Plankton Community Changes and Nutrient Dynamics Associated with Blooms of the Pelagic Cyanobacterium Trichodesmium in the Gulf of Mexico and the Great Barrier Reef
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gulf of Mexico: Interannual Comparisons of Trichodesmium spp. and Karenia brevis
2.2. Great Barrier Reef: The Eularian Study
2.3. Great Barrier Reef: Trichodesmium Grazing Study
3. Results
3.1. Gulf of Mexico: Interannual Comparisons of Trichodesmium spp. and Karenia brevis
3.2. Great Barrier Reef: The Eularian Study
3.3. Great Barrier Reef: Grazing Study
4. Discussion
4.1. Grazing on Trichodesmium
4.2. Trichodesmium Effects on Phytoplankton Community Structure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, J. The journals of Captain James Cook on his voyages of discovery. In The voyage of the Endeavour 1768–1771; Beaglehole, J.C., Ed.; Cambridge University Press: Cambridge, UK, 1955; Volume 1, 684p. [Google Scholar]
- Cribb, A.C. Sea sawdust. Qld. Nat. 1969, 19, 115–117. [Google Scholar]
- Furnas, M.J. Pelagic Trichodesmium (= Oscillatoria) in the Great Barrier Reef region. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; pp. 265–272. [Google Scholar]
- Blondeau-Patissier, D.; Brando, V.E.; Lønborg, C.; Leahy, S.M.; Dekker, A.G. Phenology of Trichodesmium spp. blooms in the Great Barrier Reef Lagoon, Australia, from the ESA-MERIS 10-year mission. PLoS ONE 2018, 13, e0208010. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J.; Steidinger, K.A. Saharan dust and Florida red tides: The cyanophyte connection. J. Geophys. Res. 2001, 106, 11597–11612. [Google Scholar] [CrossRef]
- Lenes, J.M.; Heil, C.A. A historical analysis of the potential nutrient supply from the N2 fixing marine cyanobacterium Trichodesmium spp. to Karenia brevis blooms in the eastern Gulf of Mexico. J. Plank. Res. 2010, 32, 1421–1431. [Google Scholar] [CrossRef]
- Capone, D.G.; Zehr, J.P.; Paerl, H.W.; Bergman, B.; Carpenter, E.J. Trichodesmium, a globally significant marine cyanobacterium. Science 1997, 276, 1221–1229. [Google Scholar] [CrossRef]
- Post, A.F.; Dedej, Z.; Gottlieb, R.; Li, H.; Thomas, D.N.; El-Absawi, M.; El-Naggar, A.; El-Gharabawi, M.; Sommer, U. Spatial and temporal distribution of Trichodesmium spp. in the stratified Gulf of Aqaba, Red Sea. Mar. Ecol. Prog. Ser. 2002, 239, 241–250. [Google Scholar] [CrossRef]
- Wang, S.; Koedooder, C.; Zhang, F.; Kessler, N.; Eichner, M.; Shi, D.; Shaked, Y. Colonies of the marine cyanobacterium Trichodesmium optimize dust utilization by selective collection and retention of nutrient-rich particles. iScience 2022, 25, 103587. [Google Scholar] [CrossRef] [PubMed]
- Koedooder, C.; Landou, E.; Zhang, F.; Wang, S.; Basu, S.; Berman-Frank, I.; Shaked, Y.; Rubin-Blum, M. Metagenomes of Red Sea subpopulations challenge the use of morphology and marker genes to assess Trichodesmium diversity. Front. Microbiol. 2022, 13, 879970. [Google Scholar] [CrossRef]
- Mulholland, M.R.; Bernhardt, P.W.; Heil, C.A.; Bronk, D.A.; O’Neil, J.M. Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico. Limnol. Oceanogr. 2006, 51, 1762–1776. [Google Scholar] [CrossRef]
- Carvalho, M.; Sônia, M.; Gianesella, F.; Flávia, M.; Saldanha-Corrêa, P. Trichodesmium erythraeum bloom on the continental shelf off Santos South East, Brazil. Braz. J. Oceanogr. 2008, 56, 307–311. [Google Scholar] [CrossRef]
- Bif, M.B.; de Souza, M.S.; Costa, L.D.F.; Yunes, J.S. Microplankton community composition associated with toxic Trichodesmium aggregations in the Southwest Atlantic Ocean. Front. Mar. Sci. 2019, 6, 23. [Google Scholar] [CrossRef]
- Lugomela, C.; Lymo, T.J.; Bryceson, I.; Semesla, K. Trichodesmium in coastal waters of Tanzania: Diversity, seasonality, nitrogen and carbon fixation. Hydrobiol. 2002, 477, 1–13. [Google Scholar] [CrossRef]
- Hood, R.R.; Coles, V.J.; Capone, D.G. Modeling the distribution of Trichodesmium and nitrogen fixation in the Atlantic Ocean. J. Geophys. Res. 2004, 109, C06006. [Google Scholar] [CrossRef]
- Ramos, A.G.; Martel, A.; Codd, G.A.; Soler, E.; Coca, J.; Redondo, A.; Morrison, L.F.; Metcalf, J.S.; Ojeda, A.; Suárez, S.; et al. Bloom of the marine diazotrophic cyanobacterium Trichodesmium erythraeum in the northwest African upwelling. Mar. Ecol. 2005, 301, 303–305. [Google Scholar] [CrossRef]
- Karl, D.M.; Letelier, R.; Hebel, D.F.; Bird, D.F.; Winn, C.D. Trichodesmium blooms and new nitrogen in the North Pacific Gyre. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; pp. 219–238. [Google Scholar]
- Karl, D.M.; Letelier, R.; Tupas, L.; Dore, J.; Christian, J.; Hebel, D. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 1997, 388, 533–538. [Google Scholar] [CrossRef]
- Benavides, M.; Berthelot, H.; Duhamel, S.; Raimbault, P.; Bonnet, S. Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific. Sci. Rep. 2017, 7, 41315. [Google Scholar] [CrossRef] [PubMed]
- Devassy, V.P.; Bhattathiri, P.M.A.; Qasim, S.Z. Trichodesmium phenomenon. Ind. J. Mar. Sci. 1978, 7, 68–186. [Google Scholar]
- D’Silva, M.S.; Anil, A.C.; Naik, R.K.; D’Costa, P.M. Algal blooms: A perspective from the coasts of India. Nat. Hazards 2012, 63, 1225–1253. [Google Scholar] [CrossRef]
- Jyothibabu, R.; Karnan, C.; Jagadeesan, L.; Arunpandi, N.; Pandiarajan, R.S.; Muraleedharan, K.R.; Balachandran, K.K. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal. Mar. Pollut. Bull. 2017, 121, 201–215. [Google Scholar] [CrossRef]
- Wu, C.; Fu, F.X.; Sun, J.; Thangaraj, S.; Pujari, L. Nitrogen Fixation by Trichodesmium and unicellular diazotrophs in the northern South China Sea and the Kuroshio in summer. Sci. Rep. 2018, 8, 2415. [Google Scholar] [CrossRef]
- Mulholland, M.R.; Bernhardt, P.W.; Ozmon, I.; Procise, L.A.; Garrett, M.; O’Neil, J.M.; Heil, C.A.; Bronk, D.A. Contribution of diazotrophy to nitrogen inputs supporting Karenia brevis blooms in the Gulf of Mexico. Harmful Algae 2014, 38, 20–29. [Google Scholar] [CrossRef]
- Heil, C.A.; Bronk, D.A.; Dixon, L.K.; Hitchcock, G.L.; Kirkpatrick, G.J.; Mulholland, M.R.; O’Neil, J.M.; Walsh, J.J.; Weisberg, R.; Garrett, M. The Gulf of Mexico ECOHAB: Karenia Program 2006-2012. Harmful Algae 2014, 38, 3–7. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Li, Y.; Kirkpatrick, B.; Litaker, R.W.; Hubbard, K.A.; Currier, R.D.; Harrison, K.K.; Tomlinson, M.C. Quantifying Karenia brevis bloom severity and respiratory irritation impact along the shoreline of Southwest Florida. PLoS ONE 2022, 17, e0260755. [Google Scholar] [CrossRef] [PubMed]
- Kuchler, D.A.; Jupp, D.L.B. Shuttle photograph captures massive phytoplankton bloom in the Great Barrier Reef. Int. J. Rem. Sens. 1988, 9, 1299–1301. [Google Scholar] [CrossRef]
- Dupouy, C. Discoloured waters in the Melanesian archipelago (New Caledonia and Vanuatu). The value of the NIMBUS-7 Coastal Zone Colour Scanner observations. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; pp. 177–191. [Google Scholar]
- Borstad, G.A.; Gower, J.F.R.; Carpenter, E.J. Development of algorithms for remote sensing of Trichodesmium blooms. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; pp. 193–210. [Google Scholar]
- Subramaniam, A.; Brown, C.W.; Hood, R.R.; Carpenter, E.J.; Capone, D.G. Detecting Trichodesmium blooms in SeaWiFS imagery. Deep Sea Res. 2002, 49 Pt II, 107–121. [Google Scholar] [CrossRef]
- Hu, C.; Cannizzaro, J.; Carder, K.L.; Muller-Karger, F.E.; Hardy, R. Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data. Rem. Sens. Environ. 2010, 114, 2048–2058. [Google Scholar] [CrossRef]
- Clementson, L.A.; Oubelkheir, K.; Ford, P.W.; Blondeau-Patissier, D. Distinct Peaks of UV-Absorbing Compounds in CDOM and Particulate Absorption Spectra of Near-Surface Great Barrier Reef Coastal Waters, Associated with the Presence of Trichodesmium spp. (NE Australia). Remote Sens. 2022, 14, 3686. [Google Scholar] [CrossRef]
- Qi, L.; Wang, M.; Hu, C.; Capone, D.G.; Subramaniam, A.; Carpenter, E.J.; Xie, Y. Trichodesmium around Australia: A view from space. Geophys. Res. Let. 2023, 50, e2023GL104092. [Google Scholar] [CrossRef]
- Endean, R. Chapter 7—Destruction and recovery of coral reef communities. In Biology and Geology of Coral Reefs; Jones, O.A., Endean, R., Eds.; Academic Press: London, UK, 1976; Volume III, pp. 343–369. [Google Scholar]
- Villareal, T.A. Abundance and photosynthetic characteristics of Trichodesmium spp. along the Atlantic Barrier Reef at Carrie Bow Cay, Belize. P.Z.S.N.1. Mar. Ecol. 1995, 16, 259–271. [Google Scholar]
- Hahn, S.T.; Capra, M. The cyanobacterium Oscillatoria erythraea—A potential source of toxin in the ciguatera food-chain. Food Addit. Contam. 1992, 9, 351–355. [Google Scholar] [CrossRef]
- Endean, R.; Monks, S.A.; Griffith, J.K.; Llewellyn, L.E. Apparent relationships between toxins elaborated by the cyanobacterium Trichodesmium erythraeum and those present in the flesh of the narrow-barred Spanish mackerel Scomberomorus commersoni. Toxicon 1993, 31, 1155–1165. [Google Scholar] [CrossRef]
- Hawser, S.P.; Codd, G.A.; Capone, D.G.; Carpenter, E.J. A neurotoxic factor associated with bloom-forming cyanobacterium Trichodesmium. Toxicon 1991, 3, 277–278. [Google Scholar] [CrossRef] [PubMed]
- Sudek, S.; Haygood, M.G.; Youssef, D.T.; Schmidt, E.W. Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl. Environ. Microbiol. 2006, 72, 4382–4387. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.; Schluter, P.J.; Shaw, G.R. Cyanobacterial lipopolysaccharides and human health—A review. Environ. Health Glob. Access Sci. Source 2007, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Proença, L.A.O.; Tamanaha, M.S.; Fonseca, R.S. Screening the toxicity and toxin content of blooms of the cyanobacterium Trichodesmium erythraeum (Ehrenberg) in northeast Brazil. J. Venom. Anim. Toxins Trop. Dis. 2009, 15, 213. [Google Scholar]
- Kerbrat, A.S.; Darius, H.T.; Pauillac, S.; Chinain, M.; Laurent, D. Detection of ciguatoxin-like and paralysing toxins in Trichodesmium spp. from New Caledonia lagoon. Mar. Pollut. Bull. 2010, 61, 60–366. [Google Scholar] [CrossRef] [PubMed]
- Kerbrat, A.S.; Amzil, Z.; Pawlowiez, R.; Golubic, S.; Sibat, M.; Darius, H.T.; Chinain, M.; Laurent, D. First evidence of palytoxin and 42-hydroxy-palytoxin in the marine cyanobacterium Trichodesmium. Mar. Drugs. 2011, 9, 543–560. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Tester, P.A. Toxic effect of the bloom-forming Trichodesmium sp. (Cyanophyta) to the copepod Acartia tonsa. Nat. Toxins 1994, 2, 222–227. [Google Scholar]
- Siddiqui, P.J.A.; Carpenter, E.J.; Bergman, B. Trichodesmium: Ultrastructure and protein localization. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; pp. 9–28. [Google Scholar]
- Carpenter, E.J.; Capone, D.G. Nitrogen fixation in Trichodesmium blooms. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; pp. 211–217. [Google Scholar]
- Bergman, B.; Sandh, G.; Lin, S.; Larsson, J.; Carpenter, E.J. Trichodesmium—A widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 2013, 37, 286–302. [Google Scholar] [CrossRef]
- Carpenter, E.J. Nitrogen fixation by marine Oscillatoria (Trichodesmium) in the world’s oceans. In Nitrogen in the Marine Environment; Carpenter, E.J., Capone, D.G., Eds.; Academic Press: Cambridge, MA, USA, 1983; pp. 65–103. [Google Scholar]
- Ani, C.J.; Smithers, S.G.; Lewis, S.; Baird, M.; Robson, B. eReefs modelling suggests Trichodesmium may be a major nitrogen source in the Great Barrier Reef. Estuar. Coast. Shelf Sci. 2023, 285, 108306. [Google Scholar] [CrossRef]
- Dugdale, R.C.; Goering, J.J. Uptake of new and regenerated forms of N in primary production. Limnol. Oceanogr. 1967, 21, 141–145. [Google Scholar]
- O’Neil, J.M.; Roman, M.R. Grazers and associate organisms of Trichodesmium. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; pp. 61–73. [Google Scholar]
- O’Neil, J.M.; Roman, M.R. Ingestion of the cyanobacterium Trichodesmium spp. by the pelagic harpacticoid copepods Macrosetella, Miracia and Oculosetella. Hydrobiologia 1994, 292-293, 235–240. [Google Scholar] [CrossRef]
- O’Neil, J.M. The colonial cyanobacterium Trichodesmium as a physical and nutritional substrate for the harpacticoid copepod Macrosetella gracilis. J. Plankt. Res. 1998, 20, 43–59. [Google Scholar] [CrossRef]
- O’Neil, J.M. Grazer interactions with nitrogen-fixing marine cyanobacteria: Adaptation for N-acquisition? Bull. Inst. Oceanogr. Monaco 1999, 19, 293–317. [Google Scholar]
- Holl, C.M.; Villareal, T.A.; Payne, C.D.; Clayton, T.D.; Hart, C.; Montoya, J.P. Trichodesmium in the western Gulf of Mexico: 15N2-fixation and natural abundance stable isotope evidence. Limnol. Oceanogr. 2007, 52, 2249–2259. [Google Scholar] [CrossRef]
- Conroy, B.J.; Steinberg, D.K.; Stukel, M.R.; Goes, J.I.; Coles, V.J. Meso- and microzooplankton grazing in the Amazon River plume and western tropical North Atlantic. Limnol. Oceanogr. 2016, 61, 825–840. [Google Scholar] [CrossRef]
- Conroy, B.J.; Steinberg, D.K.; Song, B.; Kalmbach, A.; Carpenter, E.J.; Foster, R.A. Mesozooplankton Graze on Cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic. Front. Microbiol. 2017, 8, 1436. [Google Scholar] [CrossRef] [PubMed]
- Glibert, P.M.; Bronk, D.A. Release of dissolved organic nitrogen by the marine diazotroph Trichodesmium spp. Appl. Environ. Microbiol. 1994, 60, 3996–4000. [Google Scholar] [CrossRef]
- Capone, D.G.; Ferrier, D.M.; Carpenter, E.J. Amino acid cycling in colonies of the planktonic cyanobacterium Trichodesmium thiebautii. Appl. Env. Microb. 1994, 60, 3989–3995. [Google Scholar] [CrossRef]
- Mulholland, M.R.; Capone, D.G. N2 fixation, N uptake and N metabolism in natural and cultured populations of Trichodesmium spp. Mar. Ecol. Prog. Ser. 1999, 188, 33–49. [Google Scholar] [CrossRef]
- Bronk, D.A.; Sanderson, M.P.; Mulholland, M.R.; Heil, C.A.; O’Neil, J.M. Organic and inorganic nitrogen uptake kinetics in field populations dominated by Karenia brevis. In Harmful Algae 2002; Steidinger, K., Vargo, G.A., Heil, C.A., Eds.; Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography and Intergovernmental Oceanographic Commission of UNESCO: St. Petersburg, FL, USA, 2004; pp. 80–82. [Google Scholar]
- Björnberg, T.K.S. Observations on the development and the biology of the Miracidae Dana (Copepods: Crustaceae). Bull. Mar. Sci. 1965, 15, 512–520. [Google Scholar]
- Roman, M.R. Ingestion of the blue-green algae Trichodesmium by the harpacticoid copepod Macrosetella gracilis. Limnol. Oceanogr. 1978, 23, 1245–1255. [Google Scholar] [CrossRef]
- Böttger-Schnack, R.; Schnack, D. Vertical distribution and population structure of Macrosetella gracilis (Copepoda: Harpacticoida) in the Red Sea in relation to the occurrence of Oscillatoria (Trichodesmium) spp. (Cyanobacteria). Mar. Ecol. Prog. Ser. 1989, 52, 27–31. [Google Scholar] [CrossRef]
- McKinnon, A.D.; Richardson, A.J.; Burford, M.A.; Furnas, M.J. Chapter 06: Vulnerability of Great Barrier Reef plankton to climate change. In Climate Change and the Great Barrier Reef: A Vulnerability Assessment; Johnson, J.E., Marshall, P.A., Eds.; Great Barrier Reef Marine Park Authority: Townsville, Australia, 2007; pp. 121–152. Available online: http://hdl.handle.net/11017/539 (accessed on 2 March 2024).
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2007, 14, 313–334. [Google Scholar]
- Hutchins, D.A.; Fu, F.X. Microorganisms and ocean global change. Nat. Microbiol. 2018, 2, 17508. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, D.A.; Capone, D.G. The ocean nitrogen cycle: New developments and global change. Nat. Rev. Microbiol. 2022, 20, 401–414. [Google Scholar] [CrossRef]
- Hutchins, D.A.; Tagliabue, A. Feedbacks between phytoplankton and nutrient cycles in a warming ocean. Nat. Geosci. 2024, 17, 495–502. [Google Scholar] [CrossRef]
- Haverkamp, D.; Steidinger, K.A.; Heil, C.A. HAB Monitoring and Databases: The Karenia brevis example. In Harmful Algae Management and Mitigation; Hall, S., Etheridge, S., Anderson, D., Kleindinst, J., Zhu, M., Zou, Y., Eds.; Asia-Pacific Economic Cooperation: Singapore, 2004; APEC Publication#204-MR-04.22004. [Google Scholar]
- Clesceri, L.S.; Greenberg, A.E.; Trussell, R.R. Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA: Washington, DC, USA, 1998. [Google Scholar]
- Bronk, D.A.; Lomas, M.W.; Glibert, P.M.; Schukert, K.J.; Sanderson, M.P. Total dissolved nitrogen analysis: Comparisons between the persulfate, UV and high temperature oxidation methods. Mar. Chem. 2000, 69, 163–178. [Google Scholar] [CrossRef]
- Utermöhl, H. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Theor. Angew. Limnol. 1958, 9, 1–38. [Google Scholar]
- Tomas, C.R. (Ed.) Identifying Marine Diatoms and Dinoflagellates; Academic Press: New York, NY, USA, 1996. [Google Scholar]
- Wood, E.F. Dinoflagellates in the Australian region. Mar. Freshwat. Res. 1954, 5, 171–352. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry; W.H. Freeman Publishing: New York, NY, USA, 1981; 561p. [Google Scholar]
- Roman, M.R.; Rublee, P.A. A method to determine in situ grazing rates on natural particle assemblages. Mar. Biol. 1981, 65, 303–309. [Google Scholar] [CrossRef]
- O’Neil, J.M.; Metzler, P.M.; Glibert, P.M. Ingestion of 15N2− labeled Trichodesmium spp. and ammonium regeneration by the harpacticoid copepod Macrosetella gracilis. Mar. Biol. 1996, 125, 89–96. [Google Scholar] [CrossRef]
- Heil, C.A.; Amin, S.A.; Glibert, P.M.; Hubbard, K.A.; Li, M.; Martinez-Martinez, J.; Weisberg, R.; Liu, Y.; Sun, Y. Termination patterns of Karenia brevis blooms in the eastern Gulf of Mexico. In Proceedings of the 19th International Conference on Harmful Algae, La Paz, Mexico, 10–15 October 2021; Band-Schmidt, C.J., Rodríguez-Gómez, C.F., Eds.; International Society for the Study of Harmful Algal Blooms: La Paz, Mexico, 2022. [Google Scholar] [CrossRef]
- Hawser, S.P.; O’Neil, J.M.; Roman, M.R.; Codd, G. AToxicity of blooms of cyanobacterium Trichodesmium to zooplankton. J. Appl. Phycol. 1992, 4, 79–86. [Google Scholar] [CrossRef]
- Negri, A.P.; Bunter, O.; Jones, B.; Llewellyn, L. Effects of the bloom-forming alga Trichodesmium erythraeum on the pearl oyster Pinctada maxima. Aquaculture 2004, 232, 91–102. [Google Scholar] [CrossRef]
- Preston, N.; Burford, M.; Stenzel, D. Effects of Trichodesmium spp. blooms on penaeid prawn larvae. Mar. Biol. 1998, 131, 671–679. [Google Scholar] [CrossRef]
- Bell, P.R.F.; Elemtri, I.; Uwins, P. Nitrogen fixation of Trichodesmium spp. in the Great Barrier Reef Lagoon-importance to the overall nitrogen budget. Mar. Ecol. Prog. Ser. 1999, 186, 119–126. [Google Scholar] [CrossRef]
- Bell, P.R.F. Analysis of satellite imagery using a simple algorithm supports evidence that Trichodesmium supplies a significant new nitrogen load to the GBR lagoon. Ambio 2021, 50, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Envir. Microb. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef]
- Paul, V.J. Global warming and cyanobacterial harmful algal blooms. Adv. Exp. Med. Biol. 2008, 619, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Wynne, T.; Stumpf, R.; Tomlinson, M.; Ransibrahmanakul, V.; Villareal, T. Detecting Karenia brevis blooms and algal resuspension in the Western Gulf of Mexico with Satellite Ocean Color Imagery. Harmful Algae 2005, 4, 992–1003. [Google Scholar] [CrossRef]
- Brand, L.E.; Compton, A. Long-term increase in Karenia brevis abundance along the Southwest Florida Coast. Harmful Algae 2007, 6, 232–252. [Google Scholar] [CrossRef] [PubMed]
- Soto, I.M.; Muller-Karger, F.E.; Hu, C.; Wolny, J. Characterization of Karenia brevis blooms on the West Florida Shelf using ocean color satellite imagery: Implications for bloom maintenance and evolution. J. App. Rem. Sens. 2016, 11, 012002. [Google Scholar] [CrossRef]
- Medina, M.; Huffaker, R.; Jawitz, J.W.; Muñoz-Carpena, R. Seasonal dynamics of terrestrially sourced nitrogen influenced Karenia brevis blooms off Florida’s southern Gulf Coast. Harmful Algae 2020, 98, 101900. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.; Kaplan, D.; Milbrandt, E.C.; Tomasko, D.; Huffaker, R.; Angelini, C. Nitrogen-enriched discharges from a highly managed watershed intensify red tide (Karenia brevis) blooms in southwest Florida. Sci. Tot. Envir. 2022, 827, 154149. [Google Scholar] [CrossRef] [PubMed]
- Mulholland, M.R.; Glibert, P.M.; Berg, G.M.; Van Heukelem, L.; Pantoja, S.; Lee, C. Extracellular amino acid oxidation by phytoplankton and cyanobacteria: A cross-ecosystem comparison. Aq. Microb. Ecol. 1998, 15, 141–152. [Google Scholar] [CrossRef]
- Glibert, P.M.; O’Neil, J.M. Dissolved organic nitrogen release and amino acid oxidase activity by Trichodesmium spp. Bull. Inst. Oceanogr. Monaco 1999, 19, 265–271. [Google Scholar]
- Hewson, I.; Govil, S.R.; Capone, D.G.; Carpenter, E.J.; Fuhrman, J.A. Evidence of Trichodesmium viral lysis and potential significance for biogeochemical cycling in the oligotrophic ocean. Aquat. Microb. Ecol. 2004, 36, 1–8. [Google Scholar] [CrossRef]
- Sellner, K.G. Trophodynamics of marine cyanobacteria blooms. In Marine pelagic cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; p. 75. [Google Scholar]
- Sheridan, C.C.; Steinberg, D.K.; Kling, G.W. The microbial and metazoan community associated with colonies of Trichodesmium spp.: A quantitative survey. J. Plank. Res. 2002, 24, 913–922. [Google Scholar]
- Calef, G.W.; Grice, G.D. Relationship between the blue-green alga Trichodesmium thiebautii and the copepod Macrosetella gracilis in the plankton off of South America. Ecology 1966, 47, 855–856. [Google Scholar] [CrossRef]
- Sandel, V.; Kiko, R.; Brandt, P.; Dengler, M.; Stemmann, L.; Vandromme, P.; Sommer, U.; Hauss, H. Nitrogen Fueling of the Pelagic Food Web of the Tropical Atlantic. PLoS ONE 2015, 10, e0131258. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; LaBarre, B.A.; Hewson, I. Characterization of Trichodesmium-associated viral communities in the eastern Gulf of Mexico. FEMS Microbiol Ecol. 2013, 84, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Vargo, G.A.; Heil, C.A.; Fanning, K.A.; Dixon, L.K.; Neely, M.B.; Lester, K.; Ault, D.; Murasko, S.; Havens, J.; Walsh, J.; et al. Nutrient availability in support of Karenia brevis blooms on the central West Florida Shelf: What keeps Karenia blooming? Cont. Shelf Res. 2008, 28, 73–98. [Google Scholar] [CrossRef]
- Walsh, B.M. Zooplankton Population Dynamics in Relation to the Red Tide Dinoflagellate Karenia brevis on the West Florida Shelf of the Gulf of Mexico. Master of Science Thesis, University of Maryland, College Park, MD, USA, 2012; 152p. [Google Scholar]
- Walsh, B.M.; O’Neil, J.M. Zooplankton community composition and copepod grazing on the West Florida Shelf in relation to blooms of Karenia brevis. Harmful Algae 2014, 38, 63–72. [Google Scholar] [CrossRef]
- Heil, C.A.; Dixon, L.K.; Hall, E.; Garrett, M.; Lenes, J.M.; O’Neil, J.M.; Walsh, B.M.; Bronk, D.A.; Killberg-Thoreson, L.; Hitchcock, G.L.; et al. Blooms of Karenia brevis (Davis) G. Hansen & Ø. Moestrup on the West Florida Shelf: Nutrient sources and potential management strategies based on a multi-year regional study. Harmful Algae 2014, 38, 127–140. [Google Scholar] [CrossRef]
- Walsby, A.E. The properties and buoyancy-providing role of gas-vacuoles in Trichodesmium Ehrenberg. Brit. Phycol. J. 1978, 13, 103–116. [Google Scholar] [CrossRef]
- Villareal, T.A.; Carpenter, E.J. Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microb. Ecol. 2003, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Steidinger, K.A.; Williams, J. Dinoflagellates. Memoirs of the Hourglass Cruises. Tech. Ser. Fla. Dep. Nat. Resour. Mar. Res. Lab. 1970, 2, 1–251. [Google Scholar]
- Pierce, R.H.; Henry, M.S. Harmful algal toxins of the Florida red tide (Karenia brevis): Natural chemical stressors in South Florida coastal ecosystems. Ecotoxicology 2008, 17, 623–631. [Google Scholar] [CrossRef]
- Reguera, B.; Riobó, P.; Rodríguez, F.; Díaz, P.A.; Pizarro, G.; Paz, B.; Franco, J.M.; Blanco, J. Dinophysis Toxins: Causative Organisms, Distribution and Fate in Shellfish. Mar. Drugs 2014, 12, 394–461. [Google Scholar] [CrossRef] [PubMed]
- Glibert, P.M. Margalef revisited: A new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 2016, 55, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Revelante, N.; Gilmartin, M. Dynamics of phytoplankton in the Great Barrier Reef Lagoon. J. Plankt. Res. 1982, 4, 47–76. [Google Scholar] [CrossRef]
- Revelante, N.; Williams, W.T.; Bunt, J.S. Temporal and spatial distribution of diatoms, dinoflagellates and Trichodesmium in waters of the Great Barrier Reef. J. Exper. Mar. Biol. Ecol. 1982, 63, 27–45. [Google Scholar] [CrossRef]
- Steidinger, K.A. Historical perspective on Karenia brevis red tide research in the Gulf of Mexico. Harmful Algae 2009, 8, 549–561. [Google Scholar] [CrossRef]
- Magaña, H.A.; Villareal, T.A. The effect of environmental factors on the growth rate of Karenia brevis (Davis) G. Hansen and Moestrup. Harmful Algae 2006, 5, 192–198. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Glibert, P.M.; Heil, C.A. MurKy waters: Modeling the succession from r to K strategists (diatoms to dinoflagellates) following a nutrient release from a mining facility in Florida. Limnol. Oceanogr. 2023, 68, 2288–2304. [Google Scholar] [CrossRef]
- Rahav, E.; Bar-Zeev, E. Sewage outburst triggers Trichodesmium bloom and enhance N2 fixation rates. Sci. Rep. 2017, 7, 43–67. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.B. Effect of Trichodesmium bloom on water quality in the Great Barrier Reef Lagoon. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; pp. 273–287. [Google Scholar]
- Lenes, J.M.; Darrow, B.P.; Cattrall, C.; Heil, C.A.; Callahan, M.; Vargo, G.A.; Byrne, R.H.; Prospero, J.M.; Bates, D.E.; Fanning, K.A.; et al. Iron fertilization and the Trichodesmium response on the West Florida shelf. Limnol. Oceanogr. 2001, 46, 1261–1277. [Google Scholar] [CrossRef]
- Chen, K.; Li, K.; Gao, P.; Wang, P.; Han, X.; Chen, Y.; Wang, X. Was dissolved nitrogen regime driving diatom to dinoflagellate shift in the Bohai Sea? Evidences from microcosm experiment and modeling reproduction. J. Geophys. Res. Biogeosciences 2001, 127, e2021JG006737. [Google Scholar] [CrossRef]
- Ramos, J.B.E.; Biswas, H.; Schulz, K.G.; LaRoche, J.; Riebesell, U. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Glob. Biogeochem Cycl. 2007, 21, mGB2028. [Google Scholar] [CrossRef]
- Shaw, G.R.; Garnett, C.M.; Moore, M.; Florian, P. The Predicted Impact of Climate Change on Toxic Algal (Cyanobacterial) Blooms and Toxin Production in Queensland. Environ. Health 2001, 1, 76–88. [Google Scholar]
Nutrient | Study Location | Outside Bloom (μM) | Inside Bloom (μM) | Enrichment Factor * | Reference |
---|---|---|---|---|---|
NH4+ | Heron Island, Australia | 1.40 (1.2) | 7.00 (2.4) | 4.9–>30 | This study |
St. Petersburg Beach, FL | 4.79 | 15.93 | 2.33 | This study | |
Pacific Ocean off Hawaii | <0.05 | 1.35 | >27.0 | Karl et al. [15] | |
Pacific Ocean off Hawaii | 0.23 | 1.40 | 6.30 | Karl et al. [15] | |
GBR lagoon, Australia | 0.22 | 0.09 | < 1.0 | Jones [117] | |
PO43− | Heron Island, Australia | 0.00–0.22 | 8.50 | >100 | This study |
St. Petersburg Beach, FL | 0.21 | 0.18 | 1.0 | This study | |
Pacific Ocean off Hawaii | 0.10 | 0.13 | 1.30 | Karl et al. [15] | |
Pacific Ocean off Hawaii | 0.13 | 0.13 | <1.0 | Karl et al. [15] | |
GBR lagoon, Australia | 0.19 | 0.26 | 1.40 | Jones [117] | |
DON | Heron Island, Australia | 6.9 (3.1) | 10.30 (3.5) | 1.5–>2.0 | This study |
St. Petersburg Beach, FL | 22.85 (2.04) | 36.91 (7.35) | 0.6 | This study | |
Pacific Ocean off Hawaii | 4.2 | 13 | 3.1 | Karl et al. [15] | |
Pacific Ocean off Hawaii | 5.0 | 10.5 | 2.1 | Karl et al. [15] | |
Eastern Gulf of Mexico | 5.0 | 20.0 | 3–4 | Lenes et al. [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Neil, J.M.; Heil, C.A.; Glibert, P.M.; Solomon, C.M.; Greenwood, J.; Greenwood, J.G. Plankton Community Changes and Nutrient Dynamics Associated with Blooms of the Pelagic Cyanobacterium Trichodesmium in the Gulf of Mexico and the Great Barrier Reef. Water 2024, 16, 1663. https://doi.org/10.3390/w16121663
O’Neil JM, Heil CA, Glibert PM, Solomon CM, Greenwood J, Greenwood JG. Plankton Community Changes and Nutrient Dynamics Associated with Blooms of the Pelagic Cyanobacterium Trichodesmium in the Gulf of Mexico and the Great Barrier Reef. Water. 2024; 16(12):1663. https://doi.org/10.3390/w16121663
Chicago/Turabian StyleO’Neil, Judith M., Cynthia A. Heil, Patricia M. Glibert, Caroline M. Solomon, Joan Greenwood, and Jack G. Greenwood. 2024. "Plankton Community Changes and Nutrient Dynamics Associated with Blooms of the Pelagic Cyanobacterium Trichodesmium in the Gulf of Mexico and the Great Barrier Reef" Water 16, no. 12: 1663. https://doi.org/10.3390/w16121663
APA StyleO’Neil, J. M., Heil, C. A., Glibert, P. M., Solomon, C. M., Greenwood, J., & Greenwood, J. G. (2024). Plankton Community Changes and Nutrient Dynamics Associated with Blooms of the Pelagic Cyanobacterium Trichodesmium in the Gulf of Mexico and the Great Barrier Reef. Water, 16(12), 1663. https://doi.org/10.3390/w16121663