Comprehensive Assessment of Eutrophication and the Mechanisms Driving Phytoplankton Blooms in Multifunctional Reservoirs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Profile
2.2. Experimental Method
2.3. Data Processing and Statistical Analysis
2.3.1. Trophic Level Index (TLI) Calculations
2.3.2. Correlation Analysis
3. Results
3.1. Temporal and Spatial Variations of Different Influencing Factors
3.1.1. Annual Variation Characteristics of Water Quality Conditions
3.1.2. Annual Variation of Zooplankton
3.1.3. Annual Variation Characteristics of Fish Stocks
3.2. Chl-a Concentration Prediction
4. Discussion
4.1. Evaluation of Eutrophication in Water and Analysis of Driving Factors of Phytoplankton Outbreak
4.2. Driving Mechanisms of Phytoplankton Outbreaks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brigitte, V.L.; Céline, C. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 2019, 651, 2985–3001. [Google Scholar]
- Sun, C.; Wang, S.; Wang, H.; Hu, X.; Yang, F.; Tang, M.; Zhang, M.; Zhong, J. Internal nitrogen and phosphorus loading in a seasonally stratified reservoir: Implications for eutrophication management of deep-water ecosystems. J. Environ. Manag. 2022, 319, 115681. [Google Scholar] [CrossRef]
- Carey, C.C.; Ibelings, B.W.; Hoffmann, E.P.; Hamilton, D.P.; Brookes, J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012, 46, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhan, X.; Xu, H.; Zhu, G.; Zou, W.; Zhu, M.; Kang, L.; Guo, Y.; Zhao, X.; Wang, Z. New insights into eutrophication management: Importance of temperature and water residence time. J. Environ. Sci. 2022, 111, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Wang, H.; Wu, T.; Yang, J.; Jiang, X.; Zhong, J. Vertical profiles of phosphorus fractions in the sediment in a chain of reservoirs in North China: Implications for pollution source, bioavailability, and eutrophication. Sci. Total Environ. 2020, 704, 135318. [Google Scholar] [CrossRef]
- Janssen, A.B.; Droppers, B.; Kong, X.; Teurlincx, S.; Tong, Y.; Kroeze, C. Characterizing 19 thousand Chinese lakes, ponds and reservoirs by morphometric, climate and sediment characteristics. Water Res. 2021, 202, 117427. [Google Scholar] [CrossRef]
- Tang, C.; He, C.; Li, Y.; Acharya, K. Diverse responses of hydrodynamics, nutrients and algal biomass to water diversion in a eutrophic shallow lake. J. Hydrol. 2021, 593, 125933. [Google Scholar] [CrossRef]
- Tong, Y.; Xu, X.; Qi, M.; Sun, J.; Zhang, Y.; Zhang, W.; Wang, M.; Wang, X.; Zhang, Y. Lake warming intensifies the seasonal pattern of internal nutrient cycling in the eutrophic lake and potential impacts on algal blooms. Water Res. 2021, 188, 116570. [Google Scholar]
- Kim, K.B.; Jung, M.K.; Tsang, Y.F.; Kwon, H.H. Stochastic modeling of chlorophyll-a for probabilistic assessment and monitoring of algae blooms in the Lower Nakdong River, South Korea. J. Hazard. Mater. 2020, 400, 123066. [Google Scholar] [CrossRef]
- Han, Y.; Aziz, T.N.; Del Giudice, D.; Hall, N.S.; Obenour, D.R. Exploring nutrient and light limitation of algal production in a shallow turbid reservoir. Environ. Pollut. 2021, 269, 116210. [Google Scholar] [CrossRef]
- Vörös, L.; Padisak, J. Phytoplankton biomass and chlorophyll-a in some shallow lakes in Central Europe. Hydrobiologia 1991, 215, 111–119. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Xu, F. How reliable is chlorophyll-a as algae proxy in lake environments? New insights from the perspective of n-alkanes. Sci. Total Environ. 2022, 836, 155700. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G.; Hong, S.; Chon, T.S.; Joo, G.J. Spatial patterning of chlorophyll a and water-quality measurements for determining environmental thresholds for local eutrophication in the Nakdong River basin. Environ. Pollut. 2021, 268, 115701. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, C.; Zheng, G.; Xue, J.; Zhang, L. The establishment of season-specific eutrophication assessment standards for a water-supply reservoir located in Northeast China based on chlorophyll-a levels. Ecol. Indic. 2018, 85, 11–20. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Luo, Y.; Shang, C. Spatial-temporal process simulation and prediction of chlorophyll-a concentration in Dianchi Lake based on wavelet analysis and long-short term memory network. J. Hydrol. 2020, 582, 124488. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, T.; Wang, X.; Jin, X.; Xu, J.; Yu, J.; Zhang, H.; Zhao, Z. An approach of improved Multivariate Timing-Random Deep Belief Net modelling for algal bloom prediction. Biosyst. Eng. 2019, 177, 130–138. [Google Scholar] [CrossRef]
- Huo, S.; Xi, B.; Su, J.; Zan, F.; Chen, Q.; Ji, D.; Ma, C. Determining reference conditions for TN, TP, SD and Chl-a in eastern plain ecoregion lakes, China. J. Environ. Sci. 2013, 25, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Mamun, M.; Kim, J.J.; Alam, M.A.; An, K.G. Prediction of algal chlorophyll-a and water clarity in monsoon-region reservoir using machine learning approaches. Water 2019, 12, 30. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Liu, T.; Leng, S.; Yang, L.; Peng, H.; Jiang, S.; Zhou, W.; Leng, L.; Li, H. Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae. Bioresour. Technol. 2021, 342, 126011. [Google Scholar] [CrossRef]
- Franklin, J.B.; Sathish, T.; Vinithkumar, N.V.; Kirubagaran, R. A novel approach to predict chlorophyll-a in coastal-marine ecosystems using multiple linear regression and principal component scores. Mar. Pollut. Bull. 2020, 152, 110902. [Google Scholar] [CrossRef]
- Du, H.; Chen, Z.; Mao, G.; Chen, L.; Crittenden, J.; Li, R.Y.M.; Chai, L. Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecol. Indic. 2019, 102, 686–692. [Google Scholar] [CrossRef]
- Standard Method for the Examination of Water and Wastewater Editorial Board; Environmental Science Press of China: Beijing, China, 2002.
- Standards for the Investigation of Reservoir Fishery Resources; Water Conservancy Industry Standards; Chinese Ministry of Water Resources: Beijing, China, 2014.
- Liu, H.; He, B.; Zhou, Y.; Kutser, T.; Toming, K.; Feng, Q.; Yang, X.; Fu, C.; Yang, F.; Li, W. Trophic state assessment of optically diverse lakes using Sentinel-3-derived trophic level index. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103026. [Google Scholar] [CrossRef]
- Nalley, J.O.; O’Donnell, D.R.; Litchman, E. Temperature effects on growth rates and fatty acid content in freshwater algae and cyanobacteria. Algal Res. 2018, 35, 500–507. [Google Scholar] [CrossRef]
- Jankowiak, J.; Hattenrath Lehmann, T.; Kramer, B.J.; Ladds, M.; Gobler, C.J. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 2019, 64, 1347–1370. [Google Scholar] [CrossRef]
- Alprol, A.E.; Heneash, A.M.M.; Soliman, A.M.; Ashour, M.; Alsanie, W.F.; Gaber, A.; Mansour, A.T. Assessment of water quality, eutrophication, and zooplankton community in Lake Burullus, Egypt. Diversity 2021, 13, 268. [Google Scholar] [CrossRef]
- He, B.; Dai, M.; Zhai, W.; Guo, X.; Wang, L. Hypoxia in the upper reaches of the Pearl River Estuary and its maintenance mechanisms: A synthesis based on multiple year observations during 2000–2008. Mar. Chem. 2014, 167, 13–24. [Google Scholar] [CrossRef]
- Qin, B.; Zhou, J.; Elser, J.J.; Gardner, W.S.; Deng, J.; Brookes, J.D. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environ. Sci. Technol. 2020, 54, 3191–3198. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, J.; Filker, S.; Stoeck, T.; Bi, Y.; Yu, Y.; Song, W. Spatio-temporal patterns of zooplankton in a main-stem dam affected tributary: A case study in the Xiangxi River of the Three Gorges Reservoir, China. Sci. China Life Sci. 2019, 62, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Xia, J.; Xia, Z.; Cai, W.; Liu, Z.; Xu, K.; Wang, Y.; Zhang, R.; Dong, X. Temporal variation and spatial distribution in the water environment helps explain seasonal dynamics of zooplankton in river-type reservoir. Sustainability 2022, 14, 13719. [Google Scholar] [CrossRef]
- Lazzaro, X.; Bouvy, M.; Ribeiro-Filho, R.A.; Oliviera, V.S.; Sales, L.T.; Vasconcelos, A.R.; Mata, M.R. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshw. Biol. 2003, 48, 649–668. [Google Scholar] [CrossRef]
- Moss, B.; Mckee, D.; Atkinson, D.; Collings, S.; Eaton, J.; Gill, A.; Harvey, I.; Hatton, K.; Heyes, T.; Wilson, D. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. J. Appl. Ecol. 2003, 40, 782–792. [Google Scholar] [CrossRef]
- Rao, K.; Zhang, X.; Yi, X.; Li, Z.; Wang, P.; Huang, G.; Guo, X. Interactive effects of environmental factors on phytoplankton communities and benthic nutrient interactions in a shallow lake and adjoining rivers in China. Sci. Total Environ. 2018, 619, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Jiang, Y.; Liu, Q.; Xu, D.; Liu, Y.; Song, J. The impacts of local and regional factors on the phytoplankton community dynamics in a temperate river, northern China. Ecol. Indic. 2021, 123, 107352. [Google Scholar] [CrossRef]
- Wang, N.; Xiong, J.; Wang, X.C.; Zhang, Y.; Liu, H.; Zhou, B.; Pan, P.; Liu, Y.; Ding, F. Relationship between phytoplankton community and environmental factors in landscape water with high salinity in a coastal city of China. Environ. Sci. Pollut. Res. 2018, 25, 28460–28470. [Google Scholar] [CrossRef] [PubMed]
- Tolotti, M.; Thies, H.; Nickus, U.; Psenner, R. Temperature modulated effects of nutrients on phytoplankton changes in a mountain lake. Phytoplankton Responses Hum. Impacts Differ. Scales 2012, 698, 61–75. [Google Scholar]
- Lürling, M.; Mello, M.M.; Oosterhout, V.F.; Domis, L.D.S.; Marinho, M.M. Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Front. Microbiol. 2018, 9, 1851. [Google Scholar] [CrossRef]
- Raven, J.A.; Gobler, C.J.; Hansen, P.J. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms. Harmful Algae 2020, 91, 101594. [Google Scholar] [CrossRef] [PubMed]
- Ger, K.A.; Urrutia-Cordero, P.; Frost, P.C.; Hansson, L.A.; Sarnelle, O.; Wilson, A.E.; Lürling, M. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 2016, 54, 128–144. [Google Scholar] [CrossRef]
- Hixon, M.A.; Brostoff, W.N. Succession and herbivory: Effects of differential fish grazing on Hawaiian coral-reef algae. Ecol. Monogr. 1996, 66, 67–90. [Google Scholar] [CrossRef]
- McIntosh, A.R.; Townsend, C.R. Interactions between fish, grazing invertebrates and algae in a New Zealand stream: A trophic cascade mediated by fish-induced changes to grazer behaviour? Oecologia 1996, 108, 174–181. [Google Scholar] [CrossRef]
- Kelly, P.T.; González, M.J.; Renwick, W.H.; Vanni, M.J. Increased light availability and nutrient cycling by fish provide resilience against reversing eutrophication in an agriculturally impacted reservoir. Limnol. Oceanogr. 2018, 63, 2647–2660. [Google Scholar] [CrossRef]
- Mayer, T. Interactions of fish, algae, and abiotic factors in a shallow, tropical pond. Hydrobiologia 2020, 847, 4145–4160. [Google Scholar] [CrossRef]
- Yuan, L.L.; Pollard, A.I. Changes in the relationship between zooplankton and phytoplankton biomasses across a eutrophication gradient. Limnol. Oceanogr. 2018, 63, 2493–2507. [Google Scholar] [CrossRef] [PubMed]
Model | Linear Model | R2 | P |
---|---|---|---|
1 | −51.006 + 7.388 (pH) | 0.39 | 0.03 |
2 | −25.165 + 5.227 (pH) − 0.078(SD) | 0.536 | 0.032 |
3 | −8.519 + 5.911 (pH) − 0.078(SD) − 3.718(DO) | 0.656 | 0.029 |
4 | −2.939 + 5.901 (pH) − 0.08(SD) − 4.078(DO) − 3.942(BOD) | 0.681 | 0.062 |
5 | −2.728 + 5.566 (pH) − 0.07(SD) − 3.874(DO) − 4.939(BOD) + 57.85(TP) | 0.698 | 0.123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Xiao, K.; Zhao, G.; Huang, X.; Li, Z.; Wu, H.; Huang, X.; Pan, Y.; Liang, L. Comprehensive Assessment of Eutrophication and the Mechanisms Driving Phytoplankton Blooms in Multifunctional Reservoirs. Water 2024, 16, 1752. https://doi.org/10.3390/w16121752
Li R, Xiao K, Zhao G, Huang X, Li Z, Wu H, Huang X, Pan Y, Liang L. Comprehensive Assessment of Eutrophication and the Mechanisms Driving Phytoplankton Blooms in Multifunctional Reservoirs. Water. 2024; 16(12):1752. https://doi.org/10.3390/w16121752
Chicago/Turabian StyleLi, Ronghui, Kaibang Xiao, Guoli Zhao, Xianyu Huang, Zheng Li, Heng Wu, Xusheng Huang, Yue Pan, and Li Liang. 2024. "Comprehensive Assessment of Eutrophication and the Mechanisms Driving Phytoplankton Blooms in Multifunctional Reservoirs" Water 16, no. 12: 1752. https://doi.org/10.3390/w16121752
APA StyleLi, R., Xiao, K., Zhao, G., Huang, X., Li, Z., Wu, H., Huang, X., Pan, Y., & Liang, L. (2024). Comprehensive Assessment of Eutrophication and the Mechanisms Driving Phytoplankton Blooms in Multifunctional Reservoirs. Water, 16(12), 1752. https://doi.org/10.3390/w16121752