ||
C3-3 | 7.71 | 39 | 1.42 | 52.51 | 23.06 | 24.42 | 11.1 | 1.44 | 1.25 | 0.746 | 0.641 | ||
C4-1 | paddy fields | 7.89 | 30.7 | 1.42 | 33.05 | 32.61 | 34.34 | 14.6 | 0.66 | 2.91 | 0.854 | 0.612 | |
C4-2 | 7.86 | 36.1 | 1.43 | 38.19 | 27.34 | 34.48 | 8.35 | 0.82 | 2.52 | 0.63 | 0.51 | ||
C4-3 | 7.85 | 32.8 | 1.39 | 39.21 | 31.34 | 29.45 | 9.16 | 0.67 | 2.4 | 0.59 | 0.435 |
Detector Indicators | Irrigation-Season | Non-Irrigation-Season | ||||||
---|---|---|---|---|---|---|---|---|
Concentration/(mg·L−1) | Concentration/(mg·L−1) | |||||||
Sample Quantity | Minimum Value–Maximum Value | Mean Value ± Standard Deviation | Coefficient of Variation (%) | Sample Quantity | Minimum Value–Maximum Value | Mean Value ± Standard Deviation | Coefficient of Variation (%) | |
NO3−-N | 304 | 0.0010 ± 11.4053 | 1.5663 ± 0.1342 | 8.57 | 103 | 0.0010 ± 17.9261 | 3.3355 ± 0.3781 | 11.34 |
NH4+-N | 307 | 0.0010 ± 11.9635 | 0.5438 ± 1.4093 | 259.16 | 90 | 0.0010 ± 12.0600 | 0.6070 ± 1.5966 | 263.03 |
TN | 297 | 0.0013 ± 21.8938 | 4.3795 ± 0.1971 | 4.50 | 101 | 0.1612 ± 36.8916 | 5.4843 ± 0.6622 | 12.07 |
TP | 299 | 0.0002 ± 0.9765 | 0.0647 ± 0.1401 | 216.54 | 93 | 0.0010 ± 0.2150 | 0.0167 ± 0.0221 | 132.34 |
Detector Indicators | Depth | Irrigation-Season | Non-Irrigation-Season | H | Degrees of Freedom | p | ||
---|---|---|---|---|---|---|---|---|
Concentration (mg·L−1) | Concentration (mg·L−1) | |||||||
Sample Quantity | Mean Value | Sample Quantity | Mean Value | |||||
NO3−-N | 30 | 106 | 1.6047 ± 2.22 | 33 | 4.3739 ± 4.47 | 19.302 | 1 | 0 ** |
60 | 110 | 1.7394 ± 2.58 | 38 | 3.2888 ± 3.31 | 19.29 | 1 | 0.001 ** | |
100 | 82 | 1.3035 ± 2.16 | 32 | 2.3203 ± 3.54 | 4.415 | 1 | 0.036 * | |
NH4+-N | 30 | 108 | 0.4750 ± 1.19 | 27 | 0.4516 ± 3.34 | 5.252 | 1 | 0.022 * |
60 | 109 | 0.5975 ± 1.34 | 37 | 0.5512 ± 1.11 | 8.523 | 1 | 0.004 ** | |
100 | 90 | 0.5576 ± 1.71 | 28 | 0.8267 ± 2.40 | 5.124 | 1 | 0.024 * | |
TN | 30 | 104 | 4.3800 ± 3.34 | 33 | 7.2708 ± 7.95 | 1.232 | 1 | 0.267 |
60 | 104 | 4.6101 ± 3.45 | 37 | 5.1120 ± 4.70 | 0.139 | 1 | 0.709 | |
100 | 89 | 4.1095 ± 3.41 | 31 | 4.0271 ± 6.92 | 6.544 | 1 | 0.011 * | |
TP | 30 | 105 | 0.0730 ± 0.16 | 30 | 0.0221 ± 0.04 | 0.002 | 1 | 0.968 |
60 | 106 | 0.0573 ± 0.13 | 34 | 0.0138 ± 0.01 | 0.004 | 1 | 0.952 | |
100 | 88 | 0.0637 ± 0.13 | 29 | 0.0140 ± 0.01 | 0.542 | 1 | 0.462 |
NO3−-N | NH4+-N | TN | |||||||
---|---|---|---|---|---|---|---|---|---|
F | Significance | Partial Eta Squared | F | Significance | Partial Eta Squared | F | Significance | Partial Eta Squared | |
Ss | 33.937 | 1.18 × 10−8 ** | 0.079 | 0.037 | 0.47 | 0.000097 | 4.988 | 0.026 * | 0.013 |
Lt | 0.905 | 0.405 | 0.005 | 13.035 | 3 × 10−6 ** | 0.063 | 3.308 | 0.038 * | 0.017 |
Lm | 0.082 | 0.774 | 0.000208 | 0.618 | 0.432 | 0.002 | 0.21 | 0.571 | 0.001 |
Ss-Lt | 0.739 | 0.478 | 0.004 | 0.979 | 0.377 | 0.005 | 1.664 | 0.191 | 0.009 |
Ss-Lm | 0.748 | 0.388 | 0.002 | 1.141 | 0.286 | 0.003 | 0.737 | 0.391 | 0.002 |
Lt-Lm | 24.623 | 8.36 × 10−11 ** | 0.111 | 2.579 | 0.077 | 0.013 | 13.405 | 2.35 × 10−6 ** | 0.065 |
Ss-Lt-Lm | 0.830 | 0.437 | 0.004 | 1.307 | 0.272 | 0.007 | 4.365 | 0.013 * | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, C.; Han, J.; Dai, J.; Xia, R.; Wan, Z.; Zhang, S.; Xu, J. Vertical Distribution Patterns of Nitrogen and Phosphorus in Soil Solution: Insights from a Wetland Trial Site in the Li River Basin. Water 2024, 16, 1830. https://doi.org/10.3390/w16131830
Gong C, Han J, Dai J, Xia R, Wan Z, Zhang S, Xu J. Vertical Distribution Patterns of Nitrogen and Phosphorus in Soil Solution: Insights from a Wetland Trial Site in the Li River Basin. Water. 2024; 16(13):1830. https://doi.org/10.3390/w16131830
Chicago/Turabian StyleGong, Chunjin, Junlei Han, Junfeng Dai, Rui Xia, Zupeng Wan, Shuaipu Zhang, and Jingxuan Xu. 2024. "Vertical Distribution Patterns of Nitrogen and Phosphorus in Soil Solution: Insights from a Wetland Trial Site in the Li River Basin" Water 16, no. 13: 1830. https://doi.org/10.3390/w16131830
APA StyleGong, C., Han, J., Dai, J., Xia, R., Wan, Z., Zhang, S., & Xu, J. (2024). Vertical Distribution Patterns of Nitrogen and Phosphorus in Soil Solution: Insights from a Wetland Trial Site in the Li River Basin. Water, 16(13), 1830. https://doi.org/10.3390/w16131830