Combination of Precipitation-Adsorption-Bipolar Membrane Electrodialysis for Mine Water Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Reagents and Materials
2.2. Test Method
2.2.1. Precipitation Experiment
2.2.2. Adsorption Experiment
2.2.3. BMED Experiment
2.3. Test Process
2.4. Analysis Methods and Evaluation Indexes
2.5. Statistical Analysis
3. Results and Discussion
3.1. Experiments on Process Parameters of the Precipitation Method for the Treatment of Simulated Mine Water
3.2. Experimental Study on the Treatment of Simulated Mine Water with the Precipitation Adsorption Method
3.3. Experimental Study on the Treatment of Simulated Sulfate Wastewater by Bipolar Membrane Electrodialysis
3.3.1. Comparative Test of the Membrane Pile Structure
3.3.2. Effect of Electrolyte Concentration in Polar Chamber
3.3.3. Effect of Operating Voltage
3.3.4. Effect of Initial Salt Concentration
3.3.5. Flow Rate Effect
3.4. Mine Water Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Acharya, B.S.; Kharel, G. Acid mine drainage from coal mining in the United States—An overview. J. Hydrol. 2020, 588, 125061. [Google Scholar] [CrossRef]
- Magowo, W.E.; Sheridan, C.; Rumbold, K. Global Co-occurrence of Acid Mine Drainage and Organic Rich Industrial and Domestic Effluent: Biological sulfate reduction as a co-treatment-option. J. Water Process Eng. 2020, 38, 101650. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, C.; Du, S.; Zhang, Z.; Lu, W.; Su, P.; Jiao, Y.; Zhao, Y. A review: The formation, prevention, and remediation of acid mine drainage. Environ. Sci. Pollut. Res. Int. 2023, 30, 111871–111890. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.O.; Andrade, L.H.; Ricci, B.C.; Pires, W.L.; Miranda, G.A.; Amaral, M.C.S. Gold acid mine drainage treatment by membrane separation processes: An evaluation of the main operational conditions. Sep. Purif. Technol. 2016, 170, 360–369. [Google Scholar] [CrossRef]
- Vaziri, V.; Sayadi, A.R.; Mousavi, A.; Parbhakar-Fox, A.; Monjezi, M. Mathematical modeling for optimized mine waste rock disposal: Establishing more effective acid rock drainage management. J. Clean. Prod. 2021, 288, 125124. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Z.F.; Zhong, C.; Ji, J.F. Temporal-spatial variation and source apportionment of soil heavy metals in the representative river-alluviation depositional system. Environ. Pollut. 2016, 216, 18–26. [Google Scholar] [CrossRef]
- Karlsson, K.; Viklander, M.; Scholes, L.; Revitt, M. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. J. Hazard. Mater. 2010, 178, 612–618. [Google Scholar] [CrossRef]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Makhathini, T.P.; Mulopo, J.; Bakare, B.F. Possibilities for Acid Mine Drainage Co-treatment with Other Waste Streams: A Review. Mine Water Environ. 2020, 39, 13–26. [Google Scholar] [CrossRef]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Sithole, N.T.; Ntuli, F.; Okonta, F. Synthesis and evaluation of basic oxygen furnace slag based geopolymers for removal of metals and sulphates from acidic industrial effluent-column study. J. Water Process Eng. 2020, 37, 101518. [Google Scholar] [CrossRef]
- Tolonen, E.T.; Sarpola, A.; Hu, T.; Rämö, J.; Lassi, U. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals. Chemosphere 2014, 117, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Karanac, M.; Dolic, M.; Veljovic, D.; Rajakovic-Ognjanovic, V.; Velickovic, Z.; Pavicevic, V.; Marinkovic, A. The removal of Zn2+, Pb2+, and As(V) ions by lime activated fly ash and valorization of the exhausted adsorbent. Waste Manag. 2018, 78, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.X. Biomineralization: A Pivotal Process in Developing a Novel Passive Treatment System for Acid Mine Drainage. Acta Chim. Sin. 2017, 75, 552–559. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, H.; Cheng, Y.; Ma, X.; Chu, Y.; Hu, X. Treatment of carbocysteine wastewater by bipolar membrane electrodialysis: From lab-to pilot-scale. J. Membr. Sci. 2023, 687, 122056. [Google Scholar] [CrossRef]
- Wan, K.; Fang, T.; Zhang, W.; Ren, G.; Tang, X.; Ding, Z.; Wang, Y.; Qi, P.; Liu, X. Enhanced antimony removal within lamellar nanoconfined interspaces through a self-cleaning MXene@CNF@FeOOH water purification membrane. Chem. Eng. J. 2023, 465, 143018. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Xu, Z.; Ma, H.; Guo, Y. Mechanism study on manganese(II) removal from acid mine wastewater using red mud and its application to a lab-scale column. J. Clean. Prod. 2020, 253, 119955. [Google Scholar] [CrossRef]
- Song, K.; Chae, S.-C.; Bang, J.-H. Separation of sodium hydroxide from post-carbonation brines by bipolar membrane electrodialysis (BMED). Chem. Eng. J. 2021, 423, 130179. [Google Scholar] [CrossRef]
- Chen, T.; Bi, J.; Ji, Z.; Yuan, J.; Zhao, Y. Application of bipolar membrane electrodialysis for simultaneous recovery of high-value acid/alkali from saline wastewater: An in-depth review. Water Res. 2022, 226, 119274. [Google Scholar] [CrossRef]
- Chen, X.; Ruan, X.; Kentish, S.E.; Li, G.; Xu, T.; Chen, G.Q. Production of lithium hydroxide by electrodialysis with bipolar membranes. Sep. Purif. Technol. 2021, 274, 119026. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, X.; Hou, J.; Li, Z. Adsorption performance of mineral-carbon adsorbents derived from coal gasification fine ash: Prepared via low-temperature alkali fusion method. Environ. Res. 2024, 248, 118311. [Google Scholar] [CrossRef]
- de Groot, M.T.; de Rooij, R.M.; Bos, A.A.C.M.; Bargeman, G. Bipolar membrane electrodialysis for the alkalinization of ethanolamine salts. J. Membr. Sci. 2011, 378, 415–424. [Google Scholar] [CrossRef]
- Liu, Y.X.; Dai, L.P.; Ke, X.; Ding, J.G.; Wu, X.Y.; Chen, R.Y.; Ding, R.; Van der Bruggen, B. Arsenic and cation metal removal from copper slag using a bipolar membrane electrodialysis system. J. Clean. Prod. 2022, 338, 130662. [Google Scholar] [CrossRef]
- Makino, T.; Maejima, Y.; Akahane, I.; Kamiya, T.; Takano, H.; Fujitomi, S.; Ibaraki, T.; Kunhikrishnan, A.; Bolan, N. A practical soil washing method for use in a Cd-contaminated paddy field, with simple on-site wastewater treatment. Geoderma 2016, 270, 3–9. [Google Scholar] [CrossRef]
- Lu, M.; Shi, X.; Feng, Q.; Zhang, M.; Guo, Y.; Dong, X.; Guo, R. Modification of oyster shell powder by humic acid for ammonium removal from aqueous solutions and nutrient retention in soil. J. Environ. Chem. Eng. 2021, 9, 106708. [Google Scholar] [CrossRef]
- Shi, F.; Gu, J.-n.; Ying, D.; Li, K.; Yan, N.; Li, J.; Jia, J. Absorption and recovery of SO2 in flue gas by wet absorption combined with bipolar membrane electrodialysis. Chem. Eng. J. 2022, 433, 134595. [Google Scholar] [CrossRef]
- Bunani, S.; Arda, M.; Kabay, N.; Yoshizuka, K.; Nishihama, S. Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED). Desalination 2017, 416, 10–15. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, X.; Zhu, W.; Bao, Z.; Zhang, X.; Jin, G.; Zhang, Y.; Liu, Y.; Han, X. Separation of lithium chloride from ammonium chloride by an electrodialysis-based integrated process. J. Membr. Sci. 2023, 688, 121262. [Google Scholar] [CrossRef]
- Aliaskari, M.; Wezstein, J.; Saravia, F.; Horn, H. A systematic analysis of operating parameters for CO2 capture from seawater by Bipolar Membrane Electrodialysis (BPMED). Sep. Purif. Technol. 2024, 339, 126679. [Google Scholar] [CrossRef]
- GB8978-1996; Comprehensive Sewage Discharge Standards. National Standard of the People’s Republic of China. The State Environmental Protection Administration of China: Nanjing, China, 1996.
- Peng, Z.; Li, Y.; Sun, Y. Treatment of 2-Mercapto-5-methyl-1,3,4-thiadiazole (MMTD) wastewater by bipolar membrane electrodialysis: MMTD migration, process factors and implications. J. Membr. Sci. 2022, 664, 121110. [Google Scholar] [CrossRef]
- Wang, Q.W.; Chen, J.J. Recovery of EDTA from soil-washing wastewater with calcium-hydroxide-enhanced sulfide precipitation. Chemosphere 2019, 237, 124286. [Google Scholar] [CrossRef] [PubMed]
Ingredient | SO42− | Cl− | NO3− | Na+ | Ca2+ | Mg2+ | Fe | Pb | As | Cd | Cr | Cu | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (mg/L) | 1170 | 342 | 67 | 1020 | 27.13 | 10.54 | 16.47 | 0.14 | 0.0512 | 0.517 | 0.016 | 2.43 | 5.33 |
Methodology | Pharmaceuticals | RE(Cd2+)/% | RE(Mn2+)/% | RE(Cu2+)/% | RE(SO42−)/% | Current Efficiency |
---|---|---|---|---|---|---|
Precipitation | NaOH, BaCl2 | 94.26% | 92.21% | 96.78% | 75.23% | |
Adsorption | Humic acid | 99.93% | 98.04% | 99.91% | 79.36% | |
BMED | 94.19% | 51.26% | ||||
Total removal rate | 99.93% | 98.04% | 99.91% | 94.19% | 51.26% | |
Standard deviation | 0.05 | 1.19 | 0.92 | 0.43 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Cen, D.; Wu, Y. Combination of Precipitation-Adsorption-Bipolar Membrane Electrodialysis for Mine Water Treatment. Water 2024, 16, 1474. https://doi.org/10.3390/w16111474
Feng X, Cen D, Wu Y. Combination of Precipitation-Adsorption-Bipolar Membrane Electrodialysis for Mine Water Treatment. Water. 2024; 16(11):1474. https://doi.org/10.3390/w16111474
Chicago/Turabian StyleFeng, Xiujuan, Du Cen, and Yonghui Wu. 2024. "Combination of Precipitation-Adsorption-Bipolar Membrane Electrodialysis for Mine Water Treatment" Water 16, no. 11: 1474. https://doi.org/10.3390/w16111474
APA StyleFeng, X., Cen, D., & Wu, Y. (2024). Combination of Precipitation-Adsorption-Bipolar Membrane Electrodialysis for Mine Water Treatment. Water, 16(11), 1474. https://doi.org/10.3390/w16111474