Estimation of Pollution Export Coefficients of Tea Farms and Its Application in Watershed Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Flow Chart
2.2. Case Study: Jingualiao Watershed
2.3. Case Study: Tea Farm
2.4. ECM and SWMM
2.4.1. ECM for Nonpoint Source Pollution
2.4.2. SWMM
2.4.3. Statistical Indicators of Model Performance
3. Results and Discussion
3.1. ECM for Tea Farm and the Performance of Bioretention Cells (TPTM)
3.2. Simulation of Watershed Model (WPTM) and the Design of Watershed Management Goals
3.3. Application for Single Tea Farm Pollution Control
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, D.; Lai, Z.; Li, S.; Li, D.; Zhou, J. Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environ. Sci. Pollut. Res. 2021, 28, 47162–47181. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Chen, H.; Chen, Q.; Wu, H. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary. Mar. Pollut. Bull. 2014, 87, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Martins, I.S.; Kastner, T.; Plutzar, C.; Theurl, M.C.; Eisenmenger, N.; Huijbregts, M.A.; Wood, R.; Stadler, K.; Bruckner, M. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 2019, 3, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Nobre, R.L.G.; Caliman, A.; Cabral, C.R.; de Carvalho Araújo, F.; Guerin, J.; Dantas, F.d.C.C.; Quesado, L.B.; Venticinque, E.M.; Guariento, R.D.; Amado, A.M. Precipitation, landscape properties and land use interactively affect water quality of tropical freshwaters. Sci. Total Environ. 2020, 716, 137044. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Yang, C.; Hsieh, C.; Wu, C.; Kao, C. Evaluation of non-point source pollution and river water quality using a multimedia two-model system. J. Hydrol. 2011, 409, 583–595. [Google Scholar] [CrossRef]
- Xue, H.; Sayama, T.; Takara, K.; He, B.; Huang, G.; Duan, W. Non-point source pollution estimation in the Pingqiao River Basin, China, using a spatial hydrograph-separation approach. Hydrol. Sci. J. 2019, 64, 962–973. [Google Scholar] [CrossRef]
- Yang, B.; Huang, K.; Sun, D.; Zhang, Y. Mapping the scientific research on non-point source pollution: A bibliometric analysis. Environ. Sci. Pollut. Res. 2017, 24, 4352–4366. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhou, Z.; Zhao, Z.; Li, W.; Li, Q. Risk assessment of non-point source pollution in karst reservoirs based on ‘source–sink’landscape theory. Water Supply 2022, 22, 6094–6110. [Google Scholar] [CrossRef]
- Ouyang, W.; Wang, X.; Hao, F.; Srinivasan, R. Temporal-spatial dynamics of vegetation variation on non-point source nutrient pollution. Ecol. Model. 2009, 220, 2702–2713. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, T.; Mao, Y.; Wang, F.; Yu, J.; Zhu, C. Current Situation of Agricultural Non-Point Source Pollution and Its Control. Water Air Soil Pollut. 2023, 234, 471. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, Z.; Chen, L.; Hou, X. Quantifying effects of conservation practices on non-point source pollution in the Miyun Reservoir Watershed, China. Environ. Monit. Assess. 2019, 191, 582. [Google Scholar] [CrossRef]
- Chen, C.F.; Chong, K.Y.; Lin, J.Y. A combined catchment-reservoir water quality model to guide catchment management for reservoir water quality control. Water Environ. J. 2021, 35, 1025–1037. [Google Scholar] [CrossRef]
- Xu, A.; Lai, W.; Chen, P.; Awasthi, M.K.; Chen, X.; Wang, Y.; Xu, P. A comprehensive review on polysaccharide conjugates derived from tea leaves: Composition, structure, function and application. Trends Food Sci. Technol. 2021, 114, 83–99. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Bi, K.; He, Y.; Yan, W.; Yang, C.S.; Zhang, J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci. Technol. 2021, 114, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kato, T.; Tokuda, S. Environmental problems caused by heavy application of nitrogen fertilisers in Japanese tea fields. In Proceedings of the Land Degradation: Papers selected from Contributions to the Sixth Meeting of the International Geographical Union’s Commission on Land Degradation and Desertification, Perth, WA, Australia, 20–28 September 1999; Kluwer Academic Publishers: Dordrecht, The Netherland, 2001; pp. 141–150. [Google Scholar]
- Yan, P.; Shen, C.; Fan, L.; Li, X.; Zhang, L.; Zhang, L.; Han, W. Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil. Agric. Ecosyst. Environ. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Ruan, J.; Ma, L.; Shi, Y. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. J. Plant Nutr. Soil Sci. 2013, 176, 450–459. [Google Scholar] [CrossRef]
- Tokuda, S.-I.; Hayatsu, M. Nitrous oxide emission potential of 21 acidic tea field soils in Japan. Soil Sci. Plant Nutr. 2001, 47, 637–642. [Google Scholar] [CrossRef]
- Mabaya, G.; Unami, K.; Yoshioka, H.; Takeuchi, J.; Fujihara, M. Robust optimal diversion of agricultural drainage water from tea plantations to paddy fields during rice growing seasons and non-rice growing seasons. Paddy Water Environ. 2016, 14, 247–258. [Google Scholar] [CrossRef]
- Wang, W.; Xie, Y.; Bi, M.; Wang, X.; Lu, Y.; Fan, Z. Effects of best management practices on nitrogen load reduction in tea fields with different slope gradients using the SWAT model. Appl. Geogr. 2018, 90, 200–213. [Google Scholar] [CrossRef]
- Tong, X.; Zhou, Y.; Liu, J.; Qiu, P.; Shao, Y. Non-point source pollution loads estimation in Three Gorges Reservoir Area based on improved observation experiment and export coefficient model. Water Sci. Technol. 2022, 85, 27–38. [Google Scholar] [CrossRef]
- Wu, L.; Gao, J.; Ma, X.; Li, D. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions. Environ. Sci. Pollut. Res. 2015, 22, 10647–10660. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Sinshaw, T.; Forshay, K.J. Review of watershed-scale water quality and nonpoint source pollution models. Geosciences 2020, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, Y.; Pan, Y.; Yu, Z. Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control. Math. Comput. Model. 2013, 58, 588–595. [Google Scholar] [CrossRef]
- Lee, S.-B.; Yoon, C.-G.; Jung, K.W.; Hwang, H.S. Comparative evaluation of runoff and water quality using HSPF and SWMM. Water Sci. Technol. 2010, 62, 1401–1409. [Google Scholar] [CrossRef]
- Cai, Y.; Rong, Q.; Yang, Z.; Yue, W.; Tan, Q. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty. J. Hydrol. 2018, 557, 713–725. [Google Scholar] [CrossRef]
- Wang, W.; Chen, L.; Shen, Z. Dynamic export coefficient model for evaluating the effects of environmental changes on non-point source pollution. Sci. Total Environ. 2020, 747, 141164. [Google Scholar] [CrossRef] [PubMed]
- Johnes, P.J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach. J. Hydrol. 1996, 183, 323–349. [Google Scholar] [CrossRef]
- Meng, C.; Liu, H.; Wang, Y.; Shen, J.; Liu, F.; Xia, Y.; Li, Y.; Wu, J. Landscape pattern exhibits threshold-driven effect on nitrogen export of typical land use in subtropical hilly watershed under specific hydrological regimes. J. Clean. Prod. 2023, 419, 138322. [Google Scholar] [CrossRef]
- Xin, Z.; Ye, L.; Zhang, C. Application of export coefficient model and QUAL2K for water environmental management in a rural watershed. Sustainability 2019, 11, 6022. [Google Scholar] [CrossRef]
- Endreny, T.A.; Wood, E.F. Watershed weighting of export coefficients to map critical phosphorous loading areas. JAWRA J. Am. Water Resour. Assoc. 2003, 39, 165–181. [Google Scholar] [CrossRef]
- Lian, H.; Lei, Q.; Zhang, X.; Yen, H.; Wang, H.; Zhai, L.; Liu, H.; Huang, C., Jr.; Ren, T.; Zhou, J.; et al. Effects of anthropogenic activities on long-term changes of nitrogen budget in a plain river network region: A case study in the Taihu Basin. Sci. Total Environ. 2018, 645, 1212–1220. [Google Scholar]
- Guo, Y.; Wang, X.; Melching, C.; Nan, Z. Identification method and application of critical load contribution areas based on river retention effect. J. Environ. Manag. 2022, 305, 114314. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-C.; Huang, C.-L. The Widespread Setting and Effectiveness Evaluation of On-Site LID Facilities for Non-Point Source Pollution Reduction of Tea Farms in Taipei Water Source Domain in 2020; Taipei Water Management Office, Water Resources Agency: New Taipei City, Taiwan, 2020. (In Chinese)
- Ho, C.-C.; Chen, C.-F.; Lee, T.-Y. The Widespread Setting and Effectiveness Evaluation of On-Site LID Facilities for Non-Point Source Pollution Reduction of Tea Farms in Taipei Water Source Domain in 2021; Taipei Water Management Office, Water Resources Agency: New Taipei City, Taiwan, 2021. (In Chinese)
- Ho, C.-C.; Chen, C.-F.; Lee, T.-Y. The Widespread Setting and Effectiveness Evaluation of On-Site LID Facilities for Non-Point Source Pollution Reduction in Taipei Water Source Domain; Taipei Water Management Office, Water Resources Agency: New Taipei City, Taiwan, 2022. (In Chinese)
- Ho, C.-C.; Chen, C.-F.; Chiang, L.-C. NBS Strategy Analysis and Application Plan for Non-Point Source Pollution Reduction in Taipei Water Source Domain; Taipei Water Management Office, Water Resources Agency: New Taipei City, Taiwan, 2023. (In Chinese)
- Goh, H.W.; Lem, K.S.; Azizan, N.A.; Chang, C.K.; Talei, A.; Leow, C.S.; Zakaria, N.A. A review of bioretention components and nutrient removal under different climates—Future directions for tropics. Environ. Sci. Pollut. Res. 2019, 26, 14904–14919. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-C.; Lin, Y.-X. Pollutant Removal Efficiency of a Bioretention Cell with Enhanced Dephosphorization. Water 2022, 14, 396. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Laboratory study of biological retention for urban stormwater management. Water Environ. Res. 2001, 73, 5–14. [Google Scholar] [CrossRef]
- Beaulac, M.N.; Reckhow, K.H. An examination of land use-nutrient export relationships. JAWRA J. Am. Water Resour. Assoc. 1982, 18, 1013–1024. [Google Scholar] [CrossRef]
- Dillon, P.; Kirchner, W. The effects of geology and land use on the export of phosphorus from watersheds. Water Res. 1975, 9, 135–148. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model User’s Manual—Version 5.0, United States Environmental Protection Agency; Water Supply and Water Resources Division, National Risk Management Research Laboratory: Cincinnati, OH, USA, 2010. [Google Scholar]
- Zhang, K.; Chui, T.F.M.; Yang, Y. Simulating the hydrological performance of low impact development in shallow groundwater via a modified SWMM. J. Hydrol. 2018, 566, 313–331. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Kourtis, I.; Kopsiaftis, G.; Bellos, V.; Tsihrintzis, V. Calibration and validation of SWMM model in two urban catchments in Athens, Greece. In Proceedings of the International Conference on Environmental Science and Technology (CEST), Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Hou, L.; Zhou, Z.; Wang, R.; Li, J.; Dong, F.; Liu, J. Research on the non-point source pollution characteristics of important drinking water sources. Water 2022, 14, 211. [Google Scholar] [CrossRef]
- Reza, A.; Eum, J.; Jung, S.; Choi, Y.; Owen, J.S.; Kim, B. Export of non-point source suspended sediment, nitrogen, and phosphorus from sloping highland agricultural fields in the East Asian monsoon region. Environ. Monit. Assess. 2016, 188, 692. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Hu, B.; Xu, W.; Liu, J.; Zhang, P. The estimation of the load of non-point source nitrogen and phosphorus based on observation experiments and export coefficient method in Three Gorges Reservoir Area. Proc. IOP Conf. Ser. Earth Environ. Sci. 2017, 100, 012181. [Google Scholar] [CrossRef]
- Duan, M.; Du, X.; Peng, W.; Jiang, C.; Zhang, S.; Ding, Y. Quantitative assessment of background pollutants using a modified method in data-poor regions. Environ. Monit. Assess. 2020, 192, 160. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Z.; Mazumder, A. Estimating nitrogen exports in response to forest vegetation, age and soil types in two coastal-forested watersheds in British Columbia. For. Ecol. Manag. 2008, 255, 1945–1959. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, X.; Shi, Y.; Ma, J.; Zhao, Q. Analysis on Composition and Pattern of Agricultural Nonpoint Source Pollution in Liaohe River Basin, China. Procedia Environ. Sci. 2011, 8, 26–33. [Google Scholar] [CrossRef]
- Osman, M.; Wan Yusof, K.; Takaijudin, H.; Goh, H.W.; Abdul Malek, M.; Azizan, N.A.; Ab. Ghani, A.; Sa’id Abdurrasheed, A. A review of nitrogen removal for urban stormwater runoff in bioretention system. Sustainability 2019, 11, 5415. [Google Scholar] [CrossRef]
- Yu, S.L.; Kuo, J.-T.; Fassman, E.A.; Pan, H. Field test of grassed-swale performance in removing runoff pollution. J. Water Resour. Plan. Manag. 2001, 127, 168–171. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y.; Chen, L. Field performance of bioretention systems for runoff quantity regulation and pollutant removal. Water Air Soil Pollut. 2017, 228, 468. [Google Scholar] [CrossRef]
- Lucke, T.; Nichols, P.W. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Sci. Total Environ. 2015, 536, 784–792. [Google Scholar] [CrossRef]
Drainage Area | Area (ha) | Average Slope (%) |
---|---|---|
1 | 0.244 | 10 |
2 | 0.116 | 6.3 |
3 | 0.116 | 5 |
4 | 0.128 | 9 |
5 | 0.162 | 9 |
Total | 0.766 | - |
Pollutant | Storage Method | Testing Method | Testing Equipment |
---|---|---|---|
Total Phosphorus (TP) | Add sulfuric acid to adjust the water sample pH < 2, keep it in the dark, and store it at 4 °C. | Phosphorus detection method in water—spectrophotometer (National Environmental Research Academy, Taoyuan, Taiwan) | pH Meter (CLEAN Instruments Co., Ltd., Taipei, Taiwan), Heater, Spectrophotometer (HACH Co., Ltd, Ames, IA, USA) |
Ammonia Nitrogen (NH3-N) | Add sulfuric acid to adjust the water sample pH < 2, keep it in the dark, and store it at 4 °C. | HACH NH3-N reagent (HACH Co., Ltd.) | Spectrophotometer (HACH Co., Ltd.) |
Suspended Solid (SS) | In the dark, store at 4 °C | Method for Detecting Suspended Solids in Water—Drying at 103–105 °C (National Environmental Research Academy) | Glass Fiber Filter Paper (Pall Corporation Co., Ltd., New York, NY, USA), Vacuum Flask, Vacuum Pump (Rocker Scientific Co., Ltd., Taipei, Taiwan), Oven, Balance, Desiccator |
Chemical Oxygen Demand (COD) | Add sulfuric acid to adjust the water sample pH < 2, keep it in the dark, and store it at 4 °C. | HACH COD LR reagents (HACH Co., Ltd.) | COD Heater (Rocker Scientific Co., Ltd.), Spectrophotometer (HACH Co., Ltd.) |
Date | Measured Runoff Volume (m3) | Simulated Runoff Volume (m3) |
---|---|---|
6 December 2021 | 1.22 | 1.73 |
7 December 2021 | 0.41 | 0.32 |
29 March 2022 | 6.52 | 6.04 |
15 May 2022 | 1.91 | 2.69 |
16 May 2022 | 0.50 | 0.72 |
17 May 2022 | 3.31 | 4.03 |
26 May 2022 | 14.83 | 17.96 |
27 May 2022 | 16.52 | 12.10 |
31 May 2022 | 0.25 | 0.34 |
Pollutant | TP | NH3-N | SS | COD |
---|---|---|---|---|
Export Coefficients (kg/ha-y) | 2.55 | 4.22 | 768.39 | 145.71 |
Pollutant | TP | NH3-N | SS | COD |
---|---|---|---|---|
The pollution reduction resulted from per area of bioretention cell. (g/m2-y) | 18.6 | 20.9 | 5545.5 | 881.4 |
Year | Water Quality Attainment Rate |
---|---|
2015 | 77.47% |
2016 | 73.69% |
2017 | 77.34% |
2018 | 75.27% |
2019 | 77.76% |
2020 | 79.78% |
2021 | 80.40% |
Average | 77.39% |
Water Quality Goals | Annual TP Loads (kg/y) | Required TP Reduction (kg/y) | Reducing Pollutant Load in Tea Farm (kg/ha) | Required Bioretention Cell Area (m2) |
---|---|---|---|---|
Current | 700.4 | - | - | |
85% | 665.6 | 34.85 | 0.369 | 540 |
90% | 656.7 | 43.75 | 0.417 | 715 |
Tea Farms | Area (ha) | Average Slope (%) | Required TP Reduction (kg/y) | Required Bioretention Cell Area (m2) | ||
---|---|---|---|---|---|---|
Short-Term Goals (Attainment Rate 85%) | Long-Term Goals (Attainment Rate 90%) | Short-Term Goals (Attainment Rate 85%) | Long-Term Goals (Attainment Rate 90%) | |||
1 | 0.11 | 35.74 | 0.041 | 0.046 | 2.5 | 2.5 |
2 | 0.33 | 39.08 | 0.122 | 0.138 | 7.0 | 8.0 |
3 | 0.26 | 16.61 | 0.096 | 0.108 | 5.5 | 6.0 |
4 | 0.73 | 9.04 | 0.269 | 0.304 | 15.0 | 17.0 |
Total | 1.43 | - | 0.528 | 0.596 | 30.0 | 33.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-C.; Su, Y.-Q.; Chen, C.-F.; Lin, Y.-X.; Liu, H.-F. Estimation of Pollution Export Coefficients of Tea Farms and Its Application in Watershed Management. Water 2024, 16, 1603. https://doi.org/10.3390/w16111603
Ho C-C, Su Y-Q, Chen C-F, Lin Y-X, Liu H-F. Estimation of Pollution Export Coefficients of Tea Farms and Its Application in Watershed Management. Water. 2024; 16(11):1603. https://doi.org/10.3390/w16111603
Chicago/Turabian StyleHo, Chia-Chun, Yu-Qian Su, Chi-Feng Chen, Yi-Xuan Lin, and Hsiu-Feng Liu. 2024. "Estimation of Pollution Export Coefficients of Tea Farms and Its Application in Watershed Management" Water 16, no. 11: 1603. https://doi.org/10.3390/w16111603
APA StyleHo, C. -C., Su, Y. -Q., Chen, C. -F., Lin, Y. -X., & Liu, H. -F. (2024). Estimation of Pollution Export Coefficients of Tea Farms and Its Application in Watershed Management. Water, 16(11), 1603. https://doi.org/10.3390/w16111603