Experimental Study on the Sloshing of a Rectangular Tank under Pitch Excitations
Abstract
:1. Introduction
2. Model Test System
2.1. Test Setup
2.2. Test Cases
3. Test Results and Analysis
3.1. Sloshing Pressures
3.2. Waveform Characteristics of Sloshing
3.2.1. Sloshing at a Liquid Carrying Rate of 20%
3.2.2. Sloshing at a Liquid Carrying Rate of 30%
3.2.3. Sloshing at a Liquid Carrying Rate of 70%
3.3. Frequency Response of Sloshing Pressure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faltinsen, O.M.; Timokha, A.N. Sloshing; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Faltinsen, O.M.; Rognebakke, O.F.; Timokha, A.N. Transient and steady-state amplitudes of resonant three-dimensional sloshing in a square base tank with a finite fluid depth. Phys. Fluids 2006, 18, 012103. [Google Scholar] [CrossRef]
- Wei, Z.J.; Yue, Q.J.; Ruan, S.L. An experimental investigation of liquid sloshing impact pressure in a rectangular tank. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Rhodes, Greece, 17–22 June 2012; Volume I, p. ISOPE-I-12-534. [Google Scholar]
- Jiang, M.; Ren, B.; Wang, G.; Wang, Y. Laboratory investigation of the hydroelastic effect on liquid sloshing in rectangular tanks. J. Hydrodyn. 2014, 26, 751–761. [Google Scholar] [CrossRef]
- Bulian, G.; Botia-Vera, E.; Souto-Iglesias, A. Experimental sloshing pressure impacts in ensemble domain: Transient and stationary statistical characteristics. Phys. Fluids 2014, 26, 032102. [Google Scholar] [CrossRef]
- Delorme, L. Sloshing Flows: Experimental Investigation and Numerical Simulations with Smoothed Particle Hydrodynamics. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2008. [Google Scholar]
- Saltari, F.; Pizzoli, M.; Coppotelli, G.; Gambioli, F.; Cooper, J.E.; Mastroddi, F. Experimental characterisation of sloshing tank dissipative behaviour in vertical harmonic excitation. J. Fluid. Struct. 2022, 109, 103478. [Google Scholar] [CrossRef]
- Qiu, Y.; Bai, M.; Liu, Y.; Lei, G.; Liu, Z. Effect of liquid filling level on sloshing hydrodynamic characteristic under the first natural frequency. J. Energy Storage 2022, 55, 105452. [Google Scholar] [CrossRef]
- Lin, X.; Xu, L.; Liu, Y.C.; Fan, C.M. An efficient localized Trefftz method for the simulation of two-dimensional sloshing behaviors. Ocean Eng. 2024, 299, 117414. [Google Scholar] [CrossRef]
- Bardazzi, A.; Lugni, C.; Faltinsen, O.M.; Durante, D.; Colagrossi, A. Different scenarios in sloshing flows near the critical filling depth. J. Fluid. Mech. 2024, 984, A73. [Google Scholar] [CrossRef]
- Luo, M.; Wang, X.; Jin, X.; Yan, B. Three-dimensional sloshing in a scaled membrane LNG tank under combined roll and pitch excitations. Ocean Eng. 2020, 211, 107578. [Google Scholar] [CrossRef]
- Olsen, H.A.; Johnsen, K. Nonlinear Sloshing in Rectangular Tank: A Pilot Study on the Applicability of Analytical Models; Report 74-72-S; Det Norske Veritas: Hovik, Norway, 1975; Volume 2. [Google Scholar]
- Gurusamy, S.; Kumar, D. Experimental study on nonlinear sloshing frequency in shallow water tanks under the effects of excitation amplitude and dispersion parameter. Ocean Eng. 2020, 213, 107761. [Google Scholar] [CrossRef]
- Ibrahim, R.A. Assessment of breaking waves and liquid sloshing impact. Nonlinear Dynam. 2020, 100, 1837–1925. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Y.; Guan, G.; Yu, Y. A numerical technique for sloshing in an independent type C LNG tank with experimental investigation and validation. Int. Shipbuild Prog. 2017, 64, 79–100. [Google Scholar] [CrossRef]
- KIM, H.I.; Kwon, S.H.; Park, J.S.; Lee, K.H.; Jeon, S.S.; Jung, J.H.; Ryu, M.C.; Hwang, Y.S. An experimental investigation of hydrodynamic impact on 2-D LNGC models. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Osaka, Japan, 21–26 July 2009; Volume I, p. ISOPE-I-09-539. [Google Scholar]
- Bunnik, T.; Huijsmans, R. Large scale LNG sloshing model tests. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Lisbon, Portugal, 1–6 July 2007; Volume I, p. ISOPE-I-07-338. [Google Scholar]
- Luo, D.; Liu, C.; Sun, J.; Cui, L.; Wang, Z. Sloshing effect analysis of liquid storage tank under seismic excitation. Structures 2022, 43, 40–58. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, J.; Hu, Z. Effects of sloshing on the global motion responses of FLNG. Ships Offshore Struct. 2013, 8, 111–122. [Google Scholar] [CrossRef]
- Faltinsen, O.M. A Nonlinear Theory of Sloshing in Rectangular Tanks. J. Ship Res. 1974, 18, 224–241. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Pilipchuk, V.N.; Ikeda, T. Recent Advances in Liquid Sloshing Dynamics. Appl. Mech. Rev. 2001, 54, 133–199. [Google Scholar] [CrossRef]
- Chen, Y.; Xue, M.A. Numerical Simulation of Liquid Sloshing with Different Filling Levels Using OpenFOAM and Experimental Validation. Water 2018, 10, 1752. [Google Scholar] [CrossRef]
- Faltinsen, O.M. Sloshing. Adv. Mech. 2017, 47, 1–24. [Google Scholar]
- Lugni, C.; Brocchini, M.; Faltinsen, O.M. Wave impact pressures: The role of the flip-through. Phys. Fluids 2006, 18, 122101. [Google Scholar] [CrossRef]
- Faltinsen, O.M. Hydrodynamics of High-Speed Marine Vehicles; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Jin, X.; Tang, J.; Tang, X.; Mi, S.; Wu, J.; Liu, M.; Huang, Z. Effect of viscosity on sloshing in a rectangular tank with intermediate liquid depth. Exp. Therm. Fluid Sci. 2020, 118, 110148. [Google Scholar] [CrossRef]
- Zhang, C.; Ning, D.; Teng, B. Secondary resonance of liquid sloshing in square-base tanks undergoing the circular orbit motion. Eur. J. Mech. B-Fluid. 2018, 72, 235–250. [Google Scholar] [CrossRef]
Liquid-Carrying Rate | Theoretical Frequency (Hz) | Measured Frequency (Hz) | Error Δ (%) |
---|---|---|---|
20%H | 0.659 | 0.657 | 0.3 |
30%H | 0.758 | 0.754 | 0.5 |
70%H | 0.872 | 0.869 | 0.3 |
Case | Liquid-Carrying Rate h | Amplitude A (°) | Frequency f (Hz) | Sampling Time t (s) |
---|---|---|---|---|
Equal amplitude pitch | 20%H | 2 | 0.53, 0.59, 0.66 (f1), 0.73, 0.79 | 400 |
30%H | 2 | 0.61, 0.68, 0.76 (f1), 0.84, 0.91 | ||
70%H | 2 | 0.70, 0.78, 0.87 (f1), 0.96, 1.04 | ||
Variable amplitude pitch | 20%H | 1, 2, 3 | 0.66 | |
30%H | 1, 2, 3 | 0.76 | ||
70%H | 1, 2, 3 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Li, X.; Peng, P.; Zhou, Z.; Gao, Z. Experimental Study on the Sloshing of a Rectangular Tank under Pitch Excitations. Water 2024, 16, 1551. https://doi.org/10.3390/w16111551
Liu K, Li X, Peng P, Zhou Z, Gao Z. Experimental Study on the Sloshing of a Rectangular Tank under Pitch Excitations. Water. 2024; 16(11):1551. https://doi.org/10.3390/w16111551
Chicago/Turabian StyleLiu, Kun, Xianshu Li, Peng Peng, Zefeng Zhou, and Zhenguo Gao. 2024. "Experimental Study on the Sloshing of a Rectangular Tank under Pitch Excitations" Water 16, no. 11: 1551. https://doi.org/10.3390/w16111551
APA StyleLiu, K., Li, X., Peng, P., Zhou, Z., & Gao, Z. (2024). Experimental Study on the Sloshing of a Rectangular Tank under Pitch Excitations. Water, 16(11), 1551. https://doi.org/10.3390/w16111551