Mapping of Groundwater Recharge Zones in Hard Rock Aquifer through Analytic Hierarchy Process in Geospatial Platform
Abstract
:1. Introduction
2. Study Area
3. Methodology
The Analytic Hierarchy Process (AHP)
(DDw × DDwi) + (Sw × Swi) + (SLw × SLwi) + (RFw × RFwi) + (LULCw × LULCwi)
4. Result and Discussion
4.1. Geology
4.2. Geomorphology
4.3. Aquifer Thickness and Unsaturated Zone Thickness
4.4. Lineament and Lineament Density
4.5. Drainage Density
4.6. Soils
4.7. Slope Gradient
4.8. Rainfall
4.9. Land Use and Land Cover
4.10. Discussion
4.11. Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vasudevan, U.; Ganesh, N.; Chidambaram, S.; Panda, B.; Nepolian, M.; Devaraj, N.; Pradeep, K.; Paramaguru, P. Spatial Interpolation Techniques for the Determination of Utility of Groundwater in Perambalur District, Tamilnadu, India. Int. J. Appl. Res. 2017, 39, 330–340. [Google Scholar]
- Nepolian, M.; Chidambaram, S.; Thivya, C.; Paramaguru, P.; Pradeep, K.; Banaja Rani Panda, D.N.; Vasudevan, U. Assessment of Hydrogeochemical and Quality Studies in Groundwater of Villupuram District, Tamilnadu, India. BDL 2016, 116, 10–95. [Google Scholar]
- Senthilkumar, M.; Gnanasundar, D.; Arumugam, R. Identifying Groundwater Recharge Zones Using Remote Sensing & GIS Techniques in Amaravathi Aquifer System, Tamil Nadu, South India. Sustain. Environ. Res. 2019, 29, 1–9. [Google Scholar]
- Kamaraj, P.; Sabarathinam, C.; Haji, M.; Choudhury, P.; Abdelpahman, A.I.; Missionnaire, M. An Integrated Approach to Evaluate the Status of the Coastal Aquifer near the Mouth of Coleroon River, Tamil Nadu. In Groundwater Contamination in Coastal Aquifers; Elsevier: Amsterdam, The Netherlands, 2022; pp. 105–118. [Google Scholar]
- Kamaraj, P.; Jothimani, M.; Panda, B.; Sabarathinam, C. Mapping of Groundwater Potential Zones by Integrating Remote Sensing, Geophysics, GIS, and AHP in a Hard Rock Terrain. Urban. Clim. 2023, 51, 101610. [Google Scholar] [CrossRef]
- Panda, B.; Sabarathinam, C.; Nagappan, G.; Rajendiran, T.; Kamaraj, P. Multiple Thematic Spatial Integration Technique to Identify the Groundwater Recharge Potential Zones—A Case Study along the Courtallam Region, Tamil Nadu, India. Arab. J. Geosci. 2020, 13, 1284. [Google Scholar] [CrossRef]
- Keesari, T.; Sinha, U.K.; Kamaraj, P.; Sharma, D.A. Groundwater Quality in a Semi-Arid Region of India: Suitability for Drinking, Agriculture and Fluoride Exposure Risk. J. Earth Syst. Sci. 2019, 128, 24. [Google Scholar] [CrossRef]
- Amwele, H.R.; Kgabi, N.A.; Kandjibi, L.I. Sustainability of Groundwater for Irrigation Purposes in Semi-Arid Parts of Namibia. Front. Water 2021, 3, 767496. [Google Scholar] [CrossRef]
- Akbar, H.; Nilsalab, P.; Silalertruksa, T.; Gheewala, S.H. Comprehensive Review of Groundwater Scarcity, Stress and Sustainability Index-Based Assessment. Groundw. Sustain. Dev. 2022, 18, 100782. [Google Scholar] [CrossRef]
- Vanham, D.; Hoekstra, A.Y.; Wada, Y.; Bouraoui, F.; de Roo, A.; Mekonnen, M.M.; Van De Bund, W.J.; Batelaan, O.; Pavelic, P.; Bastiaanssen, W.G.M. Physical Water Scarcity Metrics for Monitoring Progress towards SDG Target 6.4: An Evaluation of Indicator 6.4. 2 “Level of Water Stress”. Sci. Total Environ. 2018, 613, 218–232. [Google Scholar] [CrossRef]
- Nawaz, A.; Shah, S.A.R.; Su, X.; Dar, A.A.; Qin, Z.; Albasher, G. Analytical Strategies to Sense Water Stress Level: An Analysis of Ground Water Fluctuations Sensing SDGs under Pandemic Scenario. Chemosphere 2022, 291, 132924. [Google Scholar] [CrossRef]
- Javadi, S.; Saatsaz, M.; Shahdany, S.M.H.; Neshat, A.; Milan, S.G.; Akbari, S. A New Hybrid Framework of Site Selection for Groundwater Recharge. Geosci. Front. 2021, 12, 101144. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Xue, Y.; Wang, Z.; Yao, Y.; Yan, X.; Wang, H. Land Subsidence and Uplift Due to Long-Term Groundwater Extraction and Artificial Recharge in Shanghai, China. Hydrogeol. J. 2015, 23, 1851. [Google Scholar] [CrossRef]
- Wu, P.; Comte, J.-C.; Li, F.; Chen, H. Influence of Tides on the Effectiveness of Artificial Freshwater Injection in Mitigating Seawater Intrusion in an Unconfined Coastal Aquifer. J. Hydrol. 2023, 617, 129043. [Google Scholar] [CrossRef]
- Shi, X.; Jiang, S.; Xu, H.; Jiang, F.; He, Z.; Wu, J. The Effects of Artificial Recharge of Groundwater on Controlling Land Subsidence and Its Influence on Groundwater Quality and Aquifer Energy Storage in Shanghai, China. Environ. Earth Sci. 2016, 75, 195. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Moradi, H.R.; Fatemi Aghda, S.M. Landslide Susceptibility Mapping by Binary Logistic Regression, Analytical Hierarchy Process, and Statistical Index Models and Assessment of Their Performances. Nat. Hazards 2013, 69, 749–779. [Google Scholar] [CrossRef]
- Rahmati, O.; Nazari Samani, A.; Mahdavi, M.; Pourghasemi, H.R.; Zeinivand, H. Groundwater Potential Mapping at Kurdistan Region of Iran Using Analytic Hierarchy Process and GIS. Arab. J. Geosci. 2015, 8, 7059–7071. [Google Scholar] [CrossRef]
- Rajaveni, S.P.; Brindha, K.; Elango, L. Geological and Geomorphological Controls on Groundwater Occurrence in a Hard Rock Region. Appl. Water Sci. 2017, 7, 1377–1389. [Google Scholar] [CrossRef]
- Agarwal, R.; Garg, P.K.; Garg, R.D. Remote Sensing and GIS Based Approach for Identification of Artificial Recharge Sites. Water Resour. Manag. 2013, 27, 2671–2689. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Ajaykumar, K.; Bhagat, V. Identification of Artificial Groundwater Recharge Zones in Semi-Arid Region of Southern India Using Geospatial and Integrated Decision-Making Approaches. Environ. Chall. 2021, 5, 100278. [Google Scholar] [CrossRef]
- Kadam, A.; Karnewar, A.S.; Umrikar, B.; Sankhua, R.N. Hydrological Response-Based Watershed Prioritization in Semiarid, Basaltic Region of Western India Using Frequency Ratio, Fuzzy Logic and AHP Method. Environ. Dev. Sustain. 2019, 21, 1809–1833. [Google Scholar] [CrossRef]
- Maheswaran, G.; Selvarani, A.G.; Elangovan, K. Groundwater Resource Exploration in Salem District, Tamil Nadu Using GIS and Remote Sensing. J. Earth Syst. Sci. 2016, 125, 311–328. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Raju, G.S.; Sreenivasulu, Y.; Raju, R.S. Delineation of Groundwater Potential Zones in Semi-Arid Region of Jilledubanderu River Basin, Anantapur District, Andhra Pradesh, India Using Fuzzy Logic, AHP and Integrated Fuzzy-AHP Approaches. HydroResearch 2019, 2, 97–108. [Google Scholar] [CrossRef]
- Shailaja, G.; Kadam, A.K.; Gupta, G.; Umrikar, B.N.; Pawar, N.J. Integrated Geophysical, Geospatial and Multiple-Criteria Decision Analysis Techniques for Delineation of Groundwater Potential Zones in a Semi-Arid Hard-Rock Aquifer in Maharashtra, India. Hydrogeol. J. 2019, 27, 639–654. [Google Scholar] [CrossRef]
- Jayaramu, Y.; Samayamanthula, D.; Sabarathinam, C.; Alsabti, B.; Al-Rashidi, A.; Rashid, T. Sensing the Dependable Surficial Signatures of Temporal Groundwater Variations in Arid Coastal Regions through Geospatial Techniques with Respect to Microclimate Changes. Environ. Res. 2024, 250, 118483. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, T.; Sabarathinam, C.; Kamaraj, P.; Prasanna, M.V.; Mathivanan, M.; Ghai, M.; Singh, D.K.; Ramanathan, A.L. Irrigation Water Quality Assessment Using Water Quality Index and GIS Technique in Pondicherry Region, South India. Int. J. Civ. Environ. Agric. Eng. 2021, 3, 36–50. [Google Scholar] [CrossRef]
- Khan, A.; Govil, H.; Taloor, A.K.; Kumar, G. Identification of Artificial Groundwater Recharge Sites in Parts of Yamuna River Basin India Based on Remote Sensing and Geographical Information System. Groundw. Sustain. Dev. 2020, 11, 100415. [Google Scholar] [CrossRef]
- Al-Rashidi, A.; Sabarathinam, C.; Samayamanthula, D.R.; Alsabti, B.; Rashid, T. Groundwater Management for Agricultural Purposes Using Fuzzy Logic Technique in an Arid Region. Water 2023, 15, 2674. [Google Scholar] [CrossRef]
- Abijith, D.; Saravanan, S.; Singh, L.; Jennifer, J.J.; Saranya, T.; Parthasarathy, K.S.S. GIS-Based Multi-Criteria Analysis for Identification of Potential Groundwater Recharge Zones-a Case Study from Ponnaniyaru Watershed, Tamil Nadu, India. HydroResearch 2020, 3, 1–14. [Google Scholar] [CrossRef]
- Venkateswaran, S.; Deepa, S. Evaluation of Groundwater Quality for Drinking Purpose in Part of Villupuram District, Tamil Nadu. Indian J. Appl. Res. 2016, 6, 318–321. [Google Scholar]
- Deepa, S.; Venkateswaran, S.; Ayyandurai, R.; Kannan, R.; Vijay Prabhu, M. Groundwater Recharge Potential Zones Mapping in Upper Manimuktha Sub Basin Vellar River Tamil Nadu India Using GIS and Remote Sensing Techniques. Model. Earth Syst. Environ. 2016, 2, 137. [Google Scholar] [CrossRef]
- Subramoniam, S.R.; Ravindranath, S.; Rakkasagi, S.; Hebbar, R. Water Resource Management Studies at Micro Level Using Geospatial Technologies. In Geospatial Technologies for Resources Planning and Management; Springer: Cham, Switzerland, 2022; pp. 49–74. [Google Scholar]
- Kumar, S.K.; Rammohan, V.; Sahayam, J.D.; Jeevanandam, M. Assessment of Groundwater Quality and Hydrogeochemistry of Manimuktha River Basin, Tamil Nadu, India. Environ. Monit. Assess. 2009, 159, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Wang, Y.; Engel, B.; Zhang, W.; Peng, H.; Chen, X.; Xia, H. Performance Assessment of Spatial Interpolation of Precipitation for Hydrological Process Simulation in the Three Gorges Basin. Water 2017, 9, 838. [Google Scholar] [CrossRef]
- Saaty, T.L. Axiomatic Foundation of the Analytic Hierarchy Process. Manag. Sci. 1986, 32, 841–855. [Google Scholar] [CrossRef]
- Fashae, O.A.; Tijani, M.N.; Talabi, A.O.; Adedeji, O.I. Delineation of Groundwater Potential Zones in the Crystalline Basement Terrain of SW-Nigeria: An Integrated GIS and Remote Sensing Approach. Appl. Water Sci. 2014, 4, 19–38. [Google Scholar] [CrossRef]
- Hussein, A.-A.; Govindu, V.; Nigusse, A.G.M. Evaluation of Groundwater Potential Using Geospatial Techniques. Appl. Water Sci. 2017, 7, 2447–2461. [Google Scholar] [CrossRef]
- Abrar, H.; Legesse Kura, A.; Esayas Dube, E.; Likisa Beyene, D. AHP Based Analysis of Groundwater Potential in the Western Escarpment of the Ethiopian Rift Valley. Geol. Ecol. Landsc. 2023, 7, 175–188. [Google Scholar] [CrossRef]
- Prasad, R.K.; Mondal, N.C.; Banerjee, P.; Nandakumar, M.V.; Singh, V.S. Deciphering Potential Groundwater Zone in Hard Rock through the Application of GIS. Environ. Geol. 2008, 55, 467–475. [Google Scholar] [CrossRef]
- Kalhor, K.; Ghasemizadeh, R.; Rajic, L.; Alshawabkeh, A. Assessment of Groundwater Quality and Remediation in Karst Aquifers: A Review. Groundw. Sustain. Dev. 2019, 8, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Nandakumaran, P.; Balakrishnan, K. Groundwater Quality Variations in Precambrian Hard Rock Aquifers: A Case Study from Kerala, India. Appl. Water Sci. 2020, 10, 2. [Google Scholar] [CrossRef]
- Mengistu, T.D.; Chang, S.W.; Kim, I.-H.; Kim, M.-G.; Chung, I.-M. Determination of Potential Aquifer Recharge Zones Using Geospatial Techniques for Proxy Data of Gilgel Gibe Catchment, Ethiopia. Water 2022, 14, 1362. [Google Scholar] [CrossRef]
- Letz, O.; Siebner, H.; Avrahamov, N.; Egozi, R.; Eshel, G.; Dahan, O. The Impact of Geomorphology on Groundwater Recharge in a Semi-Arid Mountainous Area. J. Hydrol. 2021, 603, 127029. [Google Scholar] [CrossRef]
- Bloomfield, J.P.; Bricker, S.H.; Newell, A.J. Some Relationships between Lithology, Basin Form and Hydrology: A Case Study from the Thames Basin, UK. Hydrol. Process. 2011, 25, 2518–2530. [Google Scholar] [CrossRef]
- Olmsted, F.H.; Davis, G.H. Geologic Features and Ground-Water Storage Capacity of the Sacramento Valley, California; U.S. Government Printing Office: Washington, DC, USA, 1961. [Google Scholar]
- Abdalla, O.; Al-Abri, R.b.Y. Factors Affecting Groundwater Chemistry in Regional Arid Basins of Variable Lithology: Example of Wadi Umairy, Oman. Arab. J. Geosci. 2014, 7, 2861–2870. [Google Scholar] [CrossRef]
- Wilson, G.B.; McNeill, G.W. Noble Gas Recharge Temperatures and the Excess Air Component. Appl. Geochem. 1997, 12, 747–762. [Google Scholar] [CrossRef]
- Ghosh, B. Spatial Mapping of Groundwater Potential Using Data-Driven Evidential Belief Function, Knowledge-Based Analytic Hierarchy Process and an Ensemble Approach. Environ. Earth Sci. 2021, 80, 625. [Google Scholar] [CrossRef]
- Kadiri, M.; Zarhloule, Y.; Barkaoui, A.; Ourarhi, S. Identification of Potential Artificial Groundwater Recharge Sites Using GIS and the Analytical Hierarchy Process: Case Study of Tamellalt Plain, Morocco. Hydrogeol. J. 2023, 31, 1813–1828. [Google Scholar] [CrossRef]
- Ghayoumian, J.; Saravi, M.M.; Feiznia, S.; Nouri, B.; Malekian, A. Application of GIS Techniques to Determine Areas Most Suitable for Artificial Groundwater Recharge in a Coastal Aquifer in Southern Iran. J. Asian Earth Sci. 2007, 30, 364–374. [Google Scholar] [CrossRef]
- Cao, G.; Scanlon, B.R.; Han, D.; Zheng, C. Impacts of Thickening Unsaturated Zone on Groundwater Recharge in the North China Plain. J. Hydrol. 2016, 537, 260–270. [Google Scholar] [CrossRef]
- Blume, T.; Zehe, E.; Bronstert, A. Use of Soil Moisture Dynamics and Patterns at Different Spatio-Temporal Scales for the Investigation of Subsurface Flow Processes. Hydrol. Earth Syst. Sci. 2009, 13, 1215–1233. [Google Scholar] [CrossRef]
- Akinluyi, F.O.; Olorunfemi, M.O.; Bayowa, O.G. Investigation of the Influence of Lineaments, Lineament Intersections and Geology on Groundwater Yield in the Basement Complex Terrain of Ondo State, Southwestern Nigeria. Appl. Water Sci. 2018, 8, 49. [Google Scholar] [CrossRef]
- Kim, G.-B.; Lee, J.-Y.; Lee, K.-K. Application of Representative Elementary Area (REA) to Lineament Density Analysis for Groundwater Implications. Geosci. J. 2004, 8, 27–42. [Google Scholar] [CrossRef]
- Park, Y.-J.; Lee, K.-K.; Kim, J.-M. Effects of Highly Permeable Geological Discontinuities upon Groundwater Productivity and Well Yield. Math. Geol. 2000, 32, 605–618. [Google Scholar] [CrossRef]
- Lentswe, G.B.; Molwalefhe, L. Delineation of Potential Groundwater Recharge Zones Using Analytic Hierarchy Process-Guided GIS in the Semi-Arid Motloutse Watershed, Eastern Botswana. J. Hydrol. Reg. Stud. 2020, 28, 100674. [Google Scholar] [CrossRef]
- Mallick, J.; Khan, R.A.; Ahmed, M.; Alqadhi, S.D.; Alsubih, M.; Falqi, I.; Hasan, M.A. Modeling Groundwater Potential Zone in a Semi-Arid Region of Aseer Using Fuzzy-AHP and Geoinformation Techniques. Water 2019, 11, 2656. [Google Scholar] [CrossRef]
- Ferrill, D.A.; Sims, D.W.; Waiting, D.J.; Morris, A.P.; Franklin, N.M.; Schultz, A.L. Structural Framework of the Edwards Aquifer Recharge Zone in South-Central Texas. Geol. Soc. Am. Bull. 2004, 116, 407–418. [Google Scholar] [CrossRef]
- Mogaji, K.A.; Lim, H.S. A GIS-Based Linear Regression Modeling Approach to Assess the Impact of Geologic Rock Types on Groundwater Recharge and Its Hydrological Implication. Model. Earth Syst. Environ. 2020, 6, 183–199. [Google Scholar] [CrossRef]
- Fronzi, D.; Mirabella, F.; Cardellini, C.; Caliro, S.; Palpacelli, S.; Cambi, C.; Valigi, D.; Tazioli, A. The Role of Faults in Groundwater Circulation before and after Seismic Events: Insights from Tracers, Water Isotopes and Geochemistry. Water 2021, 13, 1499. [Google Scholar] [CrossRef]
- Sander, P. Lineaments in Groundwater Exploration: A Review of Applications and Limitations. Hydrogeol. J. 2007, 15, 71–74. [Google Scholar] [CrossRef]
- Ernst, L.F. Drainage of Undulating Sandy Soils with High Groundwater Tables: I. A Drainage Formula Based on a Constant Hydraulic Head Ratio. J. Hydrol. 1978, 39, 1–30. [Google Scholar] [CrossRef]
- Das, D. Drainage and Lineament Analysis towards Artificial Recharge of Groundwater. In Advances in the Research of Aquatic Environment: Volume 2; Springer: Berlin/Heidelberg, Germany, 2011; pp. 37–44. [Google Scholar]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I. A Physical Basis for Drainage Density. Geomorphology 1992, 5, 59–76. [Google Scholar] [CrossRef]
- Kurtzman, D.; Baram, S.; Dahan, O. Soil–Aquifer Phenomena Affecting Groundwater under Vertisols: A Review. Hydrol. Earth Syst. Sci. 2016, 20, 1–12. [Google Scholar] [CrossRef]
- Pinto, L.C.; de Mello, C.R.; Norton, L.D.; Owens, P.R.; Curi, N. Spatial Prediction of Soil–Water Transmissivity Based on Fuzzy Logic in a Brazilian Headwater Watershed. Catena 2016, 143, 26–34. [Google Scholar] [CrossRef]
- Gururani, D.M.; Kumar, Y.; Abed, S.A.; Kumar, V.; Vishwakarma, D.K.; Al-Ansari, N.; Singh, K.; Kuriqi, A.; Mattar, M.A. Mapping Prospects for Artificial Groundwater Recharge Utilizing Remote Sensing and GIS Methods. Water 2023, 15, 3904. [Google Scholar] [CrossRef]
- Berhanu, K.G.; Hatiye, S.D. Identification of Groundwater Potential Zones Using Proxy Data: Case Study of Megech Watershed, Ethiopia. J. Hydrol. Reg. Stud. 2020, 28, 100676. [Google Scholar] [CrossRef]
- Pathak, P.; Sudi, R.; Wani, S.P.; Sahrawat, K.L. Hydrological Behavior of Alfisols and Vertisols in the Semi-Arid Zone: Implications for Soil and Water Management. Agric. Water Manag. 2013, 118, 12–21. [Google Scholar] [CrossRef]
- Allen, P.M.; Harmel, R.D.; Arnold, J.; Plant, B.; Yelderman, J.; King, K. Field Data and Flow System Response in Clay (Vertisol) Shale Terrain, North Central Texas, USA. Hydrol. Process. An. Int. J. 2005, 19, 2719–2736. [Google Scholar] [CrossRef]
- Garg, K.K.; Anantha, K.H.; Dixit, S.; Nune, R.; Venkataradha, A.; Wable, P.; Budama, N.; Singh, R. Impact of Raised Beds on Surface Runoff and Soil Loss in Alfisols and Vertisols. Catena 2022, 211, 105972. [Google Scholar] [CrossRef]
- Fauzia; Surinaidu, L.; Rahman, A.; Ahmed, S. Distributed Groundwater Recharge Potentials Assessment Based on GIS Model and Its Dynamics in the Crystalline Rocks of South India. Sci. Rep. 2021, 11, 11772. [Google Scholar] [CrossRef] [PubMed]
- Kisku, T.K.; Datta, A.; Basak, N.; Mandi, S.; Hembram, S.; Roy, R. Evaluation of Saturated Hydraulic Conductivity from Soil Properties in an Inceptisol Using Different Land Cover and Depths. J. Appl. Nat. Sci. 2017, 9, 1482–1488. [Google Scholar] [CrossRef]
- Selvam, S.; Magesh, N.S.; Sivasubramanian, P.; Soundranayagam, J.P.; Manimaran, G.; Seshunarayana, T. Deciphering of Groundwater Potential Zones in Tuticorin, Tamil Nadu, Using Remote Sensing and GIS Techniques. J. Geol. Soc. India 2014, 84, 597–608. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Mandal, M.H.; Hasnine, M.; Shit, P.K. Groundwater Potential Mapping Using Multi-Criteria Decision, Bivariate Statistic and Machine Learning Algorithms: Evidence from Chota Nagpur Plateau, India. Appl. Water Sci. 2022, 12, 58. [Google Scholar] [CrossRef]
- Li, H.; Si, B.; Li, M. Rooting Depth Controls Potential Groundwater Recharge on Hillslopes. J. Hydrol. 2018, 564, 164–174. [Google Scholar] [CrossRef]
- Tao, Z.; Li, H.; Neil, E.; Si, B. Groundwater Recharge in Hillslopes on the Chinese Loess Plateau. J. Hydrol. Reg. Stud. 2021, 36, 100840. [Google Scholar] [CrossRef]
- Lwimbo, Z.D.; Komakech, H.C.; Muzuka, A.N.N. Estimating Groundwater Recharge on the Southern Slope of Mount Kilimanjaro, Tanzania. Environ. Earth Sci. 2019, 78, 687. [Google Scholar] [CrossRef]
- Yenehun, A.; Nigate, F.; Belay, A.S.; Desta, M.T.; Van Camp, M.; Walraevens, K. Groundwater Recharge and Water Table Response to Changing Conditions for Aquifers at Different Physiography: The Case of a Semi-Humid River Catchment, Northwestern Highlands of Ethiopia. Sci. Total Environ. 2020, 748, 142243. [Google Scholar] [CrossRef]
- Appels, W.M.; Graham, C.B.; Freer, J.E.; McDonnell, J.J. Factors Affecting the Spatial Pattern of Bedrock Groundwater Recharge at the Hillslope Scale. Hydrol. Process. 2015, 29, 4594–4610. [Google Scholar] [CrossRef]
- Srinivasamoorthy, K.; Chidambaram, S.; Vasanthavigar, M.; Anandhan, P.; Sarma, V.S. Geophysical Investigations for Groundwater in a Hard Rock Terrain, Salem District, Tamil Nadu, India. Bull. Eng. Geol. Environ. 2014, 73, 357–368. [Google Scholar] [CrossRef]
- Thomas, B.F.; Behrangi, A.; Famiglietti, J.S. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States. Water 2016, 8, 90. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.E.; Zhang, M.; Li, X.; Zhang, S.; Jia, L. Effects of Rainfall Intensity on Groundwater Recharge Based on Simulated Rainfall Experiments and a Groundwater Flow Model. Catena 2015, 127, 80–91. [Google Scholar] [CrossRef]
- Leduc, C.; Favreau, G.; Schroeter, P. Long-Term Rise in a Sahelian Water-Table: The Continental Terminal in South-West Niger. J. Hydrol. 2001, 243, 43–54. [Google Scholar] [CrossRef]
- Selvam, S.; Sivasubramanian, P. Groundwater Potential Zone Identification Using Geoelectrical Survey: A Case Study from Medak District, Andhra Pradesh, India. Int. J. Geomat. Geosci. 2012, 3, 55–62. [Google Scholar]
- Karimi-Rizvandi, S.; Goodarzi, H.V.; Afkoueieh, J.H.; Chung, I.-M.; Kisi, O.; Kim, S.; Linh, N.T.T. Groundwater-Potential Mapping Using a Self-Learning Bayesian Network Model: A Comparison among Metaheuristic Algorithms. Water 2021, 13, 658. [Google Scholar] [CrossRef]
- Guduru, J.U.; Jilo, N.B. Groundwater Potential Zone Assessment Using Integrated Analytical Hierarchy Process-Geospatial Driven in a GIS Environment in Gobele Watershed, Wabe Shebele River Basin, Ethiopia. J. Hydrol. Reg. Stud. 2022, 44, 101218. [Google Scholar] [CrossRef]
- Adhikari, R.K.; Mohanasundaram, S.; Shrestha, S. Impacts of Land-Use Changes on the Groundwater Recharge in the Ho Chi Minh City, Vietnam. Environ. Res. 2020, 185, 109440. [Google Scholar] [CrossRef] [PubMed]
- Siddik, M.S.; Tulip, S.S.; Rahman, A.; Islam, M.N.; Haghighi, A.T.; Mustafa, S.M.T. The Impact of Land Use and Land Cover Change on Groundwater Recharge in Northwestern Bangladesh. J. Environ. Manag. 2022, 315, 115130. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, B.R.; Reedy, R.C.; Stonestrom, D.A.; Prudic, D.E.; Dennehy, K.F. Impact of Land Use and Land Cover Change on Groundwater Recharge and Quality in the Southwestern US. Glob. Chang. Biol. 2005, 11, 1577–1593. [Google Scholar] [CrossRef]
- Minnig, M.; Moeck, C.; Radny, D.; Schirmer, M. Impact of Urbanization on Groundwater Recharge Rates in Dübendorf, Switzerland. J. Hydrol. 2018, 563, 1135–1146. [Google Scholar] [CrossRef]
- Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O. Trajectory Analysis of Land Use and Land Cover Maps to Improve Spatial–Temporal Patterns, and Impact Assessment on Groundwater Recharge. J. Hydrol. 2017, 554, 558–569. [Google Scholar] [CrossRef]
- da Costa, A.M.; de Salis, H.H.C.; Viana, J.H.M.; Leal Pacheco, F.A. Groundwater Recharge Potential for Sustainable Water Use in Urban Areas of the Jequitiba River Basin, Brazil. Sustainability 2019, 11, 2955. [Google Scholar] [CrossRef]
- Rivera-Rivera, D.M.; Escobedo-Urías, D.C.; Jonathan, M.P.; Sujitha, S.B.; Chidambaram, S. Evidence of Natural and Anthropogenic Impacts on Rainwater Trace Metal Geochemistry in Central Mexico: A Statistical Approach. Water 2020, 12, 192. [Google Scholar] [CrossRef]
- Selvam, S.; Magesh, N.S.; Chidambaram, S.; Rajamanickam, M.; Sashikkumar, M.C. A GIS Based Identification of Groundwater Recharge Potential Zones Using RS and IF Technique: A Case Study in Ottapidaram Taluk, Tuticorin District, Tamil Nadu. Environ. Earth Sci. 2015, 73, 3785–3799. [Google Scholar] [CrossRef]
- Panda, B.; Chidambaram, S.; Ganesh, N.; Adithya, V.S.; Pradeep, K.; Vasudevan, U.; Ramanathan, A.L.; Ranjan, S.; Prasanna, M.V.; Paramaguru, K. A Study on Mountain Front Recharge by Using Integrated Techniques in the Hard Rock Aquifers of Southern India. Environ. Dev. Sustain. 2018, 20, 2243–2259. [Google Scholar] [CrossRef]
- Panda, B.R.; Chidambaram, S.; Ganesh, N.; Adithya, V.S.; Prasanna, M.V.; Pradeep, K.; Vasudevan, U. A Hydrochemical Approach to Estimate Mountain Front Recharge in an Aquifer System in Tamilnadu, India. Acta Geochim. 2018, 37, 465–488. [Google Scholar] [CrossRef]
- Zarate, E.; Hobley, D.; MacDonald, A.M.; Swift, R.T.; Chambers, J.; Kashaigili, J.J.; Mutayoba, E.; Taylor, R.G.; Cuthbert, M.O. The Role of Superficial Geology in Controlling Groundwater Recharge in the Weathered Crystalline Basement of Semi-Arid Tanzania. J. Hydrol. Reg. Stud. 2021, 36, 100833. [Google Scholar] [CrossRef]
- Rajendiran, T.; Sabarathinam, C.; Chandrasekar, T.; Keesari, T.; Senapathi, V.; Sivaraman, P.; Viswanathan, P.M.; Nagappan, G. Influence of Variations in Rainfall Pattern on the Hydrogeochemistry of Coastal Groundwater—An Outcome of Periodic Observation. Environ. Sci. Pollut. Res. 2019, 26, 29173–29190. [Google Scholar] [CrossRef] [PubMed]
- Thivya, C.; Chidambaram, S.; Rao, M.S.; Gopalakrishnan, M.; Thilagavathi, R.; Prasanna, M.V.; Nepolian, M. Identification of Recharge Processes in Groundwater in Hard Rock Aquifers of Madurai District Using Stable Isotopes. Environ. Process. 2016, 3, 463–477. [Google Scholar] [CrossRef]
- Abdelkarim, B.; Telahigue, F.; Agoubi, B. Assessing and Delineation of Groundwater Recharge Areas in Coastal Arid Area Southern Tunisia. Groundw. Sustain. Dev. 2022, 18, 100760. [Google Scholar] [CrossRef]
- Maqsoom, A.; Aslam, B.; Khalid, N.; Ullah, F.; Anysz, H.; Almaliki, A.H.; Almaliki, A.A.; Hussein, E.E. Delineating Groundwater Recharge Potential through Remote Sensing and Geographical Information Systems. Water 2022, 14, 1824. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-Arid Environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef]
- Gebere, S.B.; Alamirew, T.; Merkel, B.J.; Melesse, A.M. Land Use and Land Cover Change Impact on Groundwater Recharge: The Case of Lake Haramaya Watershed, Ethiopia. Landsc. Dyn. Soils Hydrol. Process. Varied Clim. 2016, 93–110. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.J.; Cao, G.; Hall, B. Alterations to Groundwater Recharge Due to Anthropogenic Landscape Change. J. Hydrol. 2017, 554, 545–557. [Google Scholar] [CrossRef]
- Maréchal, J.-C.; Vouillamoz, J.-M.; Kumar, M.S.M.; Dewandel, B. Estimating Aquifer Thickness Using Multiple Pumping Tests. Hydrogeol. J. 2010, 18, 1787–1796. [Google Scholar] [CrossRef]
- Sheng, Z.; Helm, D.C.; Li, J. Mechanisms of Earth Fissuring Caused by Groundwater Withdrawal. Environ. Eng. Geosci. 2003, 9, 351–362. [Google Scholar] [CrossRef]
- Humphreys, W.F. Hydrogeology and Groundwater Ecology: Does Each Inform the Other? Hydrogeol. J. 2009, 17, 5. [Google Scholar] [CrossRef]
- Zhu, L.; Fan, D.; Ma, R.; Zhang, Y.; Zha, Y. Experimental and Numerical Investigations of Influence on Overland Flow and Water Infiltration by Fracture Networks in Soil. Geofluids 2018, 2018, 7056858. [Google Scholar] [CrossRef]
- Rathay, S.Y.; Allen, D.M.; Kirste, D. Response of a Fractured Bedrock Aquifer to Recharge from Heavy Rainfall Events. J. Hydrol. 2018, 561, 1048–1062. [Google Scholar] [CrossRef]
- Epting, J.; Michel, A.; Affolter, A.; Huggenberger, P. Climate Change Effects on Groundwater Recharge and Temperatures in Swiss Alluvial Aquifers. J. Hydrol. X 2021, 11, 100071. [Google Scholar] [CrossRef]
- Liu, H.-H. Impact of Climate Change on Groundwater Recharge in Dry Areas: An Ecohydrology Approach. J. Hydrol. 2011, 407, 175–183. [Google Scholar] [CrossRef]
- Cai, Z.; Ofterdinger, U. Analysis of Groundwater-Level Response to Rainfall and Estimation of Annual Recharge in Fractured Hard Rock Aquifers, NW Ireland. J. Hydrol. 2016, 535, 71–84. [Google Scholar] [CrossRef]
- Ponnusamy, D.; Rajmohan, N.; Li, P.; Thirumurugan, M.; Chidambaram, S.; Elumalai, V. Mapping of Potential Groundwater Recharge Zones: A Case Study of Maputaland Plain, South Africa. Environ. Earth Sci. 2022, 81, 418. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Groll, M. Mapping of Potential Groundwater Recharge Zones in the Kolleru Lake Catchment, India, by Using Remote Sensing and GIS Techniques. Nat. Resour. 2020, 11, 127. [Google Scholar] [CrossRef]
- Peng, T.-R.; Lu, W.-C.; Chen, K.-Y.; Zhan, W.-J.; Liu, T.-K. Groundwater-Recharge Connectivity between a Hills-and-Plains’ Area of Western Taiwan Using Water Isotopes and Electrical Conductivity. J. Hydrol. 2014, 517, 226–235. [Google Scholar] [CrossRef]
- Cook, P.G.; Walker, G.R.; Buselli, G.; Potts, I.; Dodds, A.R. The Application of Electromagnetic Techniques to Groundwater Recharge Investigations. J. Hydrol. 1992, 130, 201–229. [Google Scholar] [CrossRef]
- Vázquez-Suñé, E.; Carrera, J.; Tubau, I.; Sánchez-Vila, X.; Soler, A. An Approach to Identify Urban Groundwater Recharge. Hydrol. Earth Syst. Sci. 2010, 14, 2085–2097. [Google Scholar] [CrossRef]
- Chidambaram, S.; Ramanathan, A.L.; Prasanna, M.V.; Lognatan, D.; Srinivasamoorthy, K.; Anandhan, P. Study on the Impact of Tsunami on Shallow Groundwater from Portnova to Pumpuhar, Using Geoelectrical Technique-South East Coast of India. Indian J. Mar. Sci. 2008, 37, 121–131. [Google Scholar]
- Prasanna, M.V.; Chidambaram, S.; Shahul Hameed, A.; Srinivasamoorthy, K. Study of Evaluation of Groundwater in Gadilam Basin Using Hydrogeochemical and Isotope Data. Environ. Monit. Assess. 2010, 168, 63–90. [Google Scholar] [CrossRef] [PubMed]
- Kamaraj, P.; Karuppannan, S. Dataset of Geophysical Electrical Resistivity and Subsurface Profiling for Natural Resources Exploration in a Hard Rock Terrain of Tamil Nadu, India. Data Br. 2024, 54, 110311. [Google Scholar] [CrossRef] [PubMed]
- Hadi, K.; Saravana Kumar, U.; Al-Senafy, M.; Mukhopadhyay, A. Historical Evaluation of Hydrological and Water Quality Changes of Southern Kuwait Groundwater System. Arab. J. Geosci. 2018, 11, 413. [Google Scholar] [CrossRef]
- Galazoulas, E.C.; Mertzanides, Y.C.; Petalas, C.P.; Kargiotis, E.K. Large Scale Electrical Resistivity Tomography Survey Correlated to Hydrogeological Data for Mapping Groundwater Salinization: A Case Study from a Multilayered Coastal Aquifer in Rhodope, Northeastern Greece. Environ. Process. 2015, 2, 19–35. [Google Scholar] [CrossRef]
- Huang, X.; Gao, L.; Crosbie, R.S.; Zhang, N.; Fu, G.; Doble, R. Groundwater Recharge Prediction Using Linear Regression, Multi-Layer Perception Network, and Deep Learning. Water 2019, 11, 1879. [Google Scholar] [CrossRef]
- Martinsen, G.; Bessiere, H.; Caballero, Y.; Koch, J.; Collados-Lara, A.J.; Mansour, M.; Sallasmaa, O.; Pulido-Velazquez, D.; Williams, N.H.; Zaadnoordijk, W.J. Developing a Pan-European High-Resolution Groundwater Recharge Map–Combining Satellite Data and National Survey Data Using Machine Learning. Sci. Total Environ. 2022, 822, 153464. [Google Scholar] [CrossRef] [PubMed]
- Zaresefat, M.; Derakhshani, R.; Nikpeyman, V.; GhasemiNejad, A.; Raoof, A. Using Artificial Intelligence to Identify Suitable Artificial Groundwater Recharge Areas for the Iranshahr Basin. Water 2023, 15, 1182. [Google Scholar] [CrossRef]
- Rashid, T.; Sabarathinam, C.; Al-Qallaf, H.; Bhandary, H.; Al-Jumaa, M.; Shishter, A.; Al-Salman, B. Evolution of Hydrogeochemistry in Groundwater Production Fields of Kuwait–Inferences from Long-Term Data. Chemosphere 2022, 307, 135734. [Google Scholar] [CrossRef] [PubMed]
- Machiwal, D.; Mishra, A.; Jha, M.K.; Sharma, A.; Sisodia, S.S. Modeling Short-Term Spatial and Temporal Variability of Groundwater Level Using Geostatistics and GIS. Nat. Resour. Res. 2012, 21, 117–136. [Google Scholar] [CrossRef]
- Marko, K.; Al-Amri, N.S.; Elfeki, A.M.M. Geostatistical Analysis Using GIS for Mapping Groundwater Quality: Case Study in the Recharge Area of Wadi Usfan, Western Saudi Arabia. Arab. J. Geosci. 2014, 7, 5239–5252. [Google Scholar] [CrossRef]
S. No. | Aspects | Assigned Weightage | Normalized Weightage |
---|---|---|---|
1 | Lithology | 9 | 0.2 |
2 | Geomorphology | 8 | 0.18 |
3 | Aquifer thickness | 7 | 0.16 |
4 | Lineament density | 6 | 0.1 |
5 | Drainage density | 5 | 0.1 |
6 | Soil | 4 | 0.09 |
7 | Slope | 3 | 0.07 |
8 | Rainfall | 2 | 0.04 |
9 | Land use/land cover | 1 | 0.02 |
S. No. | Influence Factor | Categories | Weightages | Relative Weightages |
---|---|---|---|---|
1 | Geology | Syenite/nepheline syenite, corundum syenite | 1 | 0.7 |
Garnet sillimanite–graphite gneiss | 2 | 0.13 | ||
Hornblende biotite gneiss | 3 | 0.20 | ||
Fissile hornblende biotite gneiss | 4 | 0.27 | ||
Charnockite | 5 | 0.33 | ||
2 | Geomorphology | Dome-type residual hills | 1 | 0.02 |
Hilltop weathered | 1 | 0.02 | ||
Inselberg | 1 | 0.02 | ||
Linear ridge/dyke | 2 | 0.05 | ||
Moderate buried pediment | 3 | 0.07 | ||
Moderately weathered/moderately buried pediplain | 7 | 0.16 | ||
Pediment—valley floor | 6 | 0.14 | ||
Pediplain canal command | 5 | 0.12 | ||
Ridge-type structural hills (large) | 1 | 0.02 | ||
Shallow buried pediment | 3 | 0.07 | ||
Shallow weathered/shallow buried pediplain | 6 | 0.14 | ||
Upper piedmont slope | 3 | 0.07 | ||
Water body | 4 | 0.09 | ||
3 | Aquifer thickness | Low thickness (<29.7 m) | 1 | 0.10 |
Medium thickness (29.7–56.0 m) | 2 | 0.20 | ||
High thickness (56–96.3 m) | 3 | 0.30 | ||
Very high thickness (>96.3 m) | 4 | 0.40 | ||
4 | Lineament density | Very high lineament density (>3.6 km/km2) | 4 | 0.40 |
High lineament density (2.4–3.6 km/km2) | 3 | 0.30 | ||
Medium lineament density (1.2–2.4 km/km2) | 2 | 0.20 | ||
Low lineament density (<1.2 km/km2) | 1 | 0.10 | ||
5 | Drainage density | Very low drainage density (<2 km/km2) | 4 | 0.40 |
Low drainage density (2–4 km/km2) | 3 | 0.30 | ||
Medium drainage density (4–6 km/km2) | 2 | 0.20 | ||
High drainage density (6 km/km2) | 1 | 0.10 | ||
6 | Soil | Hill soils | 1 | 0.06 |
Inceptisols | 2 | 0.12 | ||
Reserve forest | 2 | 0.12 | ||
Entisols | 3 | 0.18 | ||
Alfisols | 4 | 0.24 | ||
Vertisols | 5 | 0.29 | ||
7 | Slope | Mountainous (>16%) | 1 | 0.09 |
Moderately steep (12–16%) | 1 | 0.09 | ||
Strongly sloping (8–12%) | 2 | 0.18 | ||
Sloping (4–8%) | 3 | 0.27 | ||
Flat (<4%) | 4 | 0.36 | ||
8 | Rainfall | 1006 | 1 | 0.10 |
1073 | 2 | 0.20 | ||
1226 | 3 | 0.30 | ||
1431 | 4 | 0.40 | ||
9 | LU/LC | Hilly region | 1 | 0.04 |
Built-up land | 1 | 0.04 | ||
Upland | 1 | 0.04 | ||
Wasteland | 5 | 0.21 | ||
Barren land | 1 | 0.04 | ||
Deciduous forest | 2 | 0.08 | ||
Fallow land | 4 | 0.17 | ||
Plantation | 3 | 0.13 | ||
Agricultural land | 3 | 0.13 | ||
Waterbodies | 3 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramani, D.; Kamaraj, P.; Saravana Kumar, U.; Sabarathinam, C. Mapping of Groundwater Recharge Zones in Hard Rock Aquifer through Analytic Hierarchy Process in Geospatial Platform. Water 2024, 16, 1484. https://doi.org/10.3390/w16111484
Subramani D, Kamaraj P, Saravana Kumar U, Sabarathinam C. Mapping of Groundwater Recharge Zones in Hard Rock Aquifer through Analytic Hierarchy Process in Geospatial Platform. Water. 2024; 16(11):1484. https://doi.org/10.3390/w16111484
Chicago/Turabian StyleSubramani, Deepa, Pradeep Kamaraj, Umayadoss Saravana Kumar, and Chidambaram Sabarathinam. 2024. "Mapping of Groundwater Recharge Zones in Hard Rock Aquifer through Analytic Hierarchy Process in Geospatial Platform" Water 16, no. 11: 1484. https://doi.org/10.3390/w16111484
APA StyleSubramani, D., Kamaraj, P., Saravana Kumar, U., & Sabarathinam, C. (2024). Mapping of Groundwater Recharge Zones in Hard Rock Aquifer through Analytic Hierarchy Process in Geospatial Platform. Water, 16(11), 1484. https://doi.org/10.3390/w16111484