Remote Measurement of Tide and Surge Using a Deep Learning System with Surveillance Camera Images
Abstract
:1. Introduction
2. Methodology
2.1. Data Acquisition and Territorial Framework
2.1.1. Site 1: Santa Lucia
2.1.2. Site 2: Lignano Sabbiadoro
2.2. Creation of the Dataset
2.3. Installation and Requirements
- CPU: Intel Xeon 2.00 GHz (×2)
- GPU: NVIDIA Tesla T4 16 GB
- Driver Version: 525.85.12
- CUDA Version: 12.0
- RAM: 12.7 GB
2.4. Training Model Process and Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; First Intergovernmental Panel on Climate Change (IPCC); IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change (IPCC). Climate Change 2022–Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Chaumillon, E.; Bertin, X.; Fortunato, A.B.; Bajo, M.; Schneider, J.; Dezileau, L.; Walsh, J.P.; Michelot, A.; Chauveau, E.; Créach, A.; et al. Storm-induced marine flooding: Lessons from a multidisciplinary approach. Earth-Sci. Rev. 2017, 165, 151–184. [Google Scholar] [CrossRef]
- Jones, O.; Barker, N. Tides, coasts and people: Culture, ecology and sustainability. In Littoral 2010–Adapting to Global Change at the Coast: Leadership, Innovation, and Investment; EDP Sciences: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Bezerra, D.M.M.; Nascimento, D.M.; Ferreira, E.N.; Rocha, P.D.; Mourão, J.S. Influence of tides and winds on fishing techniques and strategies in the Mamanguape River Estuary, Paraíba State, NE Brazil. An. Acad. Bras. Ciências 2012, 84, 775–788. [Google Scholar] [CrossRef]
- Purnaini, R.; Purwono, S. Tidal Influence on water quality of Kapuas Kecil River downstream. E3S Web Conf. 2018, 31, 04006. [Google Scholar] [CrossRef]
- GSGislason & Associates Ltd. British Columbia Seafood Sector and Tidal Water Recreational Fishing: A Strengths, Weaknesses, Opportunities, and Threats Assessment. Technical Report: British Columbia Canada, 2004. Available online: https://www.for.gov.bc.ca/hfd/library/documents/bib105375_sum.pdf (accessed on 20 January 2024).
- U.S. Department of Energy, Office of Efficiency & Renewable Energy. Powering the blue economy: Exploring opportunities for marine renewable energy in maritime markets. In Chapter 4-Offshore Marine Aquaculture; 2019. Available online: https://www.energy.gov/sites/prod/files/2019/03/f61/73355.pdf (accessed on 15 February 2024).
- Hafner, M.; Luciani, G. (Eds.) The Palgrave Handbook of International Energy Economics; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Müller, M.; Haak, H.; Jungclaus, J.H.; Sündermann, J.; Thomas, M. The effect of ocean tides on a climate model simulation. Ocean Model. 2010, 35, 304–313. [Google Scholar] [CrossRef]
- Webb, P. Introduction to Oceanography. 2023. Available online: http://rwu.pressbooks.pub/webboceanography (accessed on 7 April 2024).
- Hicks, S.D. Understanding Tides. Technical Report, U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service, 2006. 66p. Available online: https://tidesandcurrents.noaa.gov/publications/Understanding_Tides_by_Steacy_finalFINAL11_30.pdf (accessed on 15 February 2024).
- Von Storch, H.; Woth, K. Storm surges: Perspectives and options. Sustain. Sci. 2008, 3, 33–43. [Google Scholar] [CrossRef]
- Bullock, J.A.; Haddow, G.D.; Coppola, D.P. 3-Hazards. In Homeland Security, 2nd ed.; Bullock, J.A., Haddow, G.D., Coppola, D.P., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 45–66. [Google Scholar] [CrossRef]
- Oddo, P.; Bonaduce, A.; Pinardi, N.; Guarnieri, A. Sensitivity of the Mediterranean Sea level to atmospheric pressure and free surface elevation numerical formulation in NEMO. Geosci. Model Dev. 2014, 7, 3001–3015. [Google Scholar] [CrossRef]
- Rooney, A. Hurricane! Nature’s Fury E-Book Series; Britannica Digital Learning: Chicago, IL, USA, 2012; 32p. [Google Scholar]
- Idier, D.; Bertin, X.; Thompson, P.; Pickering, M.D. Interactions between mean sea level, tide, surge, waves and flooding: Mechanisms and contributions to sea level variations at the coast. Surv. Geophys. 2019, 40, 1603–1630. [Google Scholar] [CrossRef]
- Miles, T.; Seroka, G.; Glenn, S. Coastal ocean circulation during hurricane Sandy. J. Geophys. Res. Ocean. 2017, 122, 7095–7114. [Google Scholar] [CrossRef]
- Mulligan, R.P.; Walsh, J.P.; Wadman, H.M. Storm surge and surface waves in a shallow lagoonal estuary during the crossing of a hurricane. J. Waterw. Port Coast. Ocean Eng. 2015, 141, A5014001. [Google Scholar] [CrossRef]
- Ren, H.; Dudhia, J.; Li, H. The size characteristics and physical explanation for the radius of maximum wind of hurricanes. Atmos. Res. 2022, 277, 106313. [Google Scholar] [CrossRef]
- Nott, J. Extreme Events: A Physical Reconstruction and Risk Assessment; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Shinde, P.P.; Shah, S. A Review of Machine Learning and Deep Learning Applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ongsulee, P. Artificial intelligence, machine learning and deep learning. In Proceedings of the 15th International Conference on ICT and Knowledge Engineering (ICT&KE), Bangkok, Thailand, 22–24 November 2017. [Google Scholar] [CrossRef]
- Pourzangbar, A.; Jalali, M.; Brocchini, M. Machine learning application in modelling marine and coastal phenomena: A critical review. Front. Environ. Eng. 2023, 2, 1235557. [Google Scholar] [CrossRef]
- Moksness, E.; Dahl, E.; Støttrup, J. Integrated Coastal Zone Management; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Northrop, E.; Schuhmann, P.; Burke, L.; Fyall, A.; Alvarez, S.; Spenceley, A.; Becken, S.; Kato, K.; Roy, J.; Some, S.; et al. Opportunities for Transforming Coastal and Marine Tourism—Towards Sustainability, Regeneration and Resilience. Technical Report Commissioned by High Level Panel for a Sustainable Ocean Economy (Oceanpanel.org), 2022. 135p. Available online: https://oceanpanel.org/wp-content/uploads/2022/06/22_REP_HLP-Tourism_v6.pdf (accessed on 6 January 2024).
- Choung, Y.-J.; Jung, D. Comparison of machine and deep learning methods for mapping sea farms using high-resolution satellite image. J. Coast. Res. 2021, 114, 420–423. [Google Scholar] [CrossRef]
- Scardino, G.; Scicchitano, G.; Chirivì, M.; Costa, P.J.M.; Luparelli, A.; Mastronuzzi, G. Convolutional neural network and optical flow for the assessment of wave and tide parameters from video analysis (LEUCOTEA): An innovative tool for coastal monitoring. Remote Sens. 2022, 14, 2994. [Google Scholar] [CrossRef]
- Tsiakos, C.-A.D.; Chalkias, C. Use of machine learning and remote sensing techniques for shoreline monitoring: A review of recent literature. Appl. Sci. 2023, 13, 3268. [Google Scholar] [CrossRef]
- Dang, K.B.; Dang, V.B.; Ngo, V.L.; Vu, K.C.; Nguyen, H.; Nguyen, D.A.; Nguyen, T.D.L.; Pham, T.P.N.; Giang, T.L.; Nguyen, H.D.; et al. Application of deep learning models to detect coastlines and shorelines. J. Environ. Manag. 2022, 320, 115732. [Google Scholar] [CrossRef]
- Merz, B.; Kuhlicke, C.; Kunz, M.; Pittore, M.; Babeyko, A.; Bresch, D.N.; Domeisen, D.I.V.; Feser, F.; Koszalka, I.; Kreibich, H.; et al. Impact forecasting to support emergency management of natural hazards. Rev. Geophys. 2020, 58, e2020RG000704. [Google Scholar] [CrossRef]
- Meli, M.; Olivieri, M.; Romagnoli, C. Sea-level change along the Emilia-Romagna coast from tide gauge and satellite altimetry. Remote Sens. 2020, 13, 97. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. arXiv 2014, arXiv:1409.4842. [Google Scholar]
- Ozgur, C.; Colliau, T.; Rogers, G.; Hughes, Z. MatLab vs. Python vs. R. J. Data Sci. 2021, 15, 355–372. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. arXiv 1512, arXiv:1512.00567. [Google Scholar]
- Pytharouli, S.; Chaikalis, S.; Stiros, S.C. Uncertainty and bias in electronic tide-gauge records: Evidence from collocated sensors. Measurement 2018, 125, 496–508. [Google Scholar] [CrossRef]
- Ganti, V.; Gehrke, J.; Ramakrishnan, R. Mining very large databases. Computer 1999, 32, 38–45. [Google Scholar] [CrossRef]
- Anzidei, M.; Scicchitano, G.; Scardino, G.; Bignami, C.; Tolomei, C.; Vecchio, A.; Serpelloni, E.; De Santis, V.; Monaco, C.; Milella, M.; et al. Relative sea-level rise scenario for 2100 along the coast of South Eastern Sicily (Italy) by InSAR data, satellite images and high-resolution topography. Remote Sens. 2021, 13, 1108. [Google Scholar] [CrossRef]
- Anzidei, M.; Scicchitano, G.; Tarascio, S.; De Guidi, G.; Monaco, C.; Barreca, G.; Mazza, G.; Serpelloni, E.; Vecchio, A. Coastal retreat and marine flooding scenario for 2100: A case study along the coast of Maddalena peninsula (Southeastern Sicily). Geogr. Fis. Din. Quat. 2018, 41, 5–16. [Google Scholar]
- Scicchitano, G.; Pignatelli, C.; Spampinato, C.R.; Piscitelli, A.; Milella, M.; Monaco, C.; Mastronuzzi, G. Terrestrial laser scanner techniques in the assessment of tsunami impact on the Maddalena peninsula (South-Eastern Sicily, Italy). Earth Planets Space 2012, 64, 8. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Scicchitano, G.; Scardino, G.; Milella, M.; Piscitelli, A.; Mastronuzzi, G. Boulder displacements along rocky coasts: A new deterministic and theoretical approach to improve incipient motion formulas. Geomorphology 2022, 407, 108217. [Google Scholar] [CrossRef]
- Scardino, G.; Rizzo, A.; De Santis, V.; Kyriakoudi, D.; Rovere, A.; Vacchi, M.; Torrisi, S.; Scicchitano, G. Insights on the origin of multiple tsunami events affected the archaeological site of Ognina (South-Eastern Sicily, Italy). Quat. Int. 2022, 638–639, 122–139. [Google Scholar] [CrossRef]
- De Martini, P.M.; Barbano, M.S.; Smedile, A.; Gerardi, F.; Pantosti, D.; Del Carlo, P.; Pirrotta, C. A unique 4000 year long geological record of multiple tsunami inundations in the Augusta bay (Eastern Sicily, Italy). Mar. Geol. 2010, 276, 42–57. [Google Scholar] [CrossRef]
- De Martini, P.M.; Barbano, M.S.; Pantosti, D.; Smedile, A.; Pirrotta, C.; Del Carlo, P.; Pinzi, S. Geological evidence for paleotsunamis along eastern Sicily (Italy): An Overview. Nat. Hazards Earth Syst. Sci. 2012, 12, 2569–2580. [Google Scholar] [CrossRef]
- D’Adderio, L.P.; Panegrossi, G.; Dafis, S.; Rysman, J.-F.; Casella, D.; Sanò, P.; Fuccello, A.; Miglietta, M.M. Helios and Juliette: Two falsely acclaimed medicanes. Preprint 2023. [Google Scholar] [CrossRef]
- Bentley, A.M.; Keyser, D.; Bosart, L.F. A dynamically based climatology of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Weather. Rev. 2016, 144, 2049–2068. [Google Scholar] [CrossRef]
- Flaounas, E.; Davolio, S.; Raveh-Rubin, S.; Pantillon, F.; Miglietta, M.M.; Gaertner, M.A.; Hatzaki, M.; Homar, V.; Khodayar, S.; Korres, G.; et al. Mediterranean cyclones: Current knowledge and open questions on dynamics, prediction, climatology and impacts. Weather Clim. Dyn. 2022, 3, 173–208. [Google Scholar] [CrossRef]
- Romera, R.; Gaertner, M.A.; Sánchez, E.; Domínguez, M.; González-Alemán, J.J.; Miglietta, M.M. Climate change projections of medicanes with a large multi-model ensemble of regional climate models. Glob. Planet. Chang. 2017, 151, 134–143. [Google Scholar] [CrossRef]
- Fontolan, G.; Bratus, A.; Bieker, F.; Colombetta, L.; Gallitelli, D.; Lipizer, M.; Sgambati, F.; Bezzi, A.; Casagrande, G.; Fracaros, S.; et al. Piano Coste—Accordo attuativo di collaborazione per lo studio e monitoraggio morfo-sedimentologico dello stato dei litorali della regione Friuli Venezia Giulia finalizzato alla gestione integrata della zona costiera in applicazione alla convenzione quadro tra la Regione Autonoma Friuli Venezia Giulia e l’Università degli Studi di Trieste (DGR 264/2014). 2023. Unpublished Technical Report.
- Petti, M.; Pascolo, S.; Bosa, S.; Busetto, N. The tidal prism as a dynamic response of a nonlinear harmonic system. Phys. Fluids 2023, 35, 017124. [Google Scholar] [CrossRef]
- Dorigo. La Laguna di Grado e le sue foci. Ricerche e rilievi idrografici. Uff. Idrogr. Del Magistr. Alle Acque 1965, 155, 231. [Google Scholar]
- Bezzi, A.; Pillon, S.; Martinucci, D.; Fontolan, G. Inventory and conservation assessment for the management of coastal dunes, Veneto coasts, Italy. J. Coast. Conserv. 2018, 22, 503–518. [Google Scholar] [CrossRef]
- Regione Autonoma Friuli Venezia Giulia. Piano Regolatore Portuale Del Porto Di Monfalcone Variante Localizzata. Studio Meteomarino. Progettisti: Modimar, SJS Engineering, Archest. Technical Report, 2019. Available online: https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/ambiente-territorio/pianificazione-gestioneterritorio/FOGLIA9/allegati/Allegato_33_alla_Delibera_2066-2019.pdf (accessed on 26 November 2023).
- Lionello, P.; Cavaleri, L.; Nissen, K.M.; Pino, C.; Raicich, F.; Ulbrich, U. Severe marine storms in the northern Adriatic: Characteristics and trends. Phys. Chem. Earth Parts A/B/C 2012, 40–41, 93–105. [Google Scholar] [CrossRef]
- Umgiesser, G.; Bajo, M.; Ferrarin, C.; Cucco, A.; Lionello, P.; Zanchettin, D.; Papa, A.; Tosoni, A.; Ferla, M.; Coraci, E.; et al. The prediction of floods in Venice: Methods, models and uncertainty (review article). Nat. Hazards Earth Syst. Sci. 2021, 21, 2679–2704. [Google Scholar] [CrossRef]
- Cavaleri, L.; Bajo, M.; Barbariol, F.; Bastianini, M.; Benetazzo, A.; Bertotti, L.; Chiggiato, J.; Davolio, S.; Ferrarin, C.; Magnusson, L.; et al. The October 29, 2018 storm in Northern Italy—An exceptional event and its modeling. Prog. Oceanogr. 2019, 178, 102178. [Google Scholar] [CrossRef]
- Ferrarin, C.; Bajo, M.; Benetazzo, A.; Cavaleri, L.; Chiggiato, J.; Davison, S.; Davolio, S.; Lionello, P.; Orlić, M.; Umgiesser, G. Local and large-scale controls of the exceptional Venice floods of November 2019. Prog. Oceanogr. 2021, 197, 102628. [Google Scholar] [CrossRef]
- Mel, R.A.; Coraci, E.; Morucci, S.; Crosato, F.; Cornello, M.; Casaioli, M.; Mariani, S.; Carniello, L.; Papa, A.; Bonometto, A.; et al. Insights on the extreme storm surge event of the 22 November 2022 in the Venice Lagoon. J. Mar. Sci. Eng. 2023, 11, 1750. [Google Scholar] [CrossRef]
- Casagrande, G.; Bezzi, A.; Fracaros, S.; Martinucci, D.; Pillon, S.; Salvador, P.; Sponza, S.; Fontolan, G. Quantifying transgressive coastal changes using UAVs: Dune migration, overwash recovery, and barrier flooding assessment and interferences with human and natural assets. J. Mar. Sci. Eng. 2023, 11, 1044. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 2015. Available online: http://download.tensorflow.org/paper/whitepaper2015.pdf (accessed on 5 March 2024).
- Carneiro, T.; Medeiros Da NóBrega, R.V.; Nepomuceno, T.; Bian, G.-B.; De Albuquerque, V.H.C.; Filho, P.P.R. Performance analysis of google colaboratory as a tool for accelerating deep learning applications. IEEE Access 2018, 6, 61677–61685. [Google Scholar] [CrossRef]
- Yu, Z.; Dong, Y.; Cheng, J.; Sun, M.; Su, F. Research on face recognition classification based on improved GoogleNet. Secur. Commun. Netw. 2022, 2022, 7192306. [Google Scholar] [CrossRef]
- Warkar, K.V.; Pandey, A.B. A survey on multiclass image classification based on Inception-v3 transfer learning model. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 169–172. [Google Scholar] [CrossRef]
- Anilkumar, K.K.; Manoj, V.J.; Sagi, T.M. Automated detection of leukemia by pretrained deep neural networks and transfer learning: A comparison. Med. Eng. Phys. 2021, 98, 8–19. [Google Scholar] [CrossRef]
- Mulya, R.F.; Utami, E.; Ariatmanto, D. Classification of acute lymphoblastic leukemia based on white blood cell images using inceptionv3 model. J. RESTI (Rekayasa Sist. Dan Teknol. Inf.) 2023, 7, 947–952. [Google Scholar] [CrossRef]
- Ramaneswaran, S.; Srinivasan, K.; Vincent, P.M.D.R.; Chang, C.-Y. Hybrid Inception v3 XGBoost model for acute lymphoblastic leukemia classification. Comput. Math. Methods Med. 2021, 2021, 2577375. [Google Scholar] [CrossRef]
- Raihan, M.A.; Goli, N.; Aamodt, T. Modeling deep learning accelerator enabled GPUs. IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). arXiv 2019, arXiv:1811.08309. [Google Scholar]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Jiang, Y. Overfitting and underfitting analysis for deep learning based end-to-end communication systems. In Proceedings of the 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep learning using rectified linear units (ReLU). arXiv 2019, arXiv:1803.08375. [Google Scholar]
- Shanker, M.; Hu, M.Y.; Hung, M.S. Effect of data standardization on neural network training. Omega 1996, 24, 385–397. [Google Scholar] [CrossRef]
- Gholamalinezhad, H.; Khosravi, H. Pooling methods in deep neural networks, a review. arXiv 2020, arXiv:2009.07485. [Google Scholar]
- Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 2018, 95, 43–56. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. arXiv 2020, arXiv:1911.02685. [Google Scholar]
- Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef]
- Götz, T.I.; Göb, S.; Sawant, S.; Erick, X.F.; Wittenberg, T.; Schmidkonz, C.; Tomé, A.M.; Lang, E.W.; Ramming, A. Number of necessary training examples for neural networks with different number of trainable parameters. J. Pathol. Inform. 2022, 13, 100114. [Google Scholar] [CrossRef]
- Kulkarni, A.; Chong, D.; Batarseh, F.A. 5-Foundations of data imbalance and solutions for a data democracy. In Data Democracy. At the Nexus of Artificial Intelligence, Software Development, and Knowledge Engineering; Batarseh, F.A., Yang, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 83–106. [Google Scholar] [CrossRef]
- Huang, H.; Xu, H.; Wang, X.; Silamu, W. Maximum F1-score discriminative training criterion for automatic mispronunciation detection. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 787–797. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Li, T.; Lu, S.; Tian, J.; Yin, Z.; Li, X.; Zheng, W. U-Net-LSTM: Time Series-Enhanced Lake Boundary Prediction Model. Land 2023, 12, 1859. [Google Scholar] [CrossRef]
- Sabato, G.; Scardino, G.; Kushabaha, A.; Chirivi, M.; Luparelli, A.; Scicchitano, G. Automatic Seagrass Banquettes Detection from Surveillance Camera Images with Detectron2. Geogr. Fis. E Din. Quat. 2023, 45, 229–235. [Google Scholar] [CrossRef]
- Ibaceta, R.; Almar, R.; Catalán, P.A.; Blenkinsopp, C.E.; Almeida, L.P.; Cienfuegos, R. Assessing the Performance of a Low-Cost Method for Video-Monitoring the Water Surface and Bed Level in the Swash Zone of Natural Beaches. Remote Sens. 2018, 10, 49. [Google Scholar] [CrossRef]
- Al Najar, M.; Thoumyre, G.; Bergsma, E.; Almar, R.; Benshila, R.; Wilson, D. Satellite Derived Bathymetry Using Deep Learning. Mach. Learn. 2023, 112, 1107–1130. [Google Scholar] [CrossRef]
- Zhou, G.; Su, S.; Xu, J.; Tian, Z.; Cao, Q. Bathymetry Retrieval From Spaceborne Multispectral Subsurface Reflectance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2547–2558. [Google Scholar] [CrossRef]
- Chen, W.; Liu, W.; Liang, H.; Jiang, M.; Dai, Z. Response of Storm Surge and M2 Tide to Typhoon Speeds along Coastal Zhejiang Province. Ocean Eng. 2023, 270, 113646. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Yu, Z.; Yang, T.; Xu, J.; Chao, L.; Ni, J.; Wang, L.; Gao, Y.; Hu, Y.; et al. Xin’anjiang Nested Experimental Watershed (XAJ-NEW) for Understanding Multiscale Water Cycle: Scientific Objectives and Experimental Design. Engineering 2022, 18, 207–217. [Google Scholar] [CrossRef]
- Andriolo, U.; Mendes, D.; Taborda, R. Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems. Remote Sens. 2020, 12, 204. [Google Scholar] [CrossRef]
- Callens, A.; Morichon, D.; Liria, P.; Epelde, I.; Liquet, B. Automatic Creation of Storm Impact Database Based on Video Monitoring and Convolutional Neural Networks. Remote Sens. 2021, 13, 1933. [Google Scholar] [CrossRef]
- Davidson, M.A.; Aarninkhof, S.G.J.; Van Koningsveld, M.; Holman, R.A. Developing Coastal Video Monitoring Systems in Support of Coastal Zone Management. J. Coast. Res. 2006, 39, 49–56. [Google Scholar]
- Calkoen, F.; Luijendijk, A.; Rivero, C.R.; Kras, E.; Baart, F. Traditional vs. Machine-Learning Methods for Forecasting Sandy Shoreline Evolution Using Historic Satellite-Derived Shorelines. Remote Sens. 2021, 13, 934. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Xu, Z.; Cai, Y.; Xu, L.; Chen, Z.; Gong, J. A Spatiotemporal Deep Learning Model for Sea Surface Temperature Field Prediction Using Time-Series Satellite Data. Environ. Model. Softw. 2019, 120, 104502. [Google Scholar] [CrossRef]
- Giffard-Roisin, S.; Yang, M.; Charpiat, G.; Kumler Bonfanti, C.; Kégl, B.; Monteleoni, C. Tropical Cyclone Track Forecasting Using Fused Deep Learning from Aligned Reanalysis Data. Front. Big Data 2020, 3, 1. [Google Scholar] [CrossRef]
- Jiang, G.-Q.; Xu, J.; Wei, J. A Deep Learning Algorithm of Neural Network for the Parameterization of Typhoon-Ocean Feedback in Typhoon Forecast Models. Geophys. Res. Lett. 2018, 45, 3706–3716. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Sabato, G.; Scardino, G.; Kushabaha, A.; Chirivi, M.; Luparelli, A.; Scicchitano, G. Deep Learning-Based Segmentation Techniques for Coastal Monitoring and Seagrass Banquette Detection. In Proceedings of the 2023 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), La Valletta, Malta, 4–6 October 2023; pp. 524–527. [Google Scholar]
- Yang, T.; Jiangde, S.; Hong, Z.; Zhang, Y.; Han, Y.; Zhou, R.; Wang, J.; Yang, S.; Tong, X.; Kuc, T. Sea-Land Segmentation Using Deep Learning Techniques for Landsat-8 OLI Imagery. Mar. Geod. 2020, 43, 105–133. [Google Scholar] [CrossRef]
Name Dataset | Basement | N° Imgs | Train | Test | N° Classes | Site | Coordinates UTM Wgs84 |
---|---|---|---|---|---|---|---|
Santa Lucia | Rock | 3.266 | 2.605 | 661 | 32 | Santa Lucia (SR), Italy | 37°02′03.19″ N 15°18′54.41″ E |
Lignano | Sand | 430 | 248 | 101 | 34 | Lignano Sabbiadoro (UD), Italy | 45°41′18.36″ N 13°08′51.08″ E |
Location | Accuracy | Loss |
---|---|---|
Santa Lucia | 99.55% | 0.25 |
Lignano | 94.06% | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabato, G.; Scardino, G.; Kushabaha, A.; Casagrande, G.; Chirivì, M.; Fontolan, G.; Fracaros, S.; Luparelli, A.; Spadotto, S.; Scicchitano, G. Remote Measurement of Tide and Surge Using a Deep Learning System with Surveillance Camera Images. Water 2024, 16, 1365. https://doi.org/10.3390/w16101365
Sabato G, Scardino G, Kushabaha A, Casagrande G, Chirivì M, Fontolan G, Fracaros S, Luparelli A, Spadotto S, Scicchitano G. Remote Measurement of Tide and Surge Using a Deep Learning System with Surveillance Camera Images. Water. 2024; 16(10):1365. https://doi.org/10.3390/w16101365
Chicago/Turabian StyleSabato, Gaetano, Giovanni Scardino, Alok Kushabaha, Giulia Casagrande, Marco Chirivì, Giorgio Fontolan, Saverio Fracaros, Antonio Luparelli, Sebastian Spadotto, and Giovanni Scicchitano. 2024. "Remote Measurement of Tide and Surge Using a Deep Learning System with Surveillance Camera Images" Water 16, no. 10: 1365. https://doi.org/10.3390/w16101365
APA StyleSabato, G., Scardino, G., Kushabaha, A., Casagrande, G., Chirivì, M., Fontolan, G., Fracaros, S., Luparelli, A., Spadotto, S., & Scicchitano, G. (2024). Remote Measurement of Tide and Surge Using a Deep Learning System with Surveillance Camera Images. Water, 16(10), 1365. https://doi.org/10.3390/w16101365