Occurrence and Removal of Microplastics in Wastewater Treatment Plants: Perspectives on Shape, Type, and Density
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Abundances of Microplastics and Removal Rates
3.2. Microplastic Types
3.3. Polymer Types
3.4. Microplastic Colors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Acarer, S. Abundance and characteristics of microplastics in drinking water treatment plants, distribution systems, water from refill kiosks, tap waters and bottled waters. Sci. Total Environ. 2023, 888, 163866. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Wufuer, R.; Duo, J.; Pan, X. Microplastic Contamination in Urban, Farmland and Desert Environments along a Highway in Southern Xinjiang, China. Int. J. Environ. Res. Public Health 2022, 19, 8890. [Google Scholar] [CrossRef]
- Freeman, S.; Booth, A.M.; Sabbah, I.; Tiller, R.; Dierking, J.; Klun, K.; Rotter, A.; BenDavid, E.; Javidpour, J.; Angel, D.L. Between source and sea: The role of wastewater treatment in reducing marine microplastics. J. Environ. Manag. 2020, 266, 110642. [Google Scholar] [CrossRef]
- Eerkes–Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Karbalaei, S.; Hanachi, P.; Walker, T.R.; Cole, M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. 2018, 25, 36046–36063. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.; McGonigle, D.; Russell, A.E. Lost at Sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Estahbanati, S.; Fahrenfeld, N.L. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere 2016, 162, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, J.; Liu, H.; Guo, X.; Zhang, X.; Yao, X.; Cao, Z.; Zhang, T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ. Int. 2021, 146, 106277. [Google Scholar] [CrossRef]
- Dalu, T.; Banda, T.; Mutshekwa, T.; Munyai, L.F.; Cuthbert, R.N. Effects of urbanisation and a wastewater treatment plant on microplastic densities along a subtropical river system. Environ. Sci. Pollut. Res. 2021, 28, 36102–36111. [Google Scholar] [CrossRef]
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 2015, 5, 17988. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater–based microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef]
- Arhant, M.; Le Gall, M.; Le Gac, P.Y.; Davies, P. Impact of hydrolytic degradation on mechanical properties of PET–Towards an understanding of microplastics formation. Polym. Degrad. Stab. 2019, 161, 175–182. [Google Scholar] [CrossRef]
- Iroegbu, A.O.C.; Sadiku, R.E.; Ray, S.S.; Hamam, Y. Plastics in municipal drinking water and wastewater treatment plant effluents: Challenges and opportunities for South Africa—A review. Environ. Sci. Pollut. Res. 2020, 27, 22271–22291. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef]
- Setälä, O.; Fleming–Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef]
- Turan, N.B.; Erkan, H.S.; Engin, G.O. Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Saf. Environ. Prot. 2021, 146, 77–84. [Google Scholar] [CrossRef]
- Dalu, T.; Ngomane, N.; Dondofema, F.; Cuthbert, R.N. Water or sediment? Assessing seasonal microplastic accumulation from wastewater treatment works. H2Open J. 2023, 6, 88–104. [Google Scholar] [CrossRef]
- Dalu, T.; Themba, N.N.; Dondofema, F.; Cuthbert, R.N. Nowhere to go! Microplastic abundances in freshwater fishes living near wastewater plants. Environ. Toxicol. Pharmacol. 2023, 101, 104210. [Google Scholar] [CrossRef]
- Xu, X.; Jian, Y.; Xue, Y.; Hou, Q.; Wang, L. Microplastics in the wastewater treatment plants (WWTPs): Occurrence and removal. Chemosphere 2019, 235, 1089–1096. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Int-Veen, I.; Loder, M.G.J.; Primpke, S.; Gerdts, G. Identification of microplastic in effluents of wastewater treatment plants using focal plane array–based micro–Fourier–transform infrared imaging. Water Res. 2017, 108, 365–372. [Google Scholar] [CrossRef]
- Franco, A.A.; Arellano, J.M.; Albendin, G.; Rodriguez-Barroso, R.; Quiroga, J.M.; Coello, M.D. Microplastic pollution in wastewater treatment plants in the city of C’adiz: Abundance, removal efficiency and presence in receiving water body. Sci. Total Environ. 2021, 776, 145795. [Google Scholar] [CrossRef]
- Tang, K.H.O. Interaction of microplastics with Persistent organic pollutants and the ecotoxicological effects: A Review. Trop. Aquat. Soil Pollut. 2021, 1, 24–34. [Google Scholar] [CrossRef]
- Ren, P.; Dou, M.; Wang, C.; Li, Q.; Jia, R. Abundance, and removal characteristics of microplastics at a wastewater treatment plant in Zhengzhou. Environ. Sci. Pollut. Res. 2020, 27, 36295–36305. [Google Scholar] [CrossRef] [PubMed]
- Lares, M.; Ncibi, M.C.; Sillanpaa, M.; Sillanpaa, M. Occurrence, identification, and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018, 133, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Oveisy, N.; Rafiee, M.; Rahmatpour, A.; Nejad, A.S.; Hashemi, M.; Eslami, A. Occurrence, identification, and discharge of microplastics from effluent and sludge of the largest WWTP in Iran-South of Tehran. Water Environ. Res. 2020, 94, 10765. [Google Scholar] [CrossRef] [PubMed]
- Yahyanezhad, N.; Bardi, M.J.; Aminirad, H. An evaluation of microplastics fate in the wastewater treatment plants: Frequency and removal of microplastics by microfiltration membrane. Water Pract. Technol. 2021, 16, 782–792. [Google Scholar] [CrossRef]
- Uddin, S.; Behbehan, M.; Habibi, N.; Faizuddin, M.; AI-Murad, M.; Martinez-Guijarro, K.; AI-Sarawi, H.A.; Karam, Q. Microplastics in Kuwait’s Wastewater Streams. Sustainability 2022, 14, 15817. [Google Scholar] [CrossRef]
- Uogintė, I.; Pleskytė, S.; Pauraitė, J.; Lujanienė, G. Seasonal variation and complex analysis of microplastic distribution in different WWTP treatment stages in Lithuania. Environ. Monitor. Assess. 2022, 194, 829. [Google Scholar] [CrossRef] [PubMed]
- Hajji, S.; Ben-Haddad, M.; Abelouah, M.R.; De-la-Torre, G.E.; Alla, A.A. Occurrence, characteristics and removal of microplastics in wastewater treatment plants located on the Moroccan Atlantic: The case of Agadir metropolis. Sci. Total Environ. 2023, 862, 160815. [Google Scholar] [CrossRef]
- Franco, A.A.; Martín-García, A.P.; Egea-Corbacho, A.; Arellano, J.M.; Albendín, G.; Rodríguez–Barroso, R.; Quiroga, J.M.; Coello, M.D. Assessment and accumulation of microplastics in sewage sludge at wastewater treatment plants located in Cadiz, Spain. Environ. Pollut. 2023, 317, 120689. [Google Scholar] [CrossRef]
- Maw, M.M.; Boontanon, N.; Fujii, S.; Boontanon, S.K. Rapid and efficient removal of organic matter from sewage sludge for extraction of microplastics. Sci. Total Environ. 2022, 853, 158642. [Google Scholar] [CrossRef] [PubMed]
- Akarsu, C.; Kumbur, H.; Gokdag, K.; Kiddeys, A.E.; Sanchez-Vidal, A. Microplastics composition and load from three wastewater treatments discharging into Mersin Bay, north eastern Mediterranean Sea. Mar. Pollut. Bull. 2020, 150, 110776. [Google Scholar] [CrossRef] [PubMed]
- Tagg, A.S.; Sapp, M.; Harrison, J.P.; Sinclair, C.J.; Bradley, E.; Ju-Nam, Y.; Ojeda, J.J. Microplastic Monitoring at Different Stages in a Wastewater Treatment Plant Using Reflectance Micro–FTIR Imaging. Front. Environ. Sci. 2020, 8, 145. [Google Scholar] [CrossRef]
- Conley, K.; Clum, A.; Deepe, J.; Lane, H.; Beckingham, B. Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Res. X 2019, 3, 100030. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Cui, Y.; Brahney, J.; Mahowald, N.M.; Li, Q. Long–distance atmospheric transport of microplastic fibres influenced by their shapes. Nat. Geosci. 2023, 16, 863–870. [Google Scholar] [CrossRef]
- Long, Z.; Pan, Z.; Wang, W.; Ren, J.; Yu, X.; Lin, L.; Lin, H.; Chen, H.; Jin, X. Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res. 2019, 155, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Setiadewi, N.; Henny, C.; Rohaningsih, D.; Waluyo, A.; Soewondo, P. Microplastic occurrence and characteristics in a municipal wastewater treatment plant In Jakarta. IOP Conf. Ser. Earth Environ. Sci. 2022, 1201, 012053. [Google Scholar] [CrossRef]
- Park, H.J.; Oh, M.J.; Kim, P.G.; Kim, G.; Jeong, D.H.; Ju, B.K.; Lee, W.S.; Chung, H.M.; Kang, H.J.; Kwon, J.H. National Reconnaissance Survey of Microplastics in Municipal Wastewater Treatment Plants in Korea. Environ. Sci. Technol. 2020, 54, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Gundogdum, S.; Cevik, C.; Guzel, E.; Kilercioglu, S. Microplastics in municipal wastewater treatment plants in Turkey: A comparison of the influent and secondary effluent concentrations. Environ. Monit. Assess. 2018, 190, 626. [Google Scholar] [CrossRef]
- Mason, S.A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, B.J.; Fink, P.; Papazissimos, D.; Rogers, D.L. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 2016, 218, 1045–1054. [Google Scholar] [CrossRef]
- Vilakati, B.; Sivasankar, V.; Nyoni, H.; Mamba, B.B.; Omine, K.; Msagati, T.A.M. The Py—GC–TOF–MS analysis and characterization of microplastics (MPs) in a wastewater treatment plant in Gauteng Province, South Africa. Ecotoxicol. Environ. Saf. 2021, 222, 112478. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, K.; Cui, S.; Kang, Y.; An, L.; Lei, K. Removal of microplastics in municipal sewage from China’s largest water reclamation plant. Water Res. 2019, 11, 175–181. [Google Scholar] [CrossRef]
- Talvitie, J.; Heinonen, M.; Paakkonen, J.P.; Vahtera, E.; Mikola, A.; Setala, O.; Vahala, R. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci. Technol. 2015, 72, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport, and fate of microplastic particles in wastewater treatment plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- Nafea, T.H.; AI–Maliki, A.J.; AI-Tameemi, I.M. Sources, fate, effects, and analysis of microplastic in wastewater treatment plants: A review. Environ. Eng. Res. 2024, 29, 230040. [Google Scholar] [CrossRef]
- Westphalen, H.; Abdelrasoul, A. Challenges and Treatment of Microplastics in Water; Glavan, M., Ed.; IntechOpen: London, UK, 2018; pp. 71–83. [Google Scholar]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setala, O. Solutions to microplastic pollution—Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Setälä, O.; Heinonen, M.; Koistinen, A. How well is microlitter purified from wastewater? A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res. 2017, 109, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Ngo, P.L.; Pramanik, B.K.; Shah, K.; Roychand, R. Pathway, classification, and removal efficiency of microplastics in wastewater treatment plants. Environ. Pollut. 2019, 255, 113326. [Google Scholar] [CrossRef]
- Zahra, S.I.; Iqbal, M.J.; Ashraf, S.; Aslam, A.; Ibrahim, M.; Yamin, M.; Vithanage, M. Comparison of ambient air quality among industrial and residential areas of typical South Asian city. Atmosphere 2022, 13, 1168. [Google Scholar] [CrossRef]
Location | WWTPs Unit | Influent (MP/L) | Effluent (MP/L) | Removal Rates (%) | References |
---|---|---|---|---|---|
China, Zhengzhou | Primary sedimentation, secondary sedimentation, filtration pool, dewatering | 16.0 | 2.9 | 81.9 | Ren et al. [23] |
Finland | Screening, grit separation, primary clarification, biological treatment with activated sludge, final sedimentation, and disinfection | 57.6 | 1.0 | 98.3 | Lares et al. [24] |
Iran, South of Tehran | Inlet, outlet, and anaerobic digested sludge | 180.0 | 5.3 | 99.06 | Oveisy et al. [25] |
Iran, Sari City | Secondary settling tank | 206.0 | 94.0 | 54.4 | Yahynezhad et al. [26] |
Kuwait | Reverse osmosis and ultrafiltration membranes, aeration tanks | 120 | 1.5 | 98.8 | Uddin et al. [27] |
Kuwait | Oxidation ditch system, sand filtration, UV treatment, chlorination | 226.5 | 11.5 | 94.9 | Uddin et al. [27] |
Kuwait | Vertically activated sludge process for biological treatment, Distributed Control system technology | 132.0 | 5.0 | 96.2 | Uddin et al. [27] |
Lithuania | Screening, grit chambers, sedimentation tanks, aeration tanks, sludge dewatering system, nitrogen and phosphorus removal | 2473 MP/L | 994.0 MP/L | 57.0 | Uoginte et al. [28] |
Morocco | Sedimentation, infiltration percolation, UV disinfection | 188.0 | 50.0 | 74.0 | Hajji et al. [29] |
Morocco | Activated sludge treatment, aeration tanks, clarification tanks, mechanical filtration | 519.0 | 86.0 | 87.0 | Hajji et al. [29] |
Spain, Chiclana de la Frontera | Pretreatment (grease trap, grit chamber, several screens), primary clarifiers, simultaneous nitrification and denitrification in a bioreactor, secondary clarifiers, anoxic tank, anaerobic digestion to treat solid fraction | 796.1 MP/L | 38.6 MP/L | 84.0 | Franco et al. [30] |
Thailand | Equalization tank, grit chamber, aeration tanks, sedimentation tanks, sludge dewatering | 0.4 MP/L | 0.1 MP/L | 86.5 | Maw et al. [31] |
Turkey | Screening, ventilated sand and an oil chamber, preliminary sediment tank biological and chemical phosphorus removal units, aeration tanks, and final sediment tank | 3.1 MP/L | 1.6 MP/L | 48.0 | Akarsu et al. [32] |
Turkey | Screening, preliminary sediment, aeration tanks, and final sediment tanks | 2.6 MP/L 1.5 MP/L | 0.7 MP/L 0.6 MP/L | 78.0 60.0 | Akarsu et al. [32] |
United Kingdom, East Midlands | Primary settlement, activated biological anoxic treatment, activated biological aerobic treatment | – | 1.5 MP/L | – | Tagg et al. [33] |
USA, South Caroline | Primary screening, primary clarifiers, activated sludge, secondary clarifiers, sludge handling, dewatering (rotary press), disinfection | 2.5 MP/L | 15.5 MP/L | 97.6, 85.2, 85.5 | Conley et al. [34] |
Location | Influent | Effluent | References |
---|---|---|---|
China, Xiamen | Pellet (2.5%), Fibers (17.7%), Fragments (30.0%), Granules (49.8%) | Pellet (5.6%), Fibers (30.4%), Fragments (28.0%), Granules (36.0%) | Long et al. [36] |
Indonesia, Jakarta | Fibers (70.0%), Fragments (24.0%), Microbeads (1.0%), Film (3.0%), Foam (2%) | Fibers (68%), Fragments (26.0%), Microbeads (2.0%), Film (1.0%), Foam (3.0%) | Setiadewi et al. [37] |
Iran, South of Tehran | Fibers (99.4%), Fragments (0.2%), Film (0.4 %) | Fibers (98.95%), Fragments (0.7%), Film (0.3%) | Oveisy et al. [24] |
Korea | Fragments (68.2%), Fibers (31.8%) | Fragments (82.3%), Fibers (17.7%) | Park et al. [38] |
Iran, Sari City | Fibers (35.0%), Pellets (39.0%), Fragments (22.0%) | Fibers (34.0%), Pellets (22.0%), Fragments (38.0%) | Yahyanezhad et al. [26] |
Turkey | Fibers (54.8%), Film (18.5%), Fragments (26.8%) | Fibers (44.4%), Film (30.2%), Fragments (25.4%) | Gundogdu et al. [39] |
Turkey | Fibers (87.7%), Film (2.4%), Fragments (10.0 %) | Fibers (86.5%), Film (2.5%), Fragments (10.8%) | Gundogdu et al. [39] |
United States | – | Fibers (59.0%), Fragments (33.0%), Films (5.0%), Forms (2.0%), Pellets (1.0%) | Mason et al. [40] |
Location | Influent | Effluent | References |
---|---|---|---|
China, Changzhou | Rayon (41.8%), PET (27.6%), PP (15.52%), PE (6.1%), PS (3.4%), PE–PP (2.1%) | Rayon (43.5%), PET (29.2%), PP (14.5%), PE (6.28%), PS (2.12%), PE–PP (1.51%) | Xu et al. [19] |
China, Xiamen | PE (26.9%), PP (30.2%), PS (10.3%), PE + PP (6.3%), PP + PE (5.1%), PES (3.3%), PET (7.5%), PA (9.9%) | PE (17.9%), PP (34.8%), PS (9.6%), PE + PP (4.7%), PP + PE (13.9%), PES (1.1%), PET (7.5%), PA (10.1%) | Long et al. [36] |
Korea | PP (39.6%), PE (25.6%), PET (21.3%) | PP (63.3%), PE (13.8%), PET (13.3%) | Park et al. [38] |
South Africa, Gauteng | – | PVC (47.8%), PET (17.4%), PA (13.1%), PE (4.3%) | Vilakati et al. [41] |
Turkey | PE (29.2%), PET (50.8%), PP (13.8%) | PE (31.3%), Nylon–6 (6.3%), PET (43.8%), PP (18.8%) | Gundogdu et al. [39] |
Turkey | PE (23.8%), PET (61.9%), PP (11.9%) | PE (18.8%), PET (68.8%), PP (12.5%) | Gundogdu et al. [39] |
Location | Influent | Effluent | References |
---|---|---|---|
Beijing, China | – | Black (36.6%), Transparent (33.8%), Blue (11.9%) | Yang et al. [42] |
Xiamen, China | Black (5.8%), Yellow (8.1%), Red (9.8%), Blue (9.1%), Green (12.1%), White (35.5%), Clear (19.6%) | Black (9.3%), Yellow (5.1%), Red (10.1%), Blue (8.0%), Green (17.2%), White (30.4%), Clear (19.9%) | Long et al. [36] |
Jakarta, Indonesia | Transparent (36.0%), Blue (10.0%), Red (22.0%), Brown (3.0%), Green (1.0%), Yellow (2.0%), Black (26.0%) | Transparent (35.0%), Blue (13.0%), Red (21.0%), Brown (6.0%), Green (3.0%), Yellow (5.0%), Black (17.0%) | Setiadewi et al. [37] |
South of Tehran, Iran | Transparent (69.8%), Red (5.3%), Blue (9.2%), Brown (0.3%), Gray (0.1%), Orange (0.4%), Yellow (0.3%), Green (1.1%), Black (13.3%) | Transparent (67.5%), Red (6%), Blue (6.574%), Black (17.6%), Green (1.3%), Brown (0.2%), Gray (0.2%), Orange (0.5%), Yellow (0.4%) | Oveisy et al. [24] |
Thailand | – | White (57.0%), Blue (17.0%), Red (13.0%), Brown (8.0%), Black (5.0%) | Maw et al. [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabadahanye, K.; Dalu, M.T.B.; Dalu, T. Occurrence and Removal of Microplastics in Wastewater Treatment Plants: Perspectives on Shape, Type, and Density. Water 2024, 16, 1750. https://doi.org/10.3390/w16121750
Mabadahanye K, Dalu MTB, Dalu T. Occurrence and Removal of Microplastics in Wastewater Treatment Plants: Perspectives on Shape, Type, and Density. Water. 2024; 16(12):1750. https://doi.org/10.3390/w16121750
Chicago/Turabian StyleMabadahanye, Khumbelo, Mwazvita T. B. Dalu, and Tatenda Dalu. 2024. "Occurrence and Removal of Microplastics in Wastewater Treatment Plants: Perspectives on Shape, Type, and Density" Water 16, no. 12: 1750. https://doi.org/10.3390/w16121750
APA StyleMabadahanye, K., Dalu, M. T. B., & Dalu, T. (2024). Occurrence and Removal of Microplastics in Wastewater Treatment Plants: Perspectives on Shape, Type, and Density. Water, 16(12), 1750. https://doi.org/10.3390/w16121750