Spatiotemporal Fusion Prediction of Sea Surface Temperatures Based on the Graph Convolutional Neural and Long Short-Term Memory Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regular Boundary Division for Spatial Interference Elimination
2.2. Convolutional Sliding Translation for Spatial Feature Focusing
2.3. Spatial Feature Extraction by the Clustering Neural Network
2.4. Graph Convolutional Neural Network
2.5. Construction of the Graph Data Structure for SST Data
2.6. The Spatiotemporal Fusion Model for SST Prediction Based on the GCN and the LSTM
2.7. Evaluation Solution of SST Prediction Models
2.8. Data Sets
3. Results
3.1. Model Configuration and Evaluation Criteria
3.2. Effect Analysis for Regular Boundary Division
3.3. Effect Analysis for Spatial Feature Extraction by the Clustering Neural Network
3.4. Effect Analysis of the Different Graphs for the Graph Convolutional Neural Network
3.5. Effect Analysis of the GCN-LSTM Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Xu, J.; Wang, G.; Jin, J.; Hu, X.; Guo, Y.; Li, X. Spatial–temporal distribution and forecasting model of precipitation using dynamic-statistical information fusion. J. Water Clim. Chang. 2022, 13, 1425–1447. [Google Scholar] [CrossRef]
- Kumari, P.V.; Thomas, S.; Mohanty, P.C.; Jayappa, K.S.; Mahendra, R.S.; Gupta, A. Effect of Sea Surface Temperature Variation on Productivity and Fisheries off Karnataka, West Coast of India. J. Indian Soc. Remote Sens. 2021, 49, 3027–3041. [Google Scholar] [CrossRef]
- Kessler, A.; Goris, N.; Lauvset, S.K. Observation-based Sea surface temperature trends in Atlantic large marine ecosystems. Prog. Oceanogr. 2022, 208, 102902. [Google Scholar] [CrossRef]
- Chaudhary, L.; Sharma, S.; Sajwan, M. Systematic Literature Review of Various Neural Network Techniques for Sea Surface Temperature Prediction Using Remote Sensing Data. Arch. Comput. Method Eng. 2023, 30, 5071–5103. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Kostianoy, A.G.; Serykh, I.V.; Lebedev, S.A. Climate change in the hydrometeorological parameters of the Black and Azov Seas (1980–2020). Oceanology 2021, 61, 745–756. [Google Scholar] [CrossRef]
- O’Carroll, A.G.; Armstrong, E.M.; Beggs, H.M.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.J.; Gentemann, C.L.; Høyer, J.L.; et al. Observational needs of sea surface temperature. Front. Mar. Sci. 2019, 6, 420. [Google Scholar] [CrossRef]
- Yuan, T.; Zhu, J.; Wang, W.; Lu, J.; Wang, X.; Li, X.; Ren, K. A Space-Time Partial Differential Equation Based Physics-Guided Neural Network for Sea Surface Temperature Prediction. Remote Sens. 2023, 15, 3498. [Google Scholar] [CrossRef]
- Sarkar, D.; Osborne, M.A.; Adcock, T.A.A. Spatiotemporal prediction of tidal currents using Gaussian processes. J. Geophys. Res. Oceans 2019, 124, 2697–2715. [Google Scholar] [CrossRef]
- Seeger, M. Gaussian processes for machine learning. Int. J. Neural Syst. 2004, 14, 69–106. [Google Scholar] [CrossRef]
- Yang, G.; Wang, H.; Qian, H.; Fang, J. Tidal current short-term prediction based on support vector regression. In Proceedings of the 2nd Asia Conference on Power and Electrical Engineering (ACPEE 2017), Shanghai, China, 24–26 March 2017. [Google Scholar]
- Sithara, S.; Pramada, S.K.; Thampi, S.G. Sea level prediction using climatic variables: A comparative study of SVM and hybrid wavelet SVM approaches. Acta Geophys. 2020, 68, 1779–1790. [Google Scholar] [CrossRef]
- Remya, P.G.; Kumar, R.; Basu, S. Forecasting tidal currents from tidal levels using genetic algorithm. Ocean Eng. 2012, 40, 62–68. [Google Scholar] [CrossRef]
- Elbisy, M.S. Sea wave parameters prediction by support vector machine using a genetic algorithm. J. Coast. Res. 2015, 314, 892–899. [Google Scholar] [CrossRef]
- Zhang, M.; Han, G.; Wu, X.; Li, C.; Shao, Q.; Li, W.; Cao, L.; Wang, X.; Dong, W.; Ji, Z. SST Forecast Skills Based on Hybrid Deep Learning Models: With Applications to the South China Sea. Remote Sens. 2024, 16, 1034. [Google Scholar] [CrossRef]
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big data for remote sensing: Challenges and opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Amani, M.; Moghimi, A.; Mirmazloumi, S.M.; Ranjgar, B.; Ghorbanian, A.; Ojaghi, S.; Ebrahimy, H.; Naboureh, A.; Nazari, M.E.; Mahdavi, S.; et al. Ocean Remote Sensing Techniques and Applications: A Review (Part I). Water 2022, 14, 3400. [Google Scholar] [CrossRef]
- Adwait, A.; Roshni, T. Mean sea level modelling using the neural network along the Chennai coast. J. Water Clim. Chang. 2023, 14, 66–82. [Google Scholar] [CrossRef]
- Wei, L.; Guan, L.; Qu, L. Prediction of sea surface temperature in the South China Sea by artificial neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 17, 558–562. [Google Scholar] [CrossRef]
- Bayindir, C. Predicting the Ocean Currents using Deep Learning. arXiv 2019, arXiv:1906.08066. [Google Scholar]
- Jia, X.; Ji, Q.; Han, L.; Liu, Y.; Han, G.; Lin, X. Prediction of Sea Surface Temperature in the East China Sea Based on LSTM Neural Network. Remote Sens. 2022, 14, 3300. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, P.; Li, S.; Mo, D. Prediction of significant wave height in offshore China based on the machine learning method. J. Mar. Sci. Eng. 2022, 10, 836. [Google Scholar] [CrossRef]
- Sukanda, A.J.T.; Adytia, D. Wave Forecast using Bidirectional GRU and GRU Method Case Study in Pangandaran, Indonesia. In Proceedings of the 2022 International Conference on Data Science and Its Applications (ICoDSA), Bandung, Indonesia, 6–7 July 2022. [Google Scholar]
- Jahanbakht, M.; Xiang, W.; Azghadi, M.R. Sea surface temperature forecasting with ensemble of stacked deep neural networks. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Han, M.; Feng, Y.; Zhao, X.; Sun, C.; Hong, F.; Liu, C. A convolutional neural network using surface data to predict subsurface temperatures in the Pacific Ocean. IEEE Access 2019, 7, 172816–172829. [Google Scholar] [CrossRef]
- Choi, H.M.; Kim, M.K.; Yang, H. Deep-learning model for sea surface temperature prediction near the Korean Peninsula. Deep-Sea Res. Part II 2023, 208, 105262. [Google Scholar] [CrossRef]
- Usharani, B. ILF-LSTM: Enhanced loss function in LSTM to predict the sea surface temperature. Soft Comput. 2023, 27, 13129–13141. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of sea surface temperature using long short-term memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Gong, J.; Chen, Z. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sens. Environ. 2019, 233, 111358. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, J.; Sun, X.; Lima, E.; Mu, Q.; Wang, X. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci. Remote Sens. Lett. 2017, 15, 207–211. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, Z.; Li, Y.; Wang, C.; Liu, Y.; Rong, T. Short-Term Prediction of Global Sea Surface Temperature Using Deep Learning Networks. J. Mar. Sci. Eng. 2023, 11, 1352. [Google Scholar] [CrossRef]
- Ali, A.; Fathalla, A.; Salah, A.; Bekhit, M.; Eldesouky, E. Marine Data Prediction: An Evaluation of Machine Learning, Deep Learning, and Statistical Predictive Models. Comput. Intell. Neurosci. 2022, 2021, 8551167. [Google Scholar] [CrossRef]
- Xu, L.; Li, Q.; Yu, J.; Wang, L.; Xie, J.; Shi, S. Spatio-temporal predictions of SST time series in China’s offshore waters using a regional convolution long short-term memory (RC-LSTM) network. Int. J. Remote Sens. 2020, 41, 3368–3389. [Google Scholar] [CrossRef]
- Hao, P.; Li, S.; Song, J.; Gao, Y. Prediction of Sea Surface Temperature in the South China Sea Based on Deep Learning. Remote Sens. 2023, 15, 1656. [Google Scholar] [CrossRef]
- Yu, X.; Shi, S.; Xu, L.; Liu, Y.; Miao, Q.; Sun, M. A novel method for sea surface temperature prediction based on deep learning. Math. Probl. Eng. 2020, 2020, 6387173. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Yu, J.; Xu, L. An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism. IEEE Geosci. Remote Sens. Lett. 2019, 17, 740–744. [Google Scholar] [CrossRef]
- Xu, S.; Dai, D.; Cui, X.; Yin, X.; Jiang, S.; Pan, H.; Wang, G. A deep learning approach to predict sea surface temperature based on multiple modes. Ocean Model. 2023, 181, 102158. [Google Scholar] [CrossRef]
- Qiao, B.; Wu, Z.; Tang, Z.; Wu, G. Sea surface temperature prediction approach based on 3D CNN and LSTM with attention mechanism. In Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 13–16 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 342–347. [Google Scholar]
- Sun, Y.; Yao, X.; Bi, X.; Huang, X.; Zhao, X.; Qiao, B. Time-series graph network for sea surface temperature prediction. Big Data Res. 2021, 25, 100237. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.; Hou, S.; Guan, J.; Zhou, S. HiGRN: A Hierarchical Graph Recurrent Network for Global Sea Surface Temperature Prediction. ACM Trans. Intell. Syst. Technol. 2023, 14, 73. [Google Scholar] [CrossRef]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. arXiv 2016, arXiv:1606.09375. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv 2013, arXiv:1312.6203. [Google Scholar]
- Liu, J.; Jin, B.; Wang, L.; Xu, L. Sea surface height prediction with deep learning based on attention mechanism. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Wei, L.; Guan, L.; Qu, L.; Guo, D. Prediction of sea surface temperature in the China seas based on long short-term memory neural networks. Remote Sens. 2020, 12, 2697. [Google Scholar] [CrossRef]
Parameters | LSTM-H/S/V | ConvLSTM | SOM-LSTM | LSTM | GCN-LSTM |
---|---|---|---|---|---|
Time Step | 10 | ||||
Input Shape | (10, 16) | (10, 1600, 1, 1) | (10, 1600) | (10, 1600) | (10, 1600) |
No. of LSTM Units | 256 | ||||
Size of Convolution Kernel | / | (5, 1) | / | / | / |
Size of Convolution Step | / | (5, 1) | / | / | / |
No. of Convolution Kernels | / | 256 | / | / | / |
Batch Size | 64 | ||||
No. of Spatial Group | 100 | / | / | / | / |
Spatial Scope | 21.125° N–30.875° N 122.375° E–132.125° E | ||||
Time Range—Training | 1 January 2010 to 18 April 2016 | ||||
Time Range—Testing | 19 April 2016 to 31 December 2018 |
Evaluation Criteria | LSTM | LSTM-H | LSTM-S | LSTM-V |
---|---|---|---|---|
MAE | 0.7108 | 0.3621 | 0.3505 | 0.3684 |
RMSE | 0.8717 | 0.4691 | 0.4563 | 0.4767 |
MAPE | 0.0287 | 0.0145 | 0.0140 | 0.0147 |
r | 0.9865 | 0.9937 | 0.9940 | 0.9935 |
Evaluation Criteria | LSTM-S | SOM-LSTM |
---|---|---|
MAE | 0.3505 | 0.2991 |
RMSE | 0.4563 | 0.3949 |
MAPE | 0.0140 | 0.0122 |
r | 0.9940 | 0.9956 |
Threshold | 0.88 | 0.89 | 0.90 | 0.91 | 0.92 | 0.93 |
No. of edges | 2,216,234 | 2,078,242 | 1,897,754 | 1,669,650 | 1,402,046 | 1,133,382 |
Threshold | 0.94 | 0.95 | 0.96 | 0.97 | 0.98 | / |
No. of edges | 857,960 | 561,184 | 296,536 | 149,712 | 75,488 | / |
Spatial Point | Evaluation Criteria | ConvLSTM | LSTM-S | SOM-LSTM | GCN-LSTM |
---|---|---|---|---|---|
(124.625° E, 21.125° N) | MAE | 0.4532 | 0.4499 | 0.2888 | 0.0659 |
RMSE | 0.5659 | 0.5356 | 0.3643 | 0.0860 | |
MAPE | 0.0168 | 0.0165 | 0.0105 | 0.0024 | |
r | 0.9833 | 0.9908 | 0.9930 | 0.9995 | |
(125.125° E, 27.125° N) | MAE | 0.5401 | 0.3176 | 0.3180 | 0.1071 |
RMSE | 0.7017 | 0.4431 | 0.4387 | 0.1407 | |
MAPE | 0.0225 | 0.0129 | 0.0128 | 0.0044 | |
r | 0.9894 | 0.9940 | 0.9957 | 0.9995 | |
(129.875° E, 29.125° N) | MAE | 0.4432 | 0.2715 | 0.2526 | 0.0787 |
RMSE | 0.5568 | 0.3547 | 0.3373 | 0.1008 | |
MAPE | 0.0174 | 0.0106 | 0.0098 | 0.0030 | |
r | 0.9927 | 0.9963 | 0.9970 | 0.9997 |
Evaluation Criteria | ConvLSTM | LSTM-S | SOM-LSTM | GCN-LSTM |
---|---|---|---|---|
MAE | 0.4670 | 0.3506 | 0.2991 | 0.0901 |
RMSE | 0.6047 | 0.4564 | 0.3949 | 0.1188 |
MAPE | 0.0191 | 0.0140 | 0.0122 | 0.0036 |
r | 0.9898 | 0.9941 | 0.9956 | 0.9996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, L.; Hu, F.; Xu, P.; Zhang, D. Spatiotemporal Fusion Prediction of Sea Surface Temperatures Based on the Graph Convolutional Neural and Long Short-Term Memory Networks. Water 2024, 16, 1725. https://doi.org/10.3390/w16121725
Liu J, Wang L, Hu F, Xu P, Zhang D. Spatiotemporal Fusion Prediction of Sea Surface Temperatures Based on the Graph Convolutional Neural and Long Short-Term Memory Networks. Water. 2024; 16(12):1725. https://doi.org/10.3390/w16121725
Chicago/Turabian StyleLiu, Jingjing, Lei Wang, Fengjun Hu, Ping Xu, and Denghui Zhang. 2024. "Spatiotemporal Fusion Prediction of Sea Surface Temperatures Based on the Graph Convolutional Neural and Long Short-Term Memory Networks" Water 16, no. 12: 1725. https://doi.org/10.3390/w16121725
APA StyleLiu, J., Wang, L., Hu, F., Xu, P., & Zhang, D. (2024). Spatiotemporal Fusion Prediction of Sea Surface Temperatures Based on the Graph Convolutional Neural and Long Short-Term Memory Networks. Water, 16(12), 1725. https://doi.org/10.3390/w16121725