The Relationship between Reference Crop Evapotranspiration Change Characteristics and Meteorological Factors in Typical Areas of the Middle of the Dry-Hot Valley of Jinsha River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Potential Evapotranspiration Calculation
2.3.2. Climate Propensity Rate and ET0 Propensity Rate
2.3.3. Principal Component Analysis
2.3.4. Grey Relational Degree Analysis
2.3.5. Path Analysis
2.3.6. Sensitivity Analysis
2.3.7. Contribution Rate Analysis
3. Results
3.1. Analysis of PET Changes
3.2. Principal Component Analysis of Meteorological Factors
3.3. Cluster Analysis and Gray Correlation Analysis of Meteorological Factor Systems
3.4. Flux Analysis of ET0 by Meteorological Factors
3.5. Analysis of the Contribution of Meteorological Factors to Changes in ET0 and Sensitivity of ET0 to Changes in Meteorological Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, H.; Tang, J.; Olin, S.; Miller, P. A comprehensive evaluation of hydrological processes in a second-generation dynamic vegetation model. Hydrol. Process. 2024, 38, e15152. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Wang, X.; Lu, R.; Liu, L. A review of water movement process in SPAC in the semi-arid and arid regions based on stable isotopes. Sheng T’ai Hsueh Pao Acta Ecol. Sin. 2024, 44, 1360–1373. [Google Scholar]
- Liu, W.; Zhang, B.; Wei, Z. Heterogeneity analysis of main driving factors affecting potential evapotranspiration changes across different climate regions. Sci. Total Environ. 2024, 912, 168991. [Google Scholar] [CrossRef]
- Proutsos, N.D.; Tsiros, I.X.; Nastos, P.; Alexandros, T. A note on some uncertainties associated with Thornthwaite’s aridity index introduced by using different potential evapotranspiration methods. Atmos. Res. 2021, 260, 105727. [Google Scholar] [CrossRef]
- Dong, J.; Xing, L.; Cui, N.; Zhao, L.; Guo, L.; Wang, Z.; Du, T.; Tan, M.; Gong, D. Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China. Agric. Water Manag. 2024, 292, 108665. [Google Scholar] [CrossRef]
- Tegos, A.; Stefanidis, S.; Cody, J.; Koutsoyiannis, D. On the Sensitivity of Standardized-Precipitation-Evapotranspiration and Aridity Indexes Using Alternative Potential Evapotranspiration Models. Hydrology 2023, 10, 64. [Google Scholar] [CrossRef]
- Bidabadi, M.; Babazadeh, H.; Shiri, J.; Saremi, A. Estimation reference crop evapotranspiration (ET0) using artificial intelligence model in an arid climate with external data. Appl. Water Sci. 2024, 14, 3. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D5109. [Google Scholar]
- Lagos, L.O.; Souto, C.; Lillo-Saavedra, M.; Pérez, A.; Hirzel, J.; Kuschel-Otárola, M.; Holzapfel, E.; Scaff, L. Daily crop evapotranspiration and diurnal dynamics of the surface energy balance of a drip-irrigated blueberry (Vaccinium corymbosum) orchard. Irrig. Sci. 2024, 42, 1–13. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: The Physical Science Basis, Contribution of Working. 2022. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FrontMatter.pdf (accessed on 30 March 2024).
- Yao, N.; Jiang, K.; Xie, W.; Zhang, D.; Yang, X.; Yu, Q. Temporal and Spatial Evolution of Drought Disasters in ShanXi Province under Background of Climate Change. Trans. Chin. Soc. Agric. Mach. 2023, 55, 270–281. [Google Scholar]
- Ippolito, M.; Caro, D.; Cannarozzo, M.; Provenzano, G.; Ciraolo, G. Evaluation of daily crop reference evapotranspiration and sensitivity analysis of FAO Penman-Monteith equation using ERA5-Land reanalysis database in Sicily, Italy. Agric. Water Manag. 2024, 295, 108732. [Google Scholar] [CrossRef]
- Abedi-Koupai, J.; Dorafshan, M.; Javadi, A.; Ostad-Ali-Askari, K. Estimating potential reference evapotranspiration using time series models (case study: Synoptic station of Tabriz in northwestern Iran). Appl. Water Sci. 2022, 12, 212. [Google Scholar] [CrossRef]
- Lv, X.; Wang, X. Analysis on spatial-temporal variation of potential evapotranspiration and its influencincfactors in Hubei Province. J. Cent. China Norm. Univ. (Nat. Sci.) 2016, 50, 764–769. [Google Scholar]
- Yan, Y.; Huang, K.; Hu, B.; Wang, S.; Huang, Y. Spatial and temporal variations of reference evapotranspiration and its influencing factors inGuangxi Xiiang River Basin from 1965 to 2018. Chin. J. Ecol. 2020, 39, 1676–1684. [Google Scholar]
- Ma, L.; Niu, Z.; Sun, D. Relationship between changes in spatial and temporal patterns of potential evapotranspiration and meteorological factors in Hexi Corridor. Arid Land Geogr. 2010, 47, 192–202. [Google Scholar]
- Liu, F.; Li, K.; Sun, Y.; Tang, G.; Zhang, C. Effects of climate on vegetaion recovery in Dry-hot Valleys of hengduan moutainous region in southwest China. Resour. Environ. Yangtze Basin 2010, 19, 1386–1391. [Google Scholar]
- Niu, J.; Wang, J.; Peng, J.; Wang, Y.; Hao, L. Change of Potential Evapotranspiration and Its Affecting Factors in Desert-oasis Zone. Arid Zone Res. 2016, 33, 766–772. [Google Scholar]
- Yin, X.; Wei, L.; Zhen, W. Simulation of the relationship between bare-ground submersible evaporation and meteorological elements based on principal component analysis. J. China Hydrol. 2020, 40, 7–13+39. [Google Scholar]
- Sun, J.; Ruan, B.; Jiang, R.; Xu, F. Analysis of grey relation degree of reference crops evapo-transpiration andmeteorological variables in Qingtongxia Irrigation Area. J. China Inst. Water Resour. Hydropower Res. 2006, 3, 232–235. [Google Scholar]
- Yin, Y.; Liu, X. Path analysis and its application. Stat. Educ. 2006, 2, 24–26. [Google Scholar]
- McCuen, R.H. A sensitivity and error analysis of procedures used for estimating evaporation. Water Resour. Bull. 1979, 416, 486–498. [Google Scholar]
- Yun, H.; Wu, S.; Chen, G.; Dai, E. Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theor. Appl. Climatol. 2010, 101, 19–28. [Google Scholar] [CrossRef]
- Niu, J.; Yang, W.; Wang, J.; Chi, C.; Wu, J.; Zhang, S. Analysis of Change Characteristics and Mutation on Climate in the Main Stream of Tarim River. J. Irrig. Drain. 2017, 36, 106–112. [Google Scholar]
- Ma, Y.; Sun, D.; Zhang, R.; Xu, J.; Wang, X. Driving Factors of Temporal and Spatial Variation of Reference Crop Evapotranspiration in Gansu Province. Chin. J. Agrometeorol. 2022, 43, 881–892. [Google Scholar]
- Ma, Y.; Niu, Z.; Zhang, R.; Sun, D.; Chen, J.; Bai, Z. Temporal and Spatial Evolution and Driving Factors of Potential Evapotranspiration in Shule River Basin. Res. Soil Water Conserv. 2022, 29, 350–357. [Google Scholar]
- Yuan, H.; Juncang, P.; Juan, L.; Yang, F.; Fang, Y.; Cao, Y.; Wang, Y.; Li, X.; Wang, Y.; Deng, B.; et al. GC/MS fingerprinting with hierarchical cluster analysis to determine components in breakable capsules in cigarette filter. Tob. Sci. Technol. 2018, 51, 54–60. [Google Scholar]
- Liu, Q.; Wu, Z.; Cui, N.; Zhu, S.; Zhen, S. Spatial-temporal distribution characteristics and attribution analysis of reference cropevapotranspiration in Yunnan-Kweichow Plateau. J. Drain. Irrig. Mach. Eng. 2022, 40, 302–310. [Google Scholar]
- Zhang, G.; Zhang, D.; Zhao, Y.; Tian, G.; Wei, A. Change of dry and wet surface conditions in Shanxi region under the background of climate warming. Arid Land Geogr. 2020, 43, 281–289. [Google Scholar]
- Ji, X.; Ma, Q.; Yang, S.; Wang, Z. Analysis of potential evapotranspiration variation in Cele County, Xinjiang in the past 56 years. Southwest China J. Agric. Sci. 2019, 32, 416–421. [Google Scholar]
- Zhai, Q.; Ao, X.; Sun, B.; Wang, B. Changes of potential evapotranspiration and ecological water demand in Liaoning Province from 1981 to 2010. Chin. Agric. Sci. Bull. 2014, 30, 228–235. [Google Scholar]
- Feng, Y.; Cui, N.; Wei, X.; Zhao, L.; Wang, J. Temporal-spatial distribution characteristics and causes analysis of reference cropevapotranspiration in hilly area of central Sichuan. J. Nat. Res. 2014, 30, 78–86+339. [Google Scholar]
- Ni, N.; Li, G.; Cui, N.; Jiang, S.; Tang, Q.; Liu, S.; Liao, G.; Wang, L. Sensitivity analysis of reference crop evapotranspiration in recent 56 years in Southwestern China. Jiangsu Agri. Sci. 2019, 47, 298–305. [Google Scholar]
- Wang, X.; Li, Z.; Zhao, C.; Zhang, Z. Spatiotemporal variations of the reference crop evapotranspiration in the arid region of northwest China during 1961–2011. J. Ecol. 2014, 34, 5609–5616. [Google Scholar]
- Wang, Z.; Wang, W.; Li, J. A review of the advances in water source composition and observation methods of evapotranspiration. Hydrol. Eng. Geol. 2021, 48, 1–9. [Google Scholar]
Station | Maximum Value/mm | Minimum Value/mm | Maximum Year/Year | Minimum Year/Year | Mean ± Standard Deviation/mm | Coefficient of Variation (CV) | Inclination Rate/mm.(10a)−1 | Mann–Kendall Z Value | Variation Trend | Correlation/r |
---|---|---|---|---|---|---|---|---|---|---|
Whole region | 1681.433 | 1337.500 | 2012 | 1990 | 1495.522 ± 88.749 | 5.934% | 38.336 | 2.11 | ↑ | 0.405 * |
Panzhihua | 1604.900 | 1279.200 | 2019 | 2002 | 1462.731 ± 85.135 | 5.820% | 47.696 | 3.28 | ↑ | 0.526 ** |
Yuanmou | 1905.300 | 1397.700 | 2012 | 2008 | 1608.128 ± 113.026 | 7.030% | 16.257 | 2.56 | ↑ | 0.135 * |
Huaping | 1594.000 | 1268.200 | 2004 | 1990 | 1415.706 ± 92.551 | 6.537% | 51.055 | 2.82 | ↑ | 0.517 ** |
Component | Kaiser-Meyer-Olkin (KMO) Value | p-Value | Eigenvalue | Variance Explained Rate | Tmean | Tmin | Tmax | n | RH | u |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.744 | 0.001 | 4.205 | 70.09% | 0.962 | 0.875 | 0.955 | 0.663 | −0.855 | 0.656 |
2 | 0.872 | 14.53% | 0.098 | 0.002 | 0.172 | 0.566 | 0.215 | −0.682 | ||
3 | 0.621 | 10.36% | 0.22 | 0.443 | 0.079 | −0.483 | 0.296 | −0.222 |
Relevance Results | Evaluation Unit | Tmean | Tmax | Tmin | n | u | RH |
relatedness | 0.809 | 0.804 | 0.793 | 0.779 | 0.714 | 0.643 | |
rankings | 1 | 2 | 3 | 4 | 5 | 6 | |
cluster analysis | Ⅰ | Ⅰ | Ⅰ | II | III | IV |
Meteorological Factor | Path Coefficient | Indirect Passage Coefficient | Correlation Coefficient | ||||
---|---|---|---|---|---|---|---|
RH | n | Tmean | u | ∑ | |||
RH | −0.294 | 0.178 | 0.508 | 0.155 | 0.841 | −0.686 ** | |
n | 0.226 | 0.191 | −0.095 | 0.153 | 0.249 | 0.589 ** | |
Tmean | 0.680 | 0.141 | 0.138 | 0.068 | 0.347 | 0.747 ** | |
u | 0.303 | 0.199 | 0.092 | 0.211 | 0.502 | 0.689 ** |
Meteorological Factor | Whole Region | Huaping | Panzhihua | Yuanmou | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensitivity Factor | Multi-Year Linear Change Rate/% | Contribution Rate/% | Sensitivity Factor | Multi-Year Linear Change Rate/% | Contribution Rate/% | Sensitivity Factor | Multi-Year Linear Change Rate/% | Contribution Rate/% | Sensitivity Factor | Multi-Year Linear Change Rate/% | Contribution Rate/% | |
Tmean | 0.512 | 5.820 | 2.981 | 0.485 | 6.248 | 3.027 | 0.460 | 4.148 | 1.907 | 0.551 | 7.024 | 3.869 |
n | 0.100 | 4.872 | 0.488 | 0.097 | 6.117 | 0.593 | 0.101 | 6.231 | 0.630 | 0.097 | 2.215 | 0.216 |
RH | −0.413 | −9.999 | 4.126 | −0.466 | −12.089 | 5.630 | −0.309 | −12.525 | 3.870 | −0.402 | −5.344 | 2.148 |
u | 0.257 | 21.475 | 5.519 | 0.233 | 26.076 | 6.086 | 0.233 | 36.312 | 8.468 | 0.265 | 6.814 | 1.808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Sun, Y.; Tang, G.; He, Z.; Peng, L.; Qi, D.; Ou, Z. The Relationship between Reference Crop Evapotranspiration Change Characteristics and Meteorological Factors in Typical Areas of the Middle of the Dry-Hot Valley of Jinsha River. Water 2024, 16, 1512. https://doi.org/10.3390/w16111512
Luo Z, Sun Y, Tang G, He Z, Peng L, Qi D, Ou Z. The Relationship between Reference Crop Evapotranspiration Change Characteristics and Meteorological Factors in Typical Areas of the Middle of the Dry-Hot Valley of Jinsha River. Water. 2024; 16(11):1512. https://doi.org/10.3390/w16111512
Chicago/Turabian StyleLuo, Zhifeng, Yongyu Sun, Guoyong Tang, Zhenmin He, Lingxiao Peng, Danhui Qi, and Zhaorong Ou. 2024. "The Relationship between Reference Crop Evapotranspiration Change Characteristics and Meteorological Factors in Typical Areas of the Middle of the Dry-Hot Valley of Jinsha River" Water 16, no. 11: 1512. https://doi.org/10.3390/w16111512
APA StyleLuo, Z., Sun, Y., Tang, G., He, Z., Peng, L., Qi, D., & Ou, Z. (2024). The Relationship between Reference Crop Evapotranspiration Change Characteristics and Meteorological Factors in Typical Areas of the Middle of the Dry-Hot Valley of Jinsha River. Water, 16(11), 1512. https://doi.org/10.3390/w16111512