Oilfield Brine as a Source of Water and Valuable Raw Materials—Proof of Concept on a Laboratory Scale
Abstract
:1. Introduction
- (1)
- The process should be carried out indirectly—the gas must not mix with the brine because commercial natural gas must not contain traces of water.
- (2)
- The process should be continuous or semi-continuous; the batch mode applied in this study may not be easily scalable.
- (3)
- In order to optimize heat flow, both streams (gas and water) should be contacted in countercurrent.
2. Materials and Methods
2.1. Materials
2.1.1. Oilfield Brine
2.1.2. Chemicals and Other Materials
2.2. Analytical Methods
2.3. Brine Processing
2.3.1. Brine Pretreatment
2.3.2. Freezing Desalination
2.3.3. Reverse Osmosis
2.3.4. Recovery of Iodine and Lithium
3. Results and Discussion
3.1. Brine Pretreatment
3.2. Freezing Desalination
3.3. Reverse Osmosis
Parameter | Water for Irrigation [80] | Water for Livestock Watering [80] | Potable Water for Humans [81,82] | Permeate |
---|---|---|---|---|
Sodium [mg/L] | <460 | 1000 | 200 | 320 |
Calcium [mg/L] | <100 | 1000 | 100 | 12 |
Magnesium [mg/L] | >25 | <250 | - | 1.15 |
Boron [mg/L] | 0.75–6.0 | 5.0 | 1.5 | 3.1 |
Lithium [mg/L] | <2.5 | - | - | 0.08 |
Iron [mg/L] | 5.0–20.0 | - | 0.2 | <0.1 |
Selenium [mg/L] | 0.02 | 0.1 | 0.05 | 0.12 |
Molybdenum [mg/L] | 0.01–0.05 | 0.5 | - | 0.12 |
Barium [mg/L] | 0.001–0.0375 | 10 | 2 | 0.08 |
Manganese [mg/L] | 0.2–10.0 | 0.05 | 0.05 | 0.03 |
Aluminum [mg/L] | 5.0–20.0 | 5.0 | 0.05–0.2 | 0.05 |
Nickel [mg/L] | 0.2–2.0 | 1.0 | 0.02 | 0.002 |
Lead [mg/L] | 5.0–10.0 | 0.05 | 0.0015 | 0.13 |
Copper [mg/L] | 0.2–5.0 | 0.5 | 1.3 | 0.002 |
Cadmium [mg/L] | 0.01–0.05 | 0.05 | 0.005 | 0.03 |
Cobalt [mg/L] | 0.05–5.0 | 1.0 | - | 0.03 |
Chromium [mg/L] | 0.1–1.0 | 1.0 | 0.01 | 0.06 |
Arsenic [mg/L] | 0.1–2.0 | 0.2 | 0.01 | 0.01 |
Zinc [mg/L] | 2–10 | 24 | 5 | 0.002 |
Fluoride [mg/L] | 1.0–15.0 | 2.0 | 4 | - |
Chloride [mg/L] | 525–2450 | 1600–4000 | 250 | - |
pH | 6.5–8.4 | 5.5–8.5 | 6.5–9.5 | - |
TDS [mg/L] | 704–4080 | 3000–7000 | 500 | 860 |
Conductivity [μS/cm] | 1100–5100 | 5000–11,000 | 2500 | <2000 |
3.4. Adsorption of Iodine and Lithium from Concentrated Brine
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Gangwar, A.; Rawat, S.; Rautela, A.; Yadav, I.; Singh, A.; Kumar, S. Current advances in produced water treatment technologies: A perspective of techno-economic analysis and life cycle assessment. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Patni, H.; Ragunathan, B. Recycling and re-usage of oilfield produced water—A review. Mater. Today Proc. 2023, 77, 307–313. [Google Scholar] [CrossRef]
- Amakiri, K.T.; Ramirez Canon, A.; Molinari, M.; Angelis-Dimakis, A. Review of oilfield produced water treatment technologies. Chemosphere 2022, 298, 134064. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Kaabi, M.A.A.; Ashfaq, M.Y.; Da’na, D.A. Produced water characteristics, treatment and reuse: A review. J. Water Proc. Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- ALL Consulting. U.S. Produced Water Volumes and Management Practices in 2021; Ground Water protection Council: Oklahoma City, OK, USA, 2022; Available online: https://www.gwpc.org/wp-content/uploads/2021/09/2021_Produced_Water_Volumes.pdf (accessed on 20 April 2024).
- Dawoud, H.D.; Saleem, H.; Alnuaimi, N.A.; Zaidi, S.J. Characterization and treatment technologies applied for produced water in Qatar. Water 2021, 13, 3573. [Google Scholar] [CrossRef]
- Echchelh, A.; Hess, T.; Sakrabani, R. Reusing oil and gas produced water for irrigation of food crops in drylands. Agric. Water Manag. 2018, 206, 124–134. [Google Scholar] [CrossRef]
- Miranda, M.A.; Ghosh, A.; Mahmodi, G.; Xie, S.; Shaw, M.; Kim, S.; Krzmarzick, M.J.; Lampert, D.J.; Aichele, C.P. Treatment and recovery of high-value elements from produced water. Water 2022, 14, 880. [Google Scholar] [CrossRef]
- Waly, M.M.; Mickovski, S.B.; Thomson, C. Application of circular economy in oil and gas produced water treatment. Sustainability 2023, 15, 2132. [Google Scholar] [CrossRef]
- Shahrim, A.A.; Abounahia, N.M.; El-Sayed, A.M.A.; Saleem, H.; Zaidi, S.J. An overview on the progress in produced water desalination by membrane-based technology. J. Water Process Eng. 2023, 51, 103479. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, L.; Xu, X.; Wang, H.; Xu, P. Analysis of regulatory framework for produced water management and reuse in major oil- and gas-producing regions in the United States. Water 2022, 14, 2162. [Google Scholar] [CrossRef]
- Nath, F.; Chowdhury, M.O.S.; Rhaman, M.M. Navigating produced water sustainability in the oil and gas sector: A Critical review of reuse challenges, treatment technologies, and prospects ahead. Water 2023, 15, 4088. [Google Scholar] [CrossRef]
- Alomar, T.S.; Hameed, B.H.; Usman, M.; Almomani, F.A.; Ba-abbad, M.M.; Khraisheh, M. Recent advances on the treatment of oil fields produced water by adsorption and advanced oxidation processes. J. Water Process Eng. 2022, 49, 103034. [Google Scholar] [CrossRef]
- Knapik, E.; Rotko, G.; Marszałek, M. Recovery of lithium from oilfield brines—Current achievements and future perspectives: A Mini review. Energies 2023, 16, 6628. [Google Scholar] [CrossRef]
- Olajire, A.A. Recent advances on the treatment technology of oil and gas produced water for sustainable energy industry-mechanistic aspects and process chemistry perspectives. Chem. Eng. J. Adv. 2020, 4, 100049. [Google Scholar] [CrossRef]
- Kaneko, N.; Kaiho, T. Iodine production from natural gas brine. In Iodine Chemistry and Applications; Kaiho, T., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 231–241. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Reedy, R.C.; Xu, P.; Engle, M.A.; Nicot, J.; Yoxtheimer, D.; Yang, Q.; Ikonnikova, S. Can we beneficially reuse produced water from oil and gas extraction in the U.S.? Sci. Total Environ. 2020, 717, 137085. [Google Scholar] [CrossRef]
- Khatoon, R.; Raksasat, R.; Ho, Y.C.; Lim, J.W.; Jumbri, K.; Ho, C.-D.; Chan, Y.J.; Abdelfattah, E.A.; Khoo, K.S. Reviewing advanced treatment of hydrocarbon-contaminated oilfield-produced water with recovery of lithium. Sustainability 2023, 15, 16016. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, P.; Tu, W.; Sun, H.; Li, S.; Zhang, Y. Lithium recovery from oil and gas produced water: Opportunities, challenges, and future outlook. J. Water Process Eng. 2023, 55, 104148. [Google Scholar] [CrossRef]
- Cooper, C.M.; McCall, J.; Stokes, S.C.; McKay, C.; Bentley, M.J.; Rosenblum, J.S.; Blewett, T.A.; Huang, Z.; Miara, A.; Talmadge, M.; et al. Oil and gas produced water reuse: Opportunities, treatment needs, and challenges. ACS EST Eng. 2022, 2, 347–366. [Google Scholar] [CrossRef]
- Shah, K.M.; Billinge, I.H.; Chen, X.; Fan, H.; Huang, Y.; Winton, R.K.; Yip, N.Y. Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review. Desalination 2022, 538, 115827. [Google Scholar] [CrossRef]
- Bello, A.S.; Zouari, N.; Da’ana, D.A.; Hahladakis, J.N.; Al-Ghouti, M.A. An overview of brine management: Emerging desalination technologies, life cycle assessment, and metal recovery methodologies. J. Environ. Manag. 2021, 288, 112358. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Arias Chavez, L.H.; Ben-Sasson, M.; Romero-Vargas Castrillón, S.; Yip, N.Y.; Elimelech, M. Desalination and reuse of high-salinity shale gas produced water: Drivers, technologies, and future directions. Environ. Sci. Technol. 2013, 47, 9569–9583. [Google Scholar] [CrossRef]
- Feria-Díaz, J.J.; Correa-Mahecha, F.; López-Méndez, M.C.; Rodríguez-Miranda, J.P.; Barrera-Rojas, J. Recent desalination technologies by hybridization and integration with reverse osmosis: A Review. Water 2021, 13, 1369. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef]
- Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F. Membrane fouling in desalination and its mitigation strategies. Desalination 2018, 425, 130–155. [Google Scholar] [CrossRef]
- Alsarayreh, A.A.; Al-Obaidi, M.A.; Farag, S.K.; Patel, R.; Mujtaba, I.M. Performance evaluation of a medium-scale industrial reverse osmosis brackish water desalination plant with different brands of membranes. A simulation study. Desalination 2021, 503, 114927. [Google Scholar] [CrossRef]
- Sener, S.E.C.; Thomas, V.M.; Hogan, D.E.; Maier, R.M.; Carbajales-Dale, M.; Barton, M.D.; Karanfil, T.; Crittenden, J.C.; Amy, G.L. Recovery of critical metals from aqueous sources. ACS Sustain. Chem. Eng. 2021, 9, 11616. [Google Scholar] [CrossRef]
- Sharkh, B.A.; Al-Amoudi, A.A.; Farooque, M.; Fellows, C.M.; Ihm, S.; Lee, S.; Li, S.; Voutchkov, N. Seawater desalination concentrate—A new frontier for sustainable mining of valuable minerals. npj Clean. Water 2022, 5, 9. [Google Scholar] [CrossRef]
- Kumar, A.; Fukuda, H.; Haon, T.A.; Lienhard, J.H. Lithium recovery from oil and gas produced water: A need for a growing energy industry. ACS Energy Lett. 2019, 4, 1471–1474. [Google Scholar] [CrossRef]
- Xiao, F. Characterization and treatment of Bakken oilfield produced water as a potential source of value-added elements. Sci. Total Environ. 2021, 770, 145283. [Google Scholar] [CrossRef] [PubMed]
- Voronov, A.; Vinograd, N. Industrially valuable components in oilfield waters of Russia. In Thermal and Mineral Waters Origin, Properties and Applications; Balderer, W., Porowski, A., Idris, H., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 111–118. [Google Scholar] [CrossRef]
- Uliasz-Misiak, B. Water accompanying hydrocarbon deposits as a potential source of iodine, lithium and strontium. Min. Res. Manag. 2016, 32, 31–44. (In Polish) [Google Scholar] [CrossRef]
- Sharma, K.S.; Truong, D.Q.; Guo, J.; An, K.A.; Naidu, G.; Deka, B.J. Recovery of rubidium from brine sources utilizing diverse separation technologies. Desalination 2023, 556, 116578. [Google Scholar] [CrossRef]
- Fang, D.; Lu, M.; Wang, Y.; Ma, L.; Li, K.; Liu, H.; Zhang, H.; Shi, G.; Wu, Z.; Ye, X. Extraction of rubidium and cesium from oilfield brine by the two-step adsorption–flotation method. Min. Eng. 2023, 201, 108161. [Google Scholar] [CrossRef]
- European Commission. Study on the Critical Raw Materials for the EU 2023. Available online: https://op.europa.eu/en/publication-detail/-/publication/57318397-fdd4-11ed-a05c-01aa75ed71a1 (accessed on 20 April 2024).
- Schaller, J.; Headley, T.; Prigent, S.; Breuer, R. Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds. Sci. Total Environ. 2014, 493, 910. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, R.; Ho, T.-C.; Kutty, S.R.B.M.; Jumbri, K.; Thant, M.M.M.; Han, D.S. Lithium and boron recovery from oil field produced water: A mini review. In Proceedings of the International Conference on Emerging Smart Cities (ICESC2022), Kuching, Malaysia, 1–2 December 2022. [Google Scholar] [CrossRef]
- Lu, M.; Shao, L.; Yang, Y.; Li, P. Simultaneous recovery of lithium and boron from brine by the collaborative adsorption of lithium-ion sieves and boron chelating resins. Ind. Eng. Chem. Res. 2023, 62, 1508. [Google Scholar] [CrossRef]
- Najim, A. A review of advances in freeze desalination and future prospects. NPJ Clean. Water 2022, 5, 15. [Google Scholar] [CrossRef]
- Rahman, M.S.; Ahmed, M.; Chen, X.D. Freezing-melting process and desalination: I. review of the state-of-the-art. Sep. Purif. Rev. 2006, 35, 59–96. [Google Scholar] [CrossRef]
- Khawaji, A.D.; Kutubkhanah, I.K.; Wie, J.-M. Advances in seawater desalination technologies. Desalination 2008, 221, 47–69. [Google Scholar] [CrossRef]
- Kalista, B.; Shin, H.; Cho, J.; Jang, A. Current development and future prospect review of freeze desalination. Desalination 2018, 447, 167–181. [Google Scholar] [CrossRef]
- Yadav, S.; Banerjee, R.; Seethamraju, S. Thermodynamic analysis of LNG regasification process. Chem. Eng. Trans. 2022, 94, 919–924. [Google Scholar] [CrossRef]
- Noor Akashah, M.H.; Mohammad Rozali, N.E.; Mahadzir, S.; Liew, P.Y. Utilization of cold energy from LNG regasification process: A review of current trends. Processes 2023, 11, 517. [Google Scholar] [CrossRef]
- Ong, C.W.; Chen, C.-L. Technical and economic evaluation of seawater freezing desalination using liquefied natural gas. Energy 2019, 181, 429–439. [Google Scholar] [CrossRef]
- Karimi, A.; Abdi, M.A. Selective dehydration of high-pressure natural gas using supersonic nozzles. Chem. Eng. Process. Process Intensif. 2009, 48, 560–568. [Google Scholar] [CrossRef]
- Shamsi, M.; Farokhi, S.; Pourghafari, M.; Bayat, A. Tuning the natural gas dew point by Joule-Thomson and Mechanical Refrigeration processes: A comparative energy and exergy analysis. J. Pet. Sci. Eng. 2022, 212, 110270. [Google Scholar] [CrossRef]
- Shoghl, S.N.; Naderifar, A.; Farhadi, F.; Pazuki, G. Thermodynamic analysis and process optimization of a natural gas liquid recovery unit based on the Joule—Thomson process. J. Nat. Gas. Sci. Eng. 2021, 96, 104265. [Google Scholar] [CrossRef]
- Kidnay, A.J.; Parrish, W.R.; McCartney, D.G. Fundamentals of Natural Gas Processing, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Williams, P.M.; Ahmad, M.; Connolly, B.S.; Oatley-Radcliffe, D.L. Technology for freeze concentration in the desalination industry. Desalination 2015, 356, 314. [Google Scholar] [CrossRef]
- Chmielowska, A.; Sowiżdżał, A.; Tomaszewska, B. Prospects of using hydrocarbon deposits from the autochthonous miocene formation (Eastern Carpathian Foredeep, Poland) for geothermal purposes. Energies 2021, 14, 3102. [Google Scholar] [CrossRef]
- CompLithium. Complex Technology for Lithium and Potable Water Recovery from Produced Waters. Available online: https://complithium.agh.edu.pl/ (accessed on 20 April 2024).
- Knapik, E.; Rotko, G.; Marszałek, M.; Piotrowski, M. Comparative study on lithium recovery with ion-selective adsorbents and extractants: Results of multi-stage screening test with the use of brine simulated solutions with increasing complexity. Energies 2023, 16, 3149. [Google Scholar] [CrossRef]
- ASTM D5907-18; Standard Test Methods for Filterable Matter (Total Dissolved Solids) and Nonfilterable Matter (Total Suspended Solids) in Water. ASTM International: West Conshohocken, PA, USA, 2018.
- PN-EN ISO 9377-2:2003; Water Quality—Determination of Hydrocarbon Oil Index—Part 2: Method Using Solvent Extraction and Gas Chromatography. PKN: Warsaw, Poland, 2013.
- Yu, X.; Cui, W.; Zhang, F.; Guo, Y.; Deng, T. Removal of iodine from the salt water used for caustic soda production by ion-exchange resin adsorption. Desalination 2019, 458, 76. [Google Scholar] [CrossRef]
- Abushawish, A.; Bouaziz, I.; Almanassra, I.W.; AL-Rajabi, M.M.; Jaber, L.; Khalil, A.K.A.; Takriff, M.S.; Laoui, T.; Shanableh, A.; Atieh, M.A.; et al. Desalination pretreatment technologies: Current status and future developments. Water 2023, 15, 1572. [Google Scholar] [CrossRef]
- Wang, J.; Sim, L.N.; Ho, J.S.; Nakano, K.; Kinoshita, Y.; Sekiguchi, K.; Chong, T.H. Evaluation of ceramics adsorption filter as a pretreatment for seawater reverse-osmosis desalination. Membranes 2022, 12, 1209. [Google Scholar] [CrossRef]
- Altmann, T.; Rousseva, A.; Vrouwenvelder, J.; Shaw, M.; Das, R. Effectiveness of ceramic ultrafiltration as pretreatment for seawater reverse osmosis. Desalination 2023, 564, 116781. [Google Scholar] [CrossRef]
- Loganathan, K.; Chelme-Ayala, P.; Gamal El-Din, M. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge. J. Environ. Manag. 2016, 165, 213–223. [Google Scholar] [CrossRef]
- DuPont Tech Manual Excerpt. Water Chemistry and Pretreatment. Feedwater Type and Analysis. 2022. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/RO-NF-FilmTec-Feedwater-Type-Analysis-Manual-Exc-45-D01545-en.pdf (accessed on 20 April 2024).
- Barma, M.C.; Peng, Z.; Moghtaderi, B.; Doroodchi, E. Freeze desalination of drops of saline solutions. Desalination 2021, 517, 115265. [Google Scholar] [CrossRef]
- Vrbka, L.; Jungwirth, P. Brine rejection from freezing salt solutions: A molecular dynamics study. Phys. Rev. Lett. 2005, 95, 148501. [Google Scholar] [CrossRef]
- Luo, S.; Jin, Y.; Tao, R.; Li, H.; Li, C.; Wang, J.; Li, Z. Molecular understanding of ion rejection in the freezing of aqueous solutions. Phys. Chem. Chem. Phys. 2021, 23, 13292–13299. [Google Scholar] [CrossRef]
- Badawy, S.M. Experimental and kinetic modeling study of multistage freezing-melting process and salt rejection of seawater. Cold Reg. Sci. Technol. 2022, 194, 103457. [Google Scholar] [CrossRef]
- Melak, F.; Ambelu, A.; Laing, G.D.; Alemayehu, E. Freeze desalination as point of use water treatment technology: A case of chromium (VI) removal from water. Proceedings 2018, 2, 173. [Google Scholar] [CrossRef]
- Wijewardena, D. Toxic and Precious Metals Removal from Wastewater Using Freeze Concentration and Electrodeionization; Lakehead University: Thunder Bay, ON, Canada, 2018. [Google Scholar]
- Ribeiro, L.S.; Dantas, T.N.C.; Dantas Neto, A.A.; Melo, K.C.; Moura, M.C.P.A.; Aum, P.T.P. The use of produced water in water-based drilling fluids: Influence of calcium and magnesium concentrations. Braz. J. Pet. Gas. 2016, 10, 233–245. [Google Scholar] [CrossRef]
- Caenn, R.; Darley, H.C.H.; Gray, G. Completion, workover, packer, and reservoir drilling fluids. In Composition and Properties of Drilling and Completion Fluids, 7th ed.; Gulf Professional Publishing: Waltham, MA, USA, 2017; pp. 461–519. [Google Scholar] [CrossRef]
- Chaabi, O.; Al Kobaisi, M.; Haroun, M. Quantifying the low salinity waterflooding effect. Energies 2021, 14, 1979. [Google Scholar] [CrossRef]
- Aljuboori, F.A.; Lee, J.H.; Elraies, K.A.; Stephen, K.D. Using low salinity waterflooding to improve oil recovery in naturally fractured reservoirs. Appl. Sci. 2020, 10, 4211. [Google Scholar] [CrossRef]
- Stewart, D. Beneficial reuse of produced and flowback water. In Proceedings of the US EPA Technical Workshop on Analytical Chemical Methods for Hydraulic Fracturing, Research Triangle Park, NC, USA, 25 February 2013. [Google Scholar]
- Park, H.-G.; Kwon, Y.-N. Long-term stability of low-pressure reverse osmosis (RO) membrane operation—A pilot scale study. Water 2018, 10, 93. [Google Scholar] [CrossRef]
- Lumami Kapepula, V.; García Alvarez, M.; Sang Sefidi, V.; Buleng Njoyim Tamungang, E.; Ndikumana, T.; Musibono, D.-D.; Van Der Bruggen, B.; Luis, P. Evaluation of commercial reverse osmosis and nanofiltration membranes for the removal of heavy metals from surface water in the Democratic Republic of Congo. Clean. Technol. 2022, 4, 1300–1316. [Google Scholar] [CrossRef]
- Liu, X.; Xu, C.; Chen, P.; Li, K.; Zhou, Q.; Ye, M.; Zhang, L.; Lu, Y. Advances in technologies for boron removal from water: A comprehensive review. Int. J. Environ. Res. Public Health 2022, 19, 10671. [Google Scholar] [CrossRef] [PubMed]
- Mehanathan, S.; Jaafar, J.; Nasir, A.M.; Rahman, R.A.; Ismail, A.F.; Illias, R.M.; Othman, M.H.D.; Rahman, M.A.; Bilad, M.R.; Naseer, M.N. Adsorptive Membrane for Boron Removal: Challenges and Future Prospects. Membranes 2022, 12, 798. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Grimón, V.; Fernández-Vera, J.R.; Hernández-Moreno, J.M.; Palacios-Díaz, M.d.P. Sustainable irrigation using non-conventional resources: What has happened after 30 years regarding boron phytotoxicity? Water 2019, 11, 1952. [Google Scholar] [CrossRef]
- Hernández, J.A. Salinity tolerance in plants: Trends and perspectives. Int. J. Mol. Sci. 2019, 20, 2408. [Google Scholar] [CrossRef] [PubMed]
- Dolan, F.; Cath, T.; Hogue, T. Assessing the feasibility of using produced water for irrigation in Colorado. Sci. Total Environ. 2018, 640–641, 619–628. [Google Scholar] [CrossRef]
- The National Primary Drinking Water Regulations (NPDWR). U.S. Environmental Protection Agency. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 20 April 2024).
- Secondary Drinking Water Standards: Guidance for Nuisance Chemicals. U.S. Environmental Protection Agency. Available online: https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals (accessed on 20 April 2024).
- Herkelmann, R.; Rudolph, W.; Seffer, D. Method of Recovering Iodine. U.S. Patent No. US00535661A, 18 October 1994. [Google Scholar]
- Venkat, E.; Magliette, R.J.; McKinney, D.; Michaels, A.S. Recovery of Iodide from Chemical Process Wastewater. U.S. Patent No. US006379556B1, 30 April 2002. [Google Scholar]
- DIAIONTM NSA100. Product Data Sheet No. 01-04-A-3506. Available online: https://www.diaion.com/en/products/ion_exchange_resins/strongly_basic_anion/data_sheet_sa/pdf/nsa100.pdf (accessed on 12 May 2024).
- Karshyga, Z.; Yersaiynova, A.; Yessengaziyev, A.; Orynbayev, B.; Kvyatkovskaya, M.; Silachyov, I. Synthesis of manganese oxide sorbent for the extraction of lithium from hydromineral raw materials. Materials 2023, 16, 7548. [Google Scholar] [CrossRef]
Parameter | Range of Values | Metals | Range of Values |
---|---|---|---|
pH | 3.1–10.0 | Sodium [mg/L] | 1030–150,000 |
Conductivity [μS/cm] | 621–359,000 | Potassium [mg/L] | 24–4300 |
Density [kg/m3] | 1014–1140 | Calcium [mg/L] | 13–74,000 |
Salinity [mg/L] | 7165–100,000 | Magnesium [mg/L] | 4.79–12,341 |
Total dissolved solids [mg/L] | 80–472,000 | Iron [mg/L] | <0.1–1100 |
Total suspended solids [mg/L] | 1.2–21,820 | Lithium [mg/L] | 0.038–505 |
Total organic carbon [mg/L] | 3.4–38,000 | Strontium [mg/L] | 263–6250 |
Chemical oxygen demand [mg/L] | 1200–120,000 | Aluminum [mg/L] | 0.4–410 |
Biological oxygen demand [mg/L] | 75–2870 | Boron [mg/L] | 1.887–95 |
Oil and grease [mg/L] | 0.29–654 | Barium [mg/L] | 0.058–850 |
Benzene [mg/L] | 0.032–778.5 | Copper [mg/L] | <0.002–89 |
Toluene [mg/L] | 0.058–5.86 | Lead [mg/L] | 0.002–205.8 |
Ethylbenzene [mg/L] | 0.026–399.8 | Cadmium [mg/L] | <0.005–26.2 |
Xylene [mg/L] | 0.01–1.29 | Chromium [mg/L] | 0.196–97.2 |
Phenol [mg/L] | 0.001–23 | Manganese [mg/L] | <0.004–175 |
Polycyclic aromatic hydrocarbons [mg/L] | 0.04–2.15 | Nickel [mg/L] | <0.001–162 |
Chloride [mg/L] | 80–292,000 | Zinc [mg/L] | <0.01–113.4 |
Bicarbonate [mg/L | 77–15,000 | Silver [mg/L] | <0.001–7.00 |
Sulfate [mg/L] | <2–15,000 | Arsenic [mg/L] | <0.005–11.00 |
Sulfide [mg/L] | 828 | Tin [mg/L] | 0.68 |
Iodide [mg/L] | 40–130 | Titanium [mg/L] | <0.01–0.7 |
Bromide [mg/L] | 51.00–5850 | Mercury [mg/L] | <0.001–0.002 |
Total nitrogen [mg/L] | 34–647 | Beryllium [mg/L] | <0.001–0.004 |
Parameter | Method/Apparatus |
---|---|
Turbidity | spectrophotometric method using a DR/2000 spectrophotometer (HACH, Loveland, CO, USA) |
pH | CPC-411 pH/conductivity meter (ELMETRON, Zabrze, Poland) |
Total dissolved solids | gravimetric method according to ASTM D5907-18 [55] |
Total suspended solids | gravimetric method according to ASTM D5907-18 [55] |
Conductivity | CC-315 conductivity meter (ELMETRON, Poland) |
Silica | photometric determination of molybdate-reactive silica in water, multiparameter bench photometer HI 83099 (Hanna Instruments Inc., Woonsocket, RI, USA) |
Mineral oil index | 100 mL of sample were extracted with 25 mL of dichloromethane; the obtained extract was analyzed using a model 6890 gas chromatograph (Agilent, Wilmington, DE, USA) according to the methodology described in [56] |
Concentrations of Ca, Fe, K, Li, Mg, and Na | FI-AAS; PerkinElmer 110B Atomic Absorption Spectrometer (PerkinElmer Inc., Waltham, MA, USA) |
Concentrations of Al, Ag, As, B, Ba, Br, Cd, Co, Cr, Cs, Cu, I, Mn, Mo, Ni, Pb, Rb, Se, Sr, and Zn | ICP-MS; Elan DRC-e (PerkinElmer Inc., Waltham, MA, USA) |
Parameter | Raw Brine | Brine after 10 µm Filtration (Filtration 1) | Brine after Coagulation, Sedimentation, and 5 µm Filtration (Filtration 2) |
---|---|---|---|
Turbidity [FTU] | >400 | 42 | 14 |
pH | 6.71 | 6.77 | 7.23 |
TDS [g/L] | 153.89 | 152.73 | 152.65 |
TSS [g/L] | 1.206 | 0.404 | 0.007 |
Conductivity [mS/cm] | 150.0 | 149.6 | 149.4 |
Silica [mg/L] | 151.3 | 89.1 | 79.5 |
Mineral oil index [mg/L] | 203 | 32 | 8 |
Element | Desalinated Water | Ice 3 | Ice 2 | Ice 1 | Feed Brine | Brine 1 | Brine 2 | Brine 3 | Concentrated Brine | Enrichment Ratio, % | Rejection Ratio, % |
---|---|---|---|---|---|---|---|---|---|---|---|
Na [g/L] | 1.5 | 4.2 | 19.3 | 31.5 | 46.5 | 54.3 | 60.2 | 64.3 | 68.0 | 146.2 | 96.8 |
Ca [mg/L] | 190 | 320 | 1830 | 3060 | 4360 | 4970 | 6220 | 8100 | 8350 | 191.5 | 95.6 |
Mg [mg/L] | 40 | 67 | 416 | 690 | 1021 | 1102 | 1230 | 1440 | 1670 | 163.6 | 96.1 |
K [mg/L] | 40.2 | 48.1 | 262.9 | 420.3 | 578.5 | 612.1 | 675.2 | 732.2 | 810.6 | 140.1 | 93.1 |
Sr [mg/L] | 4.8 | 9.21 | 54.5 | 86.6 | 123 | 138 | 167 | 178 | 185 | 150.4 | 96.1 |
Br [mg/L] | 8.63 | 29.3 | 87.7 | 127 | 167 | 176 | 198 | 211 | 244 | 146.1 | 94.8 |
I [mg/L] | 1.22 | 3.33 | 11.8 | 17.4 | 24.9 | 36.6 | 41.3 | 44.5 | 48.1 | 193.2 | 95.1 |
B [mg/L] | 3.01 | 19.1 | 33.3 | 41.5 | 53.0 | 61.7 | 65.6 | 66.0 | 72.5 | 136.8 | 94.3 |
Li [mg/L] | 1.06 | 1.07 | 4.25 | 6.44 | 8.97 | 9.83 | 11.53 | 12.34 | 14.25 | 158.9 | 88.2 |
Fe [mg/L] | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.15 | 0.18 | 0.28 | 0.37 | - | - |
Se [μg/L] | 120 | 600 | 1120 | 2130 | 2180 | 2450 | 2560 | 2640 | 2910 | 133.5 | 94.5 |
Mo [μg/L] | 2710 | 1060 | 980 | 770 | 610 | 630 | 650 | 630 | 640 | 104.9 | −344.3 |
Ba [μg/L] | 22 | 84 | 183 | 207 | 231 | 302 | 311 | 319 | 322 | 139.4 | 90.5 |
Mn [μg/L] | 78 | 384 | 868 | 1080 | 1420 | 1510 | 1660 | 1690 | 1840 | 129.6 | 94.5 |
Al [μg/L] | 28 | 131 | 322 | 413 | 502 | 543 | 672 | 871 | 1010 | 201.2 | 94.4 |
Ni [μg/L] | 1 | 272 | 569 | 707 | 802 | 818 | 840 | 856 | 893 | 111.3 | 99.9 |
Pb [μg/L] | 72 | 747 | 786 | 806 | 834 | 860 | 831 | 865 | 901 | 108.0 | 91.4 |
Rb [μg/L] | 29 | 111 | 327 | 465 | 627 | 634 | 702 | 871 | 910 | 145.1 | 95.4 |
Cu [μg/L] | 2.4 | 313 | 428 | 555 | 667 | 712 | 708 | 714 | 723 | 108.4 | 99.6 |
Cd [μg/L] | 264 | 318 | 346 | 348 | 354 | 356 | 354 | 360 | 359 | 101.4 | 25.4 |
Co [μg/L] | 192 | 206 | 204 | 208 | 211 | 208 | 217 | 214 | 218 | 103.3 | 9.0 |
Cr [μg/L] | 36 | 400 | 444 | 448 | 453 | 451 | 455 | 457 | 482 | 106.4 | 92.1 |
Cs [μg/L] | 32 | 332 | 355 | 361 | 356 | 360 | 355 | 380 | 399 | 112.1 | 91.0 |
As [μg/L] | 25 | 176 | 305 | 405 | 479 | 602 | 638 | 646 | 679 | 141.8 | 94.8 |
Ag [μg/L] | 15 | 158 | 166 | 175 | 184 | 177 | 183 | 186 | 185 | 100.5 | 91.8 |
Zn [μg/L] | 2.4 | 2.8 | 3.1 | 3.8 | 3.2 | 3.4 | 3.6 | 3.5 | 3.8 | 118.8 | 25.0 |
Adsorbate | Adsorbent | Recovery Efficiency [%] | |
---|---|---|---|
Concentrated Brine after Freezing Desalination [This Study] | Model Brine (0.022 wt % of Li, 7.21 wt % of Na, 3 wt % of Ca, 1 wt % of Mg) [54] | ||
Iodine | NSA-100 | 58 | - |
Lithium | LIS3 | 52 | 99.7 |
LIS4 | 56 | 99.7 | |
LIS10 | 93 | 99.7 | |
LIS11 | 52 | 93.2 | |
LIS12 | 78 | 96.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotko, G.; Knapik, E.; Piotrowski, M.; Marszałek, M. Oilfield Brine as a Source of Water and Valuable Raw Materials—Proof of Concept on a Laboratory Scale. Water 2024, 16, 1461. https://doi.org/10.3390/w16111461
Rotko G, Knapik E, Piotrowski M, Marszałek M. Oilfield Brine as a Source of Water and Valuable Raw Materials—Proof of Concept on a Laboratory Scale. Water. 2024; 16(11):1461. https://doi.org/10.3390/w16111461
Chicago/Turabian StyleRotko, Grzegorz, Ewa Knapik, Marcin Piotrowski, and Marta Marszałek. 2024. "Oilfield Brine as a Source of Water and Valuable Raw Materials—Proof of Concept on a Laboratory Scale" Water 16, no. 11: 1461. https://doi.org/10.3390/w16111461
APA StyleRotko, G., Knapik, E., Piotrowski, M., & Marszałek, M. (2024). Oilfield Brine as a Source of Water and Valuable Raw Materials—Proof of Concept on a Laboratory Scale. Water, 16(11), 1461. https://doi.org/10.3390/w16111461